
Function Approximation Through Growing Neural
Network Based On RBF And Potential Functions

Iren Valova
Computer Science

University of Massachusetts
Dartmouth

285 Old Westport Rd.
N. Dartmouth, MA 02747

ivalova@umassd.edu

Natacha Gueorguieva
Computer Science

City University of New York
2800 Victory Blvd.,

Staten Island, NY 10314
natachag@csi.cuny.edu

George Georgiev
Computer Science

University of Wisconsin Oshkosh
800 Algoma Blvd.,
Oshkosh, WI 54901

georgiev@uwosh.edu

Abstract - This research work proposes a neural network based
on RBFs with symmetrical potential functions and two
fundamental components - potential function generators (PFG)
and potential function entities (PFE). The approach, based on
RBFNs with symmetrical potential functions (SPF), performs a
mapping based on a set of generated potential fields over the
domain of input space by a number of potential function entities.
The placement and parameterization of the local units as well as
the choice of their number is difficult and critical part for RBFs
Networks. Networks with too many parameters can overfit data
and have poor generalization. The presented method allows
effective determination of all these values automatically. The
proposed approach is suitable for on-line and off-line
applications.

I. INTRODUCTION

Approximating multidimensional functions by neural
networks (NN) is a convenient way of representation because
learning in NN corresponds to the approximation of an
underlying function due to the built-in capacity to adapt
synaptic weights to changes in the surrounding environment.
The study represented in [1] concluded that “The crucial factor
for a successful approximate algorithm is the choice of the
parametric approximation architecture(s) and the choice of the
projection (parameter adjustment) method.” For neural
networks the same can be expressed in the following way: The
two most important factors for a successful NN approximating
algorithm are the choice of the neural network topology and
the effectiveness of the learning algorithm.

NN are universal approximators that can learn data by
example [2] or reinforcement [3], either in batch or sequential
mode. Most of reinforcement-learning algorithms consist in
evaluating a value function that estimates the outcome of
acting from a particular state. When the system to be
controlled can be in a very large number of states, this value
function has to be estimated by a generalizing function
approximator. For small scale problems, the value function
can be represented as a table. However, using function
approximators requires making crucial representational

decisions (e.g. the number of hidden units and initial weights
of a neural network). Poor design choices can result in
estimates that diverge from the optimal value function and
agents that perform poorly.

However, solving large scale problems additionally
requires developing of temporal difference methods (TD)
which combine principles of dynamic programming with
statistical sampling, usage of the immediate rewards received
by the agent to incrementally improve both the agent’s policy
and the estimated value function for that policy.

An artificial neuron can be linear (implementing
linear parameterizations, which are characterized by weighted
combinations of basis functions) or nonlinear. Nonlinearity is
a highly important property, particularly if the underlying
physical mechanism responsible for generation of the input
signal is nonlinear. NN can easily learn an input-output
mapping of multidimensional nonlinear functions because of
their parallel architecture thus making NN the perfect tool for
certain tasks. Every neuron in the network is potentially
affected by the global activity of all other neurons in the
network. As univariate approximation theory does not
generalize well to higher dimensional spaces [4], well-known
parametric structures, such as splines and wavelets are
convenient tools when dealing with input spaces with up to
three dimensions [5]–[7]. For example, the majority of spline-
based solutions for multivariate approximation problems are
based on tensor product spaces that are highly dependent on
the coordinate system of choice [8, 9].

NN with linear parameterization and least-squares
approach using a linear combination of predetermined under-
complete basis functions have shown promising results [10].
Common basis function choices for general function
approximation problems include Fourier functions
(trigonometric polynomials), Gaussian kernels [11], and
wavelets [12]. Both Fourier bases (global functions) and
Gaussian kernels (localized functions) have smoothness
properties that make them particularly useful for modeling
inherently smooth, continuous functions while wavelets
provide basis functions at various different scales and may

107

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

1-4244-0707-9/07/$25.00 ©2007 IEEE

also be employed for approximating smooth functions with
local discontinuities. The latter make the implementation of
Fourier functions or Gaussian kernels as basis functions not
always appropriate for the purposes of approximation. On the
other hand wavelets posses over-complete bases, i.e. one has
to appropriately choose a subset of basis functions which is
not a straightforward task in practice and thus limits their
implementation as well.

