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Abstract - This research work proposes a neural network based 
on RBFs with symmetrical potential functions and two 
fundamental components - potential function generators (PFG) 
and potential function entities (PFE). The approach, based on 
RBFNs with symmetrical potential functions (SPF), performs a 
mapping based on a set of generated potential fields over the 
domain of input space by a number of potential function entities.  
The placement and parameterization of the local units as well as 
the choice of their number is difficult and critical part for RBFs 
Networks.  Networks with too many parameters can overfit data 
and have poor generalization.  The presented method allows 
effective determination of all these values automatically.  The 
proposed approach is suitable for on-line and off-line 
applications.

I. INTRODUCTION

Approximating multidimensional functions by neural 
networks (NN) is a convenient way of representation because 
learning in NN corresponds to the approximation of an 
underlying function due to the built-in capacity to adapt
synaptic weights to changes in the surrounding environment.  
The study represented in [1] concluded that “The crucial factor 
for a successful approximate algorithm is the choice of the 
parametric approximation architecture(s) and the choice of the 
projection (parameter adjustment) method.” For neural 
networks the same can be expressed in the following way: The 
two most important factors for a successful NN approximating 
algorithm are the choice of the neural network topology and 
the effectiveness of the learning algorithm.   

NN are universal approximators that can learn data by 
example [2] or reinforcement [3], either in batch or sequential 
mode.  Most of reinforcement-learning algorithms consist in 
evaluating a value function that estimates the outcome of 
acting from a particular state.  When the system to be 
controlled can be in a very large number of states, this value 
function has to be estimated by a generalizing function 
approximator.  For small scale problems, the value function 
can be represented as a table.  However, using function 
approximators requires making crucial representational 

decisions (e.g. the number of hidden units and initial weights 
of a neural network).  Poor design choices can result in 
estimates that diverge from the optimal value function and 
agents that perform poorly.  

However, solving large scale problems additionally 
requires developing of temporal difference methods (TD)
which combine principles of dynamic programming with 
statistical sampling, usage of the immediate rewards received 
by the agent to incrementally improve both the agent’s policy 
and the estimated value function for that policy. 

An artificial neuron can be linear (implementing 
linear parameterizations, which are characterized by weighted 
combinations of basis functions) or nonlinear.  Nonlinearity is 
a highly important property, particularly if the underlying 
physical mechanism responsible for generation of the input 
signal is nonlinear.  NN can easily learn an input-output 
mapping of multidimensional nonlinear functions because of 
their parallel architecture thus making NN the perfect tool for 
certain tasks.  Every neuron in the network is potentially 
affected by the global activity of all other neurons in the 
network.  As univariate approximation theory does not 
generalize well to higher dimensional spaces [4], well-known 
parametric structures, such as splines and wavelets are 
convenient tools when dealing with input spaces with up to 
three dimensions [5]–[7].  For example, the majority of spline-
based solutions for multivariate approximation problems are 
based on tensor product spaces that are highly dependent on 
the coordinate system of choice [8, 9]. 

NN with linear parameterization and least-squares
approach using a linear combination of predetermined under-
complete basis functions have shown promising results [10].  
Common basis function choices for general function 
approximation problems include   Fourier functions 
(trigonometric polynomials), Gaussian kernels [11], and 
wavelets [12].  Both Fourier bases (global functions) and 
Gaussian kernels (localized functions) have smoothness 
properties that make them particularly useful for modeling 
inherently smooth, continuous functions while wavelets 
provide basis functions at various different scales and may 
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also be employed for approximating smooth functions with 
local discontinuities.  The latter make the implementation of 
Fourier functions or Gaussian kernels as basis functions not 
always appropriate for the purposes of approximation.  On the 
other hand wavelets posses over-complete bases, i.e. one has 
to appropriately choose a subset of basis functions which is 
not a straightforward task in practice and thus limits their 
implementation as well. 

In recent years, multi-layer feedforward   and radial 
basis functions neural networks have been widely used for 
pattern classification, function approximation and regression 
problems.  The problem of determining the analytical 
description for a set of data arises in numerous applications, 
and neural networks are a convenient way of representation 
because they are universal approximators that can be trained to 
map multidimensional nonlinear functions. 

