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Abstract- In this letter, an efficient recursive least squares (RLS) 

algorithm using infinite impulse response (IIR) filter for acoustic 

echo cancellation (AEC) is proposed. The RLS adaptive filter is 

naturally extended from the finite impulse response (FIR) structure 

to the IIR structure. One of the main advantages of an IIR RLS 

filter is that a long-delay echo can be synthesized by a relatively 

small number of filter coefficients leading to lesser computational 

complexity. In addition it is more suitable for modeling physical 

systems, due to its pole-zero structure, over their FIR counterparts. 

To investigate the tracking performance and the stability of the 

proposed IIR RLS filter in a practical implementation, real data for 

far end speech signal and its echo were used in car environment. 

The proposed algorithm is shown to have global convergence. To 

demonstrate the effectiveness of the proposed IIR RLS filter, it is 

compared to the usual FIR RLS filter. The good performance of the 

proposed IIR RLS algorithm for AEC have been verified via 

computer simulations.  

 

I. INTRODUCTION 
     In modern hands-free communication systems such as hands-

free mobile phones, audio and video conference systems, it is 

necessary to perform an acoustic echo cancellation of the far-end 

speaker signal. A number of efficient algorithms has been 

proposed for that purpose [1, 2]. In an acoustic echo cancellation 

algorithm, a model of the room impulse response is identified. 

Since the conditions in the room may vary continuously, the 

model needs to be updated continuously. This is done by means 

of adaptive filtering algorithms. The room acoustics can be 

modeled by a FIR filter or IIR filter. In practice, the length of the 

room acoustics and by consequence also the filter length of the 

adaptive canceller is typically 500-2000 filter taps. Long filters 

imply a large computational burden and slow convergence 

rate[3]. These problems have motivated a new approach: 

adaptive filtering in subbands with the double purpose of 

reducing the computational complexity and of improving the 

convergence speed of the algorithm. On the other hand, subband 

processing introduces transmission delays caused by the filters in 

the filter bank and signal degradations due to aliasing effects [4]. 

     

     

     In this letter, an IIR RLS algorithm based on the output-error 

formulation for acoustic echo cancellation is investigated. One of 

the main advantages of an IIR RLS filter is that a long–delay 

echo can be synthesized by a relatively small number of filter 

coefficients leading to lesser computational complexity. In 

addition it is more suitable for modeling physical systems due to 

its pole-zero structure. Unfortunately, these good characteristics 

come along with some possible drawbacks inherent to IIR 

adaptive filters such as algorithm instability and local minimum 

solutions. Consequently, several algorithms for adaptive IIR 

filtering have been proposed to overcome these problems [2, 5]. 

Furthermore, the study of algorithms other than stochastic 

gradient-based algorithms has rendered it possible to guarantee 

that the stationary points of adaptive IIR algorithms are close to 

the global minimum of the least-squares output error 

performance surface [6]. In addition, this letter study the tracking 

performance of the proposed IIR RLS algorithm for time-varying 

system. Simulation results show that the proposed algorithm 

produces results that are significantly favorable than usual FIR 

RLS algorithm for AEC. Moreover the proposed algorithm has 

good ability to track the time-varying unknown system and 

remain stable. 

     This letter is organized as follows. Section II provides the 

theoretical formulation of the proposed algorithm. In Section III, 

simulation results and analysis will be presented to illustrate the 

improved performance. In Section IV, brief conclusions will be 

drawn. 