In recent years, multi-layer feedforward and radial
basis functions neural networks have been widely used for
pattern classification, function approximation and regression
problems. The problem of determining the analytical
description for a set of data arises in numerous applications,
and neural networks are a convenient way of representation
because they are universal approximators that can be trained to
map multidimensional nonlinear functions.

Function approximation methods fall into two broad
categories: global and local. Global approximations can be
made with many different function representations, e.g.
polynomials, rational approximation, multi-layer perceptrons,
radial basis functions [13]. Often a single global model is
inappropriate because it does not apply to the entire state
space. To approximate a function)(Xf , a model must be

able to represent its many possible variations. If)(Xf is

complicated, there is no guarantee that any given
representation will approximate it well. The dependence on
representation can be reduced using local approximation
where the domain of)(Xf is broken into local

neighborhoods and a separate model is used for each
neighborhood. It has been shown that an MLP and RBFs
neural network, with a single hidden layer, can approximate
any given continuous function on any compact subset to any
degree of accuracy, providing that a sufficient number of
hidden layer neurons are used [14].

Function approximation problem with neural
networks is formulated in the following way: from a given a
set of training examples)]([XX f, of an unknown

function n:f , we want to design a network that

learns)(X which is a good approximation of)(Xf . We

are interested in a more general solution of this problem,
where)(Xf is a function of several arguments represented

by][n10 x,...,x,xX .

 Mathematically, a neural network can only evaluate a
special function, depending upon its architecture. For
example, if 1sn, are integers, the output of a neural

network with one hidden layer containing n principal
elements (neurons), each evaluating a nonlinear function ,

and receiving an input vector sX can be expressed in the

form)(kk
n

1k k ba xw , where for n1,2,...,k , the

weights s
kw , the thresholds kb and the coefficients ka

are real numbers.

The universal approximation capability of multilayer
feed-forward neural networks (FNN) widely studied by well
known researchers revealed that if the network’s activation
functions comply with an explicit set of assumptions (which
vary from one paper to another), then the network can indeed
be shown to be a universal approximator [15]. The commonly
used activation function in these papers are the sigmoid
function and the generalized sigmoid function. One common
characteristic of these activation functions is that they are
fixed and therefore they can not be adjusted to adapt to
different approximation problems [16, 17]. The neuron
activation function is crucial as the performance of FNN
depends mostly on it. It has been proven that FNN with a
single hidden layer can uniformly approximate continuous
functions if the activation function is locally Riemann
integrable and nonpolynomial [18]. Authors in [19] proved
that FNN with a locally bounded piecewise continuous
activation functions can approximate any continuous functions
to any degree of accuracy if and only if the activation function
is not a polynomial.

II. APPROXIMATION WITH FNN AND RBF

There are two still existing problems in function
approximation with FNN. The first can be summarized as: if
the function to be approximated is a piecewise continuous
function which contains finite or infinite continuous parts, a
continuous approximator can not solve problems such as
nonlinear and continuous data simulation [20]. The FNN
group topology proposed in [20] is a generalized neural
network where each element is a separate neural network.
Some additional operation as addition and product of any two
elements are defined. However, if a piecewise continuous
function to be approximated is made of infinite sections of
continuous function, the neural network group will have to
contain infinite number of neural networks, making the
simulations very complicated because each continuous section
has to be approximated independently and separately. The
authors in [20] did not propose a learning algorithm for the
neural network group what limits the applicability of the
proposed topology. The second FNN problem which has to be
solved requires emphasis on studies on setting some free
parameters with the activation function in order to construct
some kind of neuron-adaptive function. The latter will
provide better fitting capabilities than the fixed activation
function and developing a specific learning mechanism for the
neural network group allowing using these parameters in
effective way.