Function approximation methods fall into two broad 
categories: global and local.  Global approximations can be 
made with many different function representations, e.g. 
polynomials, rational approximation, multi-layer perceptrons, 
radial basis functions [13].  Often a single global model is 
inappropriate because it does not apply to the entire state 
space.  To approximate a function )(Xf , a model must be 

able to represent its many possible variations.  If )(Xf  is 

complicated, there is no guarantee that any given 
representation will approximate it well.  The dependence on 
representation can be reduced using local approximation 
where the domain of )(Xf  is broken into local 

neighborhoods and a separate model is used for each 
neighborhood.  It has been shown that an MLP and RBFs 
neural network, with a single hidden layer, can approximate 
any given continuous function on any compact subset to any 
degree of accuracy, providing that a sufficient number of 
hidden layer neurons are used [14]. 

Function approximation problem with neural 
networks is formulated in the following way: from a given a 
set of training examples )]([ XX f,  of an unknown 

function n:f , we want to design a network that 

learns )(X  which is a good approximation of )(Xf .   We 

are interested in a more general solution of this problem, 
where )(Xf  is a function of several arguments represented 

by ][ n10 x,...,x,xX .

  Mathematically, a neural network can only evaluate a 
special function, depending upon its architecture.   For 
example, if 1sn,  are integers, the output of a neural 

network with one hidden layer containing n  principal 
elements (neurons), each evaluating a nonlinear function ,

and receiving an input vector sX  can be expressed in the 

form )( kk
n

1k k ba xw , where for n1,2,...,k , the 

weights s
kw , the thresholds kb  and the coefficients ka

are real numbers.  

The universal approximation capability of multilayer 
feed-forward neural networks (FNN) widely studied by well 
known researchers revealed that if the network’s activation 
functions comply with an explicit set of assumptions (which 
vary from one paper to another), then the network can indeed 
be shown to be a universal approximator [15].  The commonly 
used activation function in these papers are the sigmoid 
function and the generalized sigmoid function.  One common 
characteristic of these activation functions is that they are 
fixed and therefore they can not be adjusted to adapt to 
different approximation problems [16, 17].  The neuron 
activation function is crucial as the performance of FNN 
depends mostly on it.  It has been proven that FNN with a 
single hidden layer can uniformly approximate continuous 
functions if the activation function is locally Riemann 
integrable and nonpolynomial [18].   Authors in [19] proved 
that FNN with a locally bounded piecewise continuous 
activation functions can approximate any continuous functions 
to any degree of accuracy if and only if the activation function 
is not a polynomial.  

II. APPROXIMATION WITH FNN AND RBF 

There are two still existing problems in function 
approximation with FNN.  The first can be summarized as: if 
the function to be approximated is a piecewise continuous 
function which contains finite or infinite continuous parts, a 
continuous approximator can not solve problems such as 
nonlinear and continuous data simulation [20].   The FNN 
group topology proposed in [20] is a generalized neural 
network where each element is a separate neural network.  
Some additional operation as addition and product of any two 
elements are defined.  However, if a piecewise continuous 
function to be approximated is made of infinite sections of 
continuous function, the neural network group will have to 
contain infinite number of neural networks, making the 
simulations very complicated because each continuous section 
has to be approximated independently and separately.  The 
authors in [20] did not propose a learning algorithm for the 
neural network group what limits the applicability of the 
proposed topology.  The second FNN problem which has to be 
solved requires emphasis on studies on setting some free 
parameters with the activation function in order to construct 
some kind of neuron-adaptive function.  The latter will 
provide better fitting capabilities than the fixed activation 
function and developing a specific learning mechanism for the 
neural network group allowing using these parameters in 
effective way. 

The radial basis function networks (RBFN) 
correspond to a particular class of function approximators, 
which can be trained by using a set of learning samples [21].  
The strategy used in RBFNs consists of approximating an 
unknown function with a linear combination of non-linear 
functions, called radial basis functions [22, 23].  The latter 
may be chosen to be either local or global, and they may or 
may not incorporate shape parameters, which can be tuned to 
reflect the nature of the data.  The locations of the basis 
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functions may also be adapted using a variety of clustering 
techniques or via a nonlinear optimization.  

A relevant property usually required for a class of 
approximators is the universal approximation.  In general, an 
approximator is said to be universal if it is theoretically 
capable to approximate any integrable function to a reasonable 
degree of precision.  In [24, 25] it was proven that RBFNs 
with only one layer of hidden units can uniformly approximate 
any continuous function to an arbitrary precision if enough 
units are provided [24], i.e. the accuracy improves with the 
number of hidden units.  