 

II. DESIGNING RLS ALGORITHM USING IIR 

FILTER 
     The block diagram in Fig. 1 depicts the proposed filter 

architecture. The RLS algorithm based on output error approach 

was used to derive the feed forward and feedback coefficients 

which are used to identify the time-varying unknown system. A 

similar technique has been adopted by Yeary and Griswold [7] to 

design adaptive IIR filter that employs a single input sensor and 

over sampling for speech enhancement.  
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With reference to Fig. 1, the least square algorithm is designed to 

minimize the sum of squared errors (assuming here for simplicity 

no near end speech) as defined by 
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is the coefficient vector,      
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is the signal vector containing the elements of far end speech 

vector )(u n  and past samples of synthesis echo signal )(ˆ nv . The 

vector )(iz has 1++MN elements, indexed from )(iz to 

))(( MNiz +− . The vector ĥ contains Naaa ....,........., 10 which 

are known as the feed forward coefficients, and 

Mbbb ......,,........., 21 which are known as the feed back 

coefficients. This vector has 1++MN elements, and these 

elements are indexed as )(ˆ jh , where .,.......,1,0 MNj += To 

minimize the sum of the squared errors, the partial derivative of 

)(nε is evaluated as: 
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To minimize this error function, the partial derivative is set to 

zero 
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By combining (2) and (6), it follows 
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Recognizing outer products, yields )(ˆ)( nn xzzz rhr = . Therefore, 

the optimum coefficients are 

),()(ˆ 1 nn xzzz rrh −=                                                                          (9) 
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     Rather than solving equation (9) by computing the inverse of 

)(nzzr , the inverse will be recursively computed by making use 

of the matrix inversion lemma. The weight vector ĥ will become 

a function of discrete time, and will assume the notation )(ˆ nh . 

The following recursive equation is the first step towards 

determining a recursive formula that will allow the weight vector 

)(ˆ nh to be updated at each .n  
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Similarly, )()()1()( nnxnn xzxz zrr +−=                                    (12) 

The inverse of )(nzzr can be recursively computed using the 

matrix inversion lemma [7, 8] 
1111111 )()( −−−−−−− +−=+ DABDACBAABCDA                      (13) 
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zz zzr ===−= , 

equation (11) takes the form 
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Fig. 1 Block Diagram Of  Proposed IIR RLS Filter For AEC.  
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At any instant of time, )(1 nzz

−r may also be determined by 
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To recursively update )(ˆ nh , the set of equations (9), (12), (13) 

may be used. Hence  
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An updating equation for IIR filter coefficients may be obtain as 
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By substituting )(1 nzz

−r from equation (15) in the third term on 

the right hand side of the equation (18), the following expression 

may be obtained 
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     By recognizing the bracketed term in the above equation as a 

time varying gain term that modulates how much the error 

influences the magnitude of the update at each iteration, the 

following update equation is realized: 
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     Since the IIR RLS filter is used for non stationary signals, the 

error term )(ne that influences the weights may be modified so 

that only relatively recent values of )(ne will be significant. 

Therefore, (1) is modified to reflect this change [7], as is 

typically done for an FIR RLS filter [8] 
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this consequently influences the time varying filter gain defined 

by (21), which becomes 
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III. SIMULATION RESULTS 
     To investigate the performance of the proposed IIR RLS filter 

consider the following two cases: 

 

Case 1: The transfer function of the unknown linear system to be 

identified by proposed algorithm is given by [9] 
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Thus N=5, M=5, and 91=++= MNLAEC . The system is 

excited by the colored input signal )(ty , which is generated by 

passing white noise through the second order IIR filter. The filter 

coefficients of second order IIR filter are {-1.126, 0.64}. The 

system output is corrupted by additive white Gaussian noise 

)(tn with zero mean and unit variance, the )(tn and )(ty are 

mutually independent. In the simulation, the forgetting factor is 

chosen to be 0.98. In order to examine the tracking behavior of 

the proposed algorithm in a nonstationary environment, suppose 

that the second pole and first zero of the transfer function given 

by (24) are suddenly changed from value (0.8) to (0.4) and from 

(0) to (1.0) respectively, which are indicates the effect of time-

varying unknown system. The evolution curves of the estimated 

parameters to identify the new transfer function of the time-

varying system are plotted in Fig. 2. It can be seen that the 

proposed algorithm has good ability of tracking in nonstationary 

environment. Moreover, the stability of the IIR RLS algorithm 

has been tested by checking the pole-zero locations at each 

iteration of the coefficient vector update equation (20). Fig. 3 (a) 

shows the pole-zero locations of the transfer function given by 

(24), while Fig. 3 (b) shows the pole-zero locations of the new 

transfer function for time-varying unknown system. 