The radial basis function networks (RBFN)
correspond to a particular class of function approximators,
which can be trained by using a set of learning samples [21].
The strategy used in RBFNs consists of approximating an
unknown function with a linear combination of non-linear
functions, called radial basis functions [22, 23]. The latter
may be chosen to be either local or global, and they may or
may not incorporate shape parameters, which can be tuned to
reflect the nature of the data. The locations of the basis

108

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

functions may also be adapted using a variety of clustering
techniques or via a nonlinear optimization.

A relevant property usually required for a class of
approximators is the universal approximation. In general, an
approximator is said to be universal if it is theoretically
capable to approximate any integrable function to a reasonable
degree of precision. In [24, 25] it was proven that RBFNs
with only one layer of hidden units can uniformly approximate
any continuous function to an arbitrary precision if enough
units are provided [24], i.e. the accuracy improves with the
number of hidden units.

The determination of the type of RBFs used for a
given set of data is an active area of research. The standard
RBF neural network with a single output neuron produces a
mapping function)(xx f:f , where the n -dimensional

input vector x is submitted to the neural network and the
scalar output)(xf is obtained to construct the classification

rule. The typical RBF neural network mapping has the
following form

)()(ii

N

1i
ii Kwf p,xpw,x, (1)

where N is the number of the neurons in hidden layer,

)(iiiK p,x is the i-th radial basis function, ip is the vector

of adjustable parameters (centers, biases etc.). The RBFNs
representational ability combined with computational and
analytical tractability comes from the linear combination
(Eq.1) of typically nonlinear basis functions. Specifically, the
radial nature of the functions derives from the choice of basis

functions)(iiiK p,x , where the output of each one

depends only upon the distance of the input to another
predetermined point Ni Tx , where NT is the training

(learning) set.
The proper choice of the basis functions and their

number is one of the main problems when designing an RBF
network, i.e. a small number of functions may result in poor
approximation accuracies, while a large one can lead to poor
classification performance of the neural network. For a
chosen number and type of network basis functions, two sets
of parameters need to be determined (trained) in order to make
the network perform correctly in the desired data processing
task. First, there are the parameters on center positioning of
the basis functions within the space spanned by the network
input data. Second, there is a set of output weights, which
propagate basis function responses to be linearly combined at
the network output layer. Accordingly, the training task of a
radial basis function network can be broken into two phases:
selection of basis functions centers, followed by determination
(training) of the output layer weights.

Commonly used RBF network assumes a Gaussian
basis function for the hidden units

2

2

2
)(

i

i
i exp

x
x (2)

where x is the d-dimensional input vector with elements ix ,
2
i is the standard deviation of the i -th unit receptive field

and i = ij is the mean vector determining the center of

basis functions i . The RBF neural network output is

determined by

b
r

expaf i
i

N

i 22
)(

2

1

x
x (3)

where N is the number of the number of the hidden layer

neuron, r is the RBF width, and ia and b are the adjustable

parameters.

III. FUNCTION APPROXIMATION WITH POTENTIAL FUNCTIONS

 Given a set of training examples patterns

n21 ...,,, xxx of an unknown function n:f ,

we want to receive the approximation)(x*f of)(xf such

that a certain performance criteria is optimized. In the
simplest case when)(xf is a function of a single scalar

variable x , for some finite discrete values of argument x , this
represents a curve fitting problem. We work with a more
general version of this problem when f is a function of finite

number of multidimensional patterns X represented by
)(mX x,...,x,x 10 . We assume that there is an existing

system of basis functions),...,(),(xx 21 such that the

approximation function)(x*f can be expressed as a linear

combination of functions),...,(),(xx 21 in the form

)(x*f =)(xj
*
jc

1j
(4)

if)(x*f and the mathematical expectation of

function square where 2*f|M |)(x is finite. (is

the functional space of basis functions).
 Potential function approximation algorithms for the
case of functions without a noise may be expressed as