The determination of the type of RBFs used for a 
given set of data is an active area of research.   The standard 
RBF neural network with a single output neuron produces a 
mapping function )(xx f:f , where the n -dimensional 

input vector x  is submitted to the neural network and the 
scalar output )(xf  is obtained to construct the classification 

rule.   The typical RBF neural network mapping has the 
following form 

)()( ii

N

1i
ii Kwf p,xpw,x,  (1) 

where N  is the number of the neurons in hidden layer, 

)( iiiK p,x is the i-th radial basis function, ip  is the vector 

of adjustable parameters (centers, biases etc.).   The RBFNs 
representational ability combined with computational and 
analytical tractability comes from the linear combination 
(Eq.1) of typically nonlinear basis functions.   Specifically, the 
radial nature of the functions derives from the choice of basis 

functions )( iiiK p,x , where the output of each one 

depends only upon the distance of the input to another 
predetermined point Ni Tx , where NT  is the training 

(learning) set. 
The proper choice of the basis functions and their 

number is one of the main problems when designing an RBF 
network, i.e. a small number of functions may result in poor 
approximation accuracies, while a large one can lead to poor 
classification performance of the neural network.  For a 
chosen number and type of network basis functions, two sets 
of parameters need to be determined (trained) in order to make 
the network perform correctly in the desired data processing 
task.  First, there are the parameters on center positioning of 
the basis functions within the space spanned by the network 
input data.  Second, there is a set of output weights, which 
propagate basis function responses to be linearly combined at 
the network output layer.  Accordingly, the training task of a 
radial basis function network can be broken into two phases: 
selection of basis functions centers, followed by determination 
(training) of the output layer weights. 

Commonly used RBF network assumes a Gaussian 
basis function for the hidden units 

2

2

2
)(

i

i
i exp

x
x  (2) 

where x  is the d-dimensional input vector with elements ix ,
2
i is the standard deviation of the i -th unit receptive field 

and i = ij  is the mean vector determining the center of 

basis functions i .  The RBF neural network output is 

determined by 

b
r

expaf i
i

N

i 22
)(

2

1

x
x  (3) 

where N is the number of the number of the hidden layer 

neuron, r  is the RBF width, and ia and b are the adjustable 

parameters.

III. FUNCTION APPROXIMATION WITH POTENTIAL FUNCTIONS

 Given a set of training examples patterns 

n21 ...,,, xxx  of an unknown function n:f ,

we want to receive the approximation )(x*f of )(xf such

that a certain performance criteria is optimized.  In the 
simplest case when )(xf is a function of a single scalar 

variable x , for some finite discrete values of argument x , this 
represents a curve fitting problem.  We work with a more 
general version of this problem when f  is a function of finite 

number of multidimensional patterns X  represented by 
)( mX x,...,x,x 10 .  We assume that there is an existing 

system of basis functions ),...,(),( xx 21  such that the 

approximation function )(x*f can be expressed as a linear 

combination of functions ),...,(),( xx 21  in the form 

)(x*f = )(xj
*
jc

1j
(4)

if )(x*f  and the mathematical expectation of 

function square where 2*f|M |)(x  is finite. (  is 

the functional space of  basis functions). 
 Potential function approximation algorithms for the 
case of functions without a noise may be expressed as 

)()](),([

)()(

1n1n1n

1nn1n

,Uff

ff

xxxx

rxx
*   (5) 

where )( *r ff,  is a monotonous function toward variable 

f  ( 0)( *r ff,  if *ff ).  For this case we may assume 

that )( *r ff,  represents the difference between the two 

functions )(-)( 1n1n ff xx *  which can be calculated 

during the training process.   Hence 
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)()( f,fff, **r
)(q  is a monotonously increasing function which satisfies 

the following condition 

.q,
;q,

(q
0if0

0if0
)

We suggest two different approaches in developing 
the function approximating algorithms based on potential 
functions (5).  The first approach is expressed in the following 
way 

)](-)([)()( 1n1n1nn1n ffff xxxx * (6)

Different implementations of algorithms (6) depend on the 
choice of  and .  In this research we use the following 

modification of (6) 

)()](-)([

)()(

1n
* xxxx

xx

,Uff

signff

1n1n

1nn1n
  (7) 

where i  is a non-negative numeric sequence satisfying the 

conditions discussed in the next section. 
 The second approach uses 

)()](-)([)()( 1n
* xxxxxx ,Uff1ff 1n1nn1n  (8) 

where  is a positive constant satisfying condition 

)( 1n
x

xx ,Usup
2
1

.