   

Case 2: To verify these results in a physical environment, the far 

end speech signal and its real echo in car environment were used 

[10] at a sample rate 8kHz with 16 bit resolution. The far end 

speech signal and its real echo (assuming no near end speech) 

were fed into proposed IIR RLS filter and usual FIR RLS filter. 

For the given real test signals, the performance of the FIR RLS 

filter is shown in Fig. 4. The main disadvantage of this algorithm 

is high computational complexity as given in Table 1, which is 

on the order of 
2

AECL  Multiplications per sampling interval T 

(MUL’s per T), where AECL  is length of the RLS filter. The 

performance of the designed IIR RLS filter, according to the 

algorithms developed in Section II, is shown in Fig. 5. To 

compare the effectiveness of the proposed IIR RLS and FIR RLS 

filters, the mean square error (MSE) of both filters for different 

filter length are depicted in Figs. 6, 7 and 8. Note that the MSE of 

proposed IIR RLS filter (see Fig. 8) with filter length equal to 
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115 taps (100 feedforward taps and 15 feedback taps) is 

approximately equal to the MSE of the usual FIR RLS filter (see 

Fig. 7) with filter length equal to 256 taps. In this case the 

computational complexity of the proposed IIR RLS filter is lesser 

when compared to usual FIR RLS filter as given in Table 1. In 

another case, if both adaptive filters have same filter length (see 

Figs. 6 and 8) and consequently  same computational complexity. 

it is observed that the proposed IIR RLS filter is superior for echo 

suppression. This is also evident from Table 1. 

 

 

 AEC System Echo 
Suppression 

[dB] 

Computational 
Complexity 

MUL’s per T 

1 FIR RLS ( =AECL 115) 
-15.536 13225 

2 FIR RLS ( =AECL 256) 
-23.486 65536 

3 FIR RLS ( =AECL 512) 
-24.899 262144 

4 IIRRLS ( N =100, M =15) 
-23.55 13225 

 

 

 

 

     Table 2 illustrates the effect of the number of feedback 

coefficients M on the echo suppression performance for the 

proposed IIR RLS algorithm. It can be seen, the adding feedback 

to the IIR RLS filter will allow an improvement in echo 

suppression while keeping the number of overall filter 

coefficients constant. 

 

 
Filter Length Echo 

Suppression 
[dB] 

N =114 taps, M =1 taps -18.57 

N =110 taps, M =5 taps -20.70 

N =105 taps, M =10 taps -22.19 

N =100 taps, M =15 taps -23.53 

P
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N =58 taps, M =57 taps -21.31 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSIONS 
     In this letter, an adaptive IIR RLS filter based on output error 

approach for AEC has been investigated. The RLS adaptation 

algorithm was used to derive the feed forward and feedback 

coefficients on a sample by sample basis. From simulation 

results, it seems that the proposed IIR RLS algorithm has good 

tracking performance for time-varying unknown system and 

remain stable at each iteration of the coefficient update equation. 

For real data test signals in car environment, it is observed that 

the IIR models of acoustic echo paths, is outperform over their 

FIR counterparts. Furthermore, numerical comparisons show that 

the proposed IIR RLS requires fewer number of filter coefficients 

and by consequence lesser computational complexity to obtain 

the specified echo suppression performance. In addition the other 

main advantage of the proposed algorithm is that it processes 

data on sample by sample basis, which lends itself to a more 

efficient real time implementation. 
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Table 1: Echo Suppression and Complexities Of Different Algorithms. 

 

Table 2: Echo Suppression for Different Number of Feedback Coefficients. 
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(a) (b) 

Fig. 2  Evolution Curves Of The Estimated Parameters To Identify The Linear Time-Varying System, (a) Poles. (b) Zeros. 

 

X Pole 

O Zero 

Fig. 3 Pole-Zero Plot