)()](),([

)()(

1n1n1n

1nn1n

,Uff

ff

xxxx

rxx
* (5)

where)(*r ff, is a monotonous function toward variable

f (0)(*r ff, if *ff). For this case we may assume

that)(*r ff, represents the difference between the two

functions)(-)(1n1n ff xx * which can be calculated

during the training process. Hence

109

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

)()(f,fff, **r
)(q is a monotonously increasing function which satisfies

the following condition

.q,
;q,

(q
0if0

0if0
)

We suggest two different approaches in developing
the function approximating algorithms based on potential
functions (5). The first approach is expressed in the following
way

)](-)([)()(1n1n1nn1n ffff xxxx * (6)

Different implementations of algorithms (6) depend on the
choice of and . In this research we use the following

modification of (6)

)()](-)([

)()(

1n
* xxxx

xx

,Uff

signff

1n1n

1nn1n
 (7)

where i is a non-negative numeric sequence satisfying the

conditions discussed in the next section.
 The second approach uses

)()](-)([)()(1n
* xxxxxx ,Uff1ff 1n1nn1n (8)

where is a positive constant satisfying condition

)(1n
x

xx ,Usup
2
1

.

We can use the approach for building the potential
functions developed in [26, 27]. In this case the potential
function for any input vector kx is defined by the expression

0

2)()()U(
k

kiiik, xxxx (9)

or

)(wU i
1i

i xx)((10)

where)(xi , i = 1, 2, …are orthonormal functions; i ,

i = 1, 2, … are real numbers for scaling different from zero;
the weight iw are unknown and can be determined iteratively

from the input vectors [26, 27].
By letting

)()(xx iii (11)

the potential function in (9) becomes

))()(()()()U(
0

kii
k

kiik, xxxxxx (12)

We assume that

M, kii
k

kiik))()(()()()U(
0

xxxxxx (13)

where M is independent from x constant.
Therefore if we take into account (12) formulas (7)

and (8) can be expressed in the following way

)()](

-)([

1n
i

1i
1n

i

1n1 fsign

xxw

xww
i
n

*
n

i
n

i
n

 (14)

)()](

-)([

1n
i

1i
1n

i

1n1 f1

xxw

xww

i
n

*i
n

i
n

 (15)

The latter represent one possible way for neural network
weight update in solving the problem of function
approximation using potential functions built on orthonormal
functions.

IV. FUNCTION APPROXIMATION WITH SYMMETRICAL
POTENTIAL FUNCTIONS

The proposed neural network is based on RBFs with
symmetrical potential functions and has two fundamental
components – potential function generators (PFG) and
potential function entities (PFE). It uses a two-step data
processing structure:

a) A nonlinear transformation the input data undergoes
via the PFGs in the network hidden layer;

b) A linear combination of basis functions responses to
provide the network output through PFE.
The presented neural network learns by allocating

new units and adjusting the parameters of the neural network
based on the novelty of the presented sample. The proposed
NN is able to control the complexity of its structure by
allocating a new hidden unit to correct its response to the
presented pattern. Fixed-size networks either use too few
units or too many in which case the network demonstrates
poor learning or poor generalization. The newly allocated
units do not interfere with previously allocated units.

The placement and parameterization of the local units
as well as the choice of their number is the difficult and critical
part with RBFs networks. Networks with too many
parameters can overfit data and have poor generalization. The
method we present, however, allows effective determination of
all these values automatically. The proposed approach is
suitable for on-line and off-line applications.