We can use the approach for building the potential 
functions developed in [26, 27].  In this case the potential 
function for any input vector kx  is defined by the expression 

0

2 )()()U(
k

kiiik, xxxx  (9)  

or

)(wU i
1i

i xx)(   (10) 

where )( xi , i  = 1, 2, …are orthonormal functions; i ,

i  = 1, 2, … are real numbers for scaling different from zero; 
the weight iw are unknown and can be determined iteratively 

from the input vectors  [26, 27]. 
By letting 

)()( xx iii   (11) 

the potential function in (9) becomes  

))()(()()()U(
0

kii
k

kiik, xxxxxx   (12) 

We assume that 

M, kii
k

kiik ))()(()()()U(
0

xxxxxx   (13)  

where M is independent from x constant.  
Therefore if we take into account (12) formulas (7) 

and (8) can be expressed in the following way 

)()](

-)([

1n
i

1i
1n

i

1n1 fsign

xxw

xww
i
n

*
n

i
n

i
n

  (14) 

)()](

-)([

1n
i

1i
1n

i

1n1 f1

xxw

xww

i
n

*i
n

i
n

  (15) 

The latter represent one possible way for neural network 
weight update in solving the problem of function 
approximation using potential functions built on orthonormal 
functions. 

IV. FUNCTION APPROXIMATION WITH SYMMETRICAL 
POTENTIAL FUNCTIONS 

The proposed neural network is based on RBFs with 
symmetrical potential functions and has two fundamental 
components – potential function generators (PFG) and 
potential function entities (PFE).  It uses a two-step data 
processing structure:  

a) A nonlinear transformation the input data undergoes 
via the PFGs in the network hidden layer;  

b) A linear combination of basis functions responses to 
provide the network output through PFE.  
The presented neural network learns by allocating 

new units and adjusting the parameters of the neural network 
based on the novelty of the presented sample.  The proposed 
NN is able to control the complexity of its structure by 
allocating a new hidden unit to correct its response to the 
presented pattern.  Fixed-size networks either use too few 
units or too many in which case the network demonstrates 
poor learning or poor generalization.  The newly allocated 
units do not interfere with previously allocated units. 

The placement and parameterization of the local units 
as well as the choice of their number is the difficult and critical 
part with RBFs networks.  Networks with too many 
parameters can overfit data and have poor generalization.  The 
method we present, however, allows effective determination of 
all these values automatically.  The proposed approach is 
suitable for on-line and off-line applications. 

Let us denote by )( j,U xx  the potential function, 

which is connected to the learning 
pattern M2,...,1,j,jx .  Then, the appearance of 

training patterns corresponds to the generation of potential 
functions )(),...,(),( M21 ,U,U,U xxxxxx , which is defined 

over the space .
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The relation between the potential function 

)( n,U xx and approximating function )(x*f is given by the 

next equation, which determines the iterative updates of the 
estimations )x(fn .

)()()( 1nnnn1n ,Urfqf xxxx (16)

where nn r,q and  are numeric sequences which depend on one 

or all of the following factors: number of iteration n , the value 
of the current estimation nf  for the next input  1nx
( )( 1nnf x ) and on the value of approximating function  *f
for 1nx  - )( 1n

*f x , if it is available.  For our 

considerations we set 1nq and choose the following form 

for nr :

1n1n
*

1nnnn ffFr ))(),(( xx (17)

where ),( *
n ffF  is a function of two variables; n is

a noise which appears during the measurement of )(x*f and

n is a non-negative numeric sequence satisfying the 

following conditions:   

1n
n ; const;n ;lim

1n

2
n

1n
nnn

;0;

The function ),( *ffF  satisfies the next two 

conditions:  

0),( ** ffF (18)

*

*
*

ffif

ffif
ff,F

0,

0,
)( (19)

Thus, the sign of -f 1n1n )(x )( 1nnf x might be 

determined by ))(),(( 1n
*

1nn ffF xx as )( 1n1n ,U xx

and 0n .  With the above assumptions if *
n ff ,

then n1n ff , which confirms that with the presentation of 

training pattern 1nx to the neural network, the approximating 

functions change towards the function *f .  The same is valid 

for the case of *
n ff .

The weight update takes the following form:   

)( 1ni
2
in

i
nn

i
1n rwqw x    (20) 

Let )()( xx iii  and i
i
n

i
n /ww .  Then 

)()()( xxx
~

i
i

i
n

i
i

i
nn wwf    (21) 

Thus (20) takes the form: 

)( 1nin
i
n

~
n

i
1n

~ rwqw x    (22) 

where
1i

2
i 0  and 0i .