Let us denote by)(j,U xx the potential function,

which is connected to the learning
pattern M2,...,1,j,jx . Then, the appearance of

training patterns corresponds to the generation of potential
functions)(),...,(),(M21 ,U,U,U xxxxxx , which is defined

over the space .

110

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

The relation between the potential function

)(n,U xx and approximating function)(x*f is given by the

next equation, which determines the iterative updates of the
estimations)x(fn .

)()()(1nnnn1n ,Urfqf xxxx (16)

where nn r,q and are numeric sequences which depend on one

or all of the following factors: number of iteration n , the value
of the current estimation nf for the next input 1nx
()(1nnf x) and on the value of approximating function *f
for 1nx -)(1n

*f x , if it is available. For our

considerations we set 1nq and choose the following form

for nr :

1n1n
*

1nnnn ffFr))(),((xx (17)

where),(*
n ffF is a function of two variables; n is

a noise which appears during the measurement of)(x*f and

n is a non-negative numeric sequence satisfying the

following conditions:

1n
n ; const;n ;lim

1n

2
n

1n
nnn

;0;

The function),(*ffF satisfies the next two

conditions:

0),(** ffF (18)

*

*
*

ffif

ffif
ff,F

0,

0,
)((19)

Thus, the sign of -f 1n1n)(x)(1nnf x might be

determined by))(),((1n
*

1nn ffF xx as)(1n1n ,U xx

and 0n . With the above assumptions if *
n ff ,

then n1n ff , which confirms that with the presentation of

training pattern 1nx to the neural network, the approximating

functions change towards the function *f . The same is valid

for the case of *
n ff .

The weight update takes the following form:

)(1ni
2
in

i
nn

i
1n rwqw x (20)

Let)()(xx iii and i
i
n

i
n /ww . Then

)()()(xxx
~

i
i

i
n

i
i

i
nn wwf (21)

Thus (20) takes the form:

)(1nin
i
n

~
n

i
1n

~ rwqw x (22)

where
1i

2
i 0 and 0i .

The case of supervised learning assumes a prior

knowledge about the value of function)(1n
*f x for the

training pattern 1nx . As a result, the approximating function

can be represented in the form:

)()](-)([

)()(

1n1nn1n
*

1nn1n

,Uff

ff

xxxx

xx
 (23)

where
1n

n is a numeric sequence satisfying the conditions?

 a)

1n

2
n does not converge;

 b))(1n
*
nf x converges.

The weight update under the above assumption determined by
(20) and (22) is obtainable from

)(])()([1n
kN

1n
1n

kk
n1n

*

1n
k
n

k
1n

w-f

signww

xxx
(24)

V. DESIGN CONCEPTS

Our approach is based on RBFNs with symmetrical
potential functions (SPF), which perform a mapping based on
a set of generated potential fields over the domain of input
space by a number of potential function entities.

A given space is symmetrical if a function
)(yx, defined as a distance between any two points

yx, in the space, satisfies the following axioms:

);()(xy,yx,
0)(yx, , if and only if x coincide with y ;

0;)(yx,
Any three points yx, and z satisfy the triangle inequality

o)()()(z,yx,zx,y
Let A be a transformation, which assigns a point Ax to
point x . Then, for each pair YX y,x , the following

condition is satisfied
o)()(yx,AyAx,

For any two points)()(11 y,x and)()(22 y,x that are at

equal distance)()()()()()(2211 y,xy,x , there exists a

111

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

transformation such that the following conditions are

met))())((12(12 Ayy,Axx .

Functions of two variables)(kU xx, , which fulfill the

above conditions, and are mathematically expandable in
infinite series, and satisfy the condition,

)()(xxxx kk ,U,U will be referred to as SPFs. Examples

of such functions are given below by Eqs. (25)- (27).

}exp{-)(
2,U kk xxxx (25)

21
1,U

k
k

xx
xx)((26)

2

2sin
,U

k

k
k

xx

xx
xx)((27)

where is a positive constant and kxx is the norm of the

vector)(kxx . It is apparent that these functions are

inversely proportional to the squared distance

measure
22D kxx , which is also a characteristic, for

example, of the force in a gravitational potential field.

A. Learning algorithm

We require class iK to generate a higher

accumulated potential for the input patterns in it than all other
classes to all the samples in iK . The PFUGNN2 network

begins with no hidden units in the second layer. The
observations are received sequentially during the learning,
which is preferable compared to batch learning algorithms.
The learning algorithm is described below.

Initialization:

PFUGNN2 is a three-layer network where the output
response to an input pattern x for each predefined class is a
linear combination of the hidden unit responses, determined by

)()()()()(
r

K
r

K
0

K ,Uwwf
**

kk xxx
x

k (28)

where)(kK
0w is the bias class weight (l1,2,...,k) set during

the initialization phase, ,...,w,w K
2

K
1

)()(kk are the weights

corresponding to the class kK which are adjusted during

training and **x is the training subset corresponding to
the class kK which changes the respective potential field

(classification rule).)(kxx ,U represents potential function.

Presented is a training pattern ,K qtx
Nq1 from the learning set to the first layer of potential

function generators (PFGs). The function)(t,U xx created

by this pattern will be the first hidden unit of added to the
hidden layer 2. Update the hidden unit q of the third layer (of

cumulative potentials) in the following way:

)()()()(
t

K
1

K
1 ,UwU qq xxx ,

where
)(qK

1w is initially set to 1.

Update the potential function entity for the class qK

-
)Kq(PFE with)(t,U xx .

Update the output class separated function for class

qK in the following way:

)()()()()()(xx qK
1

K
1

K
0

K
1 Uwwf qqq (29)

Learning:

For each training pattern lp0,K p
vx of the

learning set, where l
v Xx , ,...,,v 21 and l is

the total number of classes.
1. Compute the potential function)(n,U xx created by this

pattern (PFGs).
2. Calculate all cumulative potentials for the current pattern

vx .

)()(

)(
)()(

)(

v
K

iv
K

i

v
K

i

12

1

U,...,U

,U

xxxx

xx
 (30)

3. Apply the criterion for adding a neuron

If)()()()(
v

K
iv

K
i UU xx rp for some values of

prl,1,2,...,r (for example, u21 r,...,r,r then vx
.,..,...,, *

n
*
2

*
1 xxx (training subset .,..,...,, *

n
*
2

*
1 xxx

require changes in the decision functions)
4. Allocate a new hidden unit)(v,U xx in layer 2

5. Adjust the p -th and u21 r,...,r,r units

(corresponding to classes pK ,
u21 rrr K,...,K,K) of

cumulative potential layer following the formulas

)())(-)((

)()(
)()(

)()(

1n1n
Kq

n
K

n1n
*

1n
K

n
K

1n

,UUwfsign

UU

**

q

qq

xxxxx

xx

x

 (31)
where u21 r,...,r,rp,q .

Equation (31) is equivalent to the equations (32).

.r,...,r,rs,UU

r,...,r,rr
,UUU

,UUU

u21
K

n
K

1n

u21

v1n
K

n
K

1n

v1n
K

n
K

1n

for)()(

above;definedasfor

),()()(

);()()(

)()(

)()(

)()(

xx

xxxx

xxxx

ss

rr

pp

 (32)

112

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

6. Update the PFEs for classes pK ,

u21 rrr K,...,K,K -
)K p(PFE ,

)K 1r(
PFE ,…,

)Kru(
PFE with

)(v,U xx and the output decision functions following (31).

VI. EXPERIMENTS AND DISCUSSION

The potential function is connected to the learning
pattern. Then, the appearance of training patterns corresponds
to the generation of potential functions, which is defined over
the space. The relation between the potential function and
approximating function determines the iterative updates of the
estimations.