The case of supervised learning assumes a prior 

knowledge about the value of function )( 1n
*f x for the 

training pattern 1nx .  As a result, the approximating function 

can be represented in the form: 

)()](-)([

)()(

1n1nn1n
*

1nn1n

,Uff

ff

xxxx

xx
   (23) 

where
1n

n  is a numeric sequence satisfying the conditions? 

 a) 

1n

2
n  does not converge;  

 b) )( 1n
*
nf x  converges. 

The weight update under the above assumption determined by 
(20) and (22) is obtainable from

)(])()([ 1n
kN

1n
1n

kk
n1n

*

1n
k
n

k
1n

w-f

signww

xxx
(24)

V. DESIGN CONCEPTS

Our approach is based on RBFNs with symmetrical 
potential functions (SPF), which perform a mapping based on 
a set of generated potential fields over the domain of input 
space by a number of potential function entities.  

A given space  is symmetrical if a function 
)( yx, defined as a distance between any two points 

yx, in the space, satisfies the following axioms: 

);()( xy,yx,
0)( yx, , if and only if x  coincide with y ;

0;)( yx,
Any three points yx,  and z  satisfy the triangle inequality 

o )()()( z,yx,zx,y
Let A  be a transformation, which assigns a point Ax  to 
point x .  Then, for each pair YX y,x , the following 

condition is satisfied 
o )()( yx,AyAx,

For any two points )()( 11 y,x and )()( 22 y,x that are at 

equal distance )()( )()()()( 2211 y,xy,x , there exists a 
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transformation such that the following conditions are 

met ))())( (12(12 Ayy,Axx .

Functions of two variables )( kU xx, , which fulfill the 

above conditions, and are mathematically expandable in 
infinite series, and satisfy the condition, 

)()( xxxx kk ,U,U will be referred to as SPFs.  Examples 

of such functions are given below by Eqs. (25)- (27). 

}exp{-)(
2,U kk xxxx   (25) 

21
1,U

k
k

xx
xx )( (26)

2

2sin
,U

k

k
k

xx

xx
xx )(    (27) 

where is a positive constant and kxx  is the norm of the 

vector )( kxx .  It is apparent that these functions are 

inversely proportional to the squared distance 

measure
22D kxx , which is also a characteristic, for 

example, of the force in a gravitational potential field. 

A. Learning algorithm 

We require class iK  to generate a higher 

accumulated potential for the input patterns in it than all other 
classes to all the samples in iK .  The PFUGNN2 network 

begins with no hidden units in the second layer.  The 
observations are received sequentially during the learning, 
which is preferable compared to batch learning algorithms.  
The learning algorithm is described below.

Initialization:

PFUGNN2 is a three-layer network where the output 
response to an input pattern x  for each predefined class is a 
linear combination of the hidden unit responses, determined by 

)()( )()()(
r

K
r

K
0

K ,Uwwf
**

kk xxx
x

k    (28)

where )( kK
0w is the bias class weight ( l1,2,...,k ) set during 

the initialization phase,  ,...,w,w K
2

K
1

)()( kk  are the weights 

corresponding to the class kK which are adjusted during 

training and **x is the training subset corresponding to 
the class kK which changes the respective potential field 

(classification rule). )( kxx ,U  represents potential function.  

Presented is a training pattern ,K qtx
Nq1 from the learning set to the first layer of potential 

function generators (PFGs).  The function )( t,U xx created

by this pattern will be the first hidden unit of added to the 
hidden layer 2.  Update the hidden unit q  of the third layer (of 

cumulative potentials) in the following way: 

)()( )()(
t

K
1

K
1 ,UwU qq xxx ,

where
)( qK

1w  is initially set to 1. 

Update the potential function entity for the class qK

-
)Kq(PFE  with )( t,U xx .

Update the output class separated function for class 

qK in the following way:  

)()( )()()()( xx qK
1

K
1

K
0

K
1 Uwwf qqq   (29) 

Learning:

For each training pattern lp0,K p
vx  of the 

learning set, where l
v Xx , ,...,,v 21  and l is

the total number of classes.
1. Compute the potential function )( n,U xx created by this 

pattern (PFGs). 
2. Calculate all cumulative potentials for the current pattern 

vx .