The training pattern from the learning set to the first
layer of potential function generators and created by this
pattern will be the first hidden unit added to the next hidden
layer. This pattern will update the hidden unit of
the third layer (of cumulative potentials).

The proposed NN was applied to well known
approximation benchmarks with and without a noise. Two of
the simulations are presented below. Problem one is to
approximate Hermite function

)()(22
hermite x2/1expx2x11.1f (33)

 The training set includes 40 randomly selected points
in [-4, +4] interval, and the test data consists of 80 uniformly
distributed points from the same interval. The results of
approximation in 3D are shown in Fig. 1. The simulation was
run with the number of iteration equal to 520. For the second
experiment, we assume that the training data for the target
function (21) was corrupted by noise uniformly distributed in
[0.05, 0.05] while the test set remains intact. The result
demonstrated robustness of the neural network in the presence
of noise.

For the second simulation, shown in Fig.2, the target
function is described by

3 2(,) 0.3 0.4 , , [1,1]f x y x x x y x y (34)

The training set consists of 21 points, which are
chosen by uniformly partitioning the domain [-1, 1] with grid
size of 0.1. The set comprises 100 points uniformly randomly
sampled from the same domain.

For the third experiment, illustrated in Fig.3, the
target function is the sine function (f(x)=sin(x)) over the
domain [-4, 4]. The training set consists of 80 points. The
output of the network is shown in Fig.3. The approximation is
almost exact with an error of 0.001.

Fig.1 Approximation of Hermite function

Fig.2 Simulation 2 results

Fig.3 Simulation 2 results

113

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

 VII. CONCLUSIONS

The determination of the type of RBFs used for a
given set of data is an active area of research. The standard
RBF neural network with a single output
neuron produces a mapping function, where the dimensional
input vector is submitted to the neural network and the scalar
output is obtained to construct the classification rule.
The presented neural network learns by allocating new units
and adjusting the parameters of the neural network based on
the novelty of the presented sample.
 All implementations show that the training algorithm
is fast and straightforward, not only for noise-free nonlinear
function approximation, but for the functions with noises as
well.
 Regardless of the proposed incremental feature of the
neural network based on potential functions, pruning criterion
can be developed by checking the values of potential functions
during the training and creating additional rules on adaptation
of cumulative potentials.

The NN is able to control the complexity of its
structure by allocating a new hidden unit. The newly allocated
units do not interfere with previously allocated units. The
method we presented in this paper allows effective
determination of all these values automatically.

REFERENCES
[1] M. G. Lagoudakis and R. Parr. “Least-squares policy iteration”.

Journal of Machine Learning Research, 4(2003):1107–1149,
2003.

[2] Handbook of Intelligent Control, D. A. White and D. A. Sofge,
Eds., Van Nostrand, New York, 1992, pp. 65–86. P. J. Werbos,
Neurocontrol and Supervised Learning: An Overview and
Evaluation.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning.
Cambridge, MA: MIT Press, 1998.

[4] T. Lyche, K. Mørken, and E. Quak, “Theory and algorithms for
nonuniform spline wavelets,” in Multivariate Approximation and
Applications, N. Dyn, D. Leviatan, D. Levin, and A. Pinkus, Eds,
Cambridge, U.K.: Cambridge Univ. Press, 2001.

[5] M. G. Cox, “Practical spline approximation,” in Lecture Notes in
Mathematics965: Topics in Numerical Analysis, P. R. Turner, Ed.
New York: Springer-Verlag, 1982.

[6] A. Antoniadis and D. T. Pham, “Wavelets and statistics,” in
LectureNotes in Statistics 103. New York: Springer-Verlag, 1995.

[7] C. K. Chui, An Introduction to Wavelets. New York: Academic,
1992.

[8] J. H. Friedman, “Multivariate adaptive regression splines,” Ann.
Statist., vol. 19, pp. 1–141, 1991.

[9] C. J. Stone, “The use of polynomial splines and their tensor
products in multivariate function estimation,” Ann. Statist., vol.
22, pp. 118–184, 1994.

[10] M. G. Lagoudakis and R. Parr. “Least-squares policy iteration”.
Journal of Machine Learning Research, 4(Dec): 1107– 1149,
2003.

[11] F. Girosi, M. Jones, and T. Poggio. “Regularization theory and
neural networks architectures”. Neural Computation, 7(2):219–
269, 1995.

[12] I. Daubechies. “Ten Lectures on Wavelets”. Society for
Industrial and Applied Mathematics, Philadelphia and
Pennsylvania, 1992.

[13] Baldi P., Computing with Arrays of Bell-Shaped and Sigmoidal
Functions. Eds. R.P. Lippman, J.E. Moody, and D.S.Touretzky,
“Advances in Neural Network Information Processing Systems”,
Morgan-Kaufman, pp. 735-742, 1991.

[14] J.Park, I.Sandberg, “Approximation and Radial-Basis-Function
Networks”. Neural computation:5(3), pp.305-316, 1993.

[15] K. Hornik, M. Stinchcombe, and H. White, “Multi-layer
feedforward networks are universal approximators,” Neural
Networks., vol. 2, pp. 359–366, 1989.

[16] C. T. Chen and W. D. Chang, “A Feedforward Neural Network
with Function Shape Autotunning”. Neural Networks, 9(4), 627-
641, 1996.

[17] L. Vecci, F. Piazza and A. Uncini, “Learning and Approximating
Capabilities of Adaptive Spline Activation Function Neural
Network”. Neural Networks, 11, 259-270, 1998.

[18] K. Hornik, “Some New Results on Neural Network
Approximation”. Neural Networks, 6, 1069-1072, 1993.

[19] M. Leshno, V. Y. Lin, A. Pinkus and S. Schocken, “Multilayer
Feedforward Networks with a Nonpolynomial Activation
Function Can Approximate Any Function”. Neural Networks, 6,
861-867, 1993.

[20] M. Zhang, J. Fulcher, and R. A. Scofield, Rainfall Estimation
Using an Artificial Neural Network Group. Neurocomputing, 16,
97-115, 1997.

[21] Broomhead D. S. and Lowe D., “Multivariate Functional
Interpolation and Adaptive Networks”. Complex Systems, Vol. 2,
pp. 321-355, 1988.

[22] Micchelli, C.A., “Interpolation of scattered data: Distance
matrices and conditionally positive definite functions”,
Constructive Approximation, vol. 2, pp. 11–22, 1986

[23] Bors G., and Gbbouj M., “Minimal Topology for Radial Basis
Functions Neural Networks for Pattern Classification”. Digital
Processing, vol. 4, pp. 173-188, 1994.

[24] S.Chen, C.Cowan, and P.Grant, “Orthogonal Least-Squares
Learning Algorithms for Radial Basis Function Network”. IEEE
Trans. Neural Networks, vol.2, pp.302-309, 1991.

[25] I.Valova, N.Georgieva, R.Murat Demirer, P. Tchimev, and G.
Georgiev, “The Determination of the Evoked Potential
Generating Mechanism based on Radial Basis Neural Network
Model”, Proceedings of the International Conference on Neural
Networks, Pennsylvania, 2000, pp. 24-28.

[26] N.Gueorguieva, I.Valova, “DYPOF: Dynamically Adaptive
Neural Network with Potential Functions”. Journal of Smart
Engineering System Design, 5:517-536, 2003.

[27] N.Gueorguieva, I.Valova, “Building RBF Neural Network
Topology through Potential Functions”, Springer-Verlag Series:
Lecture Notes in Computer Science. Vol. 2714. Artificial Neural
Networks and Neural Information Processing, pp 1033 – 1040,
Kaynak, E. Alpaydin, E. Oja, L. Xu (Eds.), ISBN 3-540-40408-
2, 2003.

114

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