)()(

)(
)()(

)(

v
K

iv
K

i

v
K

i

12

1

U,...,U

,U

xxxx

xx
  (30) 

3. Apply the criterion for adding a neuron 

If )()( )()(
v

K
iv

K
i UU xx rp for some values of 

prl,1,2,...,r  (for example, u21 r,...,r,r then vx
.,..,...,, *

n
*
2

*
1 xxx  (training subset .,..,...,, *

n
*
2

*
1 xxx

require changes in the decision functions) 
4. Allocate a new hidden unit )( v,U xx in layer 2 

5. Adjust the p -th and u21 r,...,r,r  units  

(corresponding to classes pK ,
u21 rrr K,...,K,K ) of 

cumulative potential layer following the formulas 

)())(-)((

)()(
)()(

)()(

1n1n
Kq

n
K

n1n
*

1n
K

n
K

1n

,UUwfsign

UU

**

q

qq

xxxxx

xx

x

 (31) 
where u21 r,...,r,rp,q .

Equation (31) is equivalent to the equations (32). 

.r,...,r,rs,UU

r,...,r,rr
,UUU

,UUU

u21
K

n
K

1n

u21

v1n
K

n
K

1n

v1n
K

n
K

1n

for)()(

above;definedasfor

),()()(

);()()(

)()(

)()(

)()(

xx

xxxx

xxxx

ss

rr

pp

 (32) 
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6. Update the PFEs for classes pK ,

u21 rrr K,...,K,K -
)K p(PFE ,

)K 1r(
PFE ,…,

)Kru(
PFE with

)( v,U xx and the output decision functions following (31).

VI. EXPERIMENTS AND DISCUSSION

The potential function is connected to the learning 
pattern.  Then, the appearance of training patterns corresponds 
to the generation of potential functions, which is defined over 
the space.  The relation between the potential function and 
approximating function determines the iterative updates of the 
estimations.   

The training pattern from the learning set to the first 
layer of potential function generators and created by this 
pattern will be the first hidden unit added to the next hidden 
layer.  This pattern will update the hidden unit of  
the third layer (of cumulative potentials). 

The proposed NN was applied to well known 
approximation benchmarks with and without a noise.  Two of 
the simulations are presented below.  Problem one is to 
approximate Hermite function 

)()( 22
hermite x2/1expx2x11.1f    (33) 

  The training set includes 40 randomly selected points 
in [-4, +4] interval, and the test data consists of 80 uniformly 
distributed points from the same interval.  The results of 
approximation in 3D are shown in Fig. 1.  The simulation was 
run with the number of iteration equal to 520.  For the second 
experiment, we assume that the training data for the target 
function (21) was corrupted by noise uniformly distributed in 
[0.05, 0.05] while the test set remains intact.  The result 
demonstrated robustness of the neural network in the presence 
of noise. 

For the second simulation, shown in Fig.2, the target 
function is described by 

3 2( , ) 0.3 0.4 , , [ 1,1]f x y x x x y x y   (34) 

The training set consists of 21 points, which are 
chosen by uniformly partitioning the domain [-1, 1] with grid 
size of 0.1.  The set comprises 100 points uniformly randomly 
sampled from the same domain. 

For the third experiment, illustrated in Fig.3, the 
target function is the sine function (f(x)=sin(x)) over the 
domain [-4, 4].  The training set consists of 80 points. The 
output of the network is shown in Fig.3. The approximation is 
almost exact with an error of 0.001. 

Fig.1 Approximation of Hermite function 

Fig.2 Simulation 2 results 

Fig.3 Simulation 2 results 
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 VII. CONCLUSIONS

The determination of the type of RBFs used for a 
given set of data is an active area of research.  The standard 
RBF neural network with a single output 
neuron produces a mapping function, where the dimensional 
input vector is submitted to the neural network and the scalar 
output is obtained to construct the classification rule.  
The presented neural network learns by allocating new units 
and adjusting the parameters of the neural network based on 
the novelty of the presented sample.  
 All implementations show that the training algorithm 
is fast and straightforward, not only for noise-free nonlinear 
function approximation, but for the functions with noises as 
well.
 Regardless of the proposed incremental feature of the 
neural network based on potential functions, pruning criterion 
can be developed by checking the values of potential functions 
during the training and creating additional rules on adaptation 
of cumulative potentials.  

The NN is able to control the complexity of its 
structure by allocating a new hidden unit.  The newly allocated 
units do not interfere with previously allocated units.  The 
method we presented in this paper allows effective 
determination of all these values automatically. 
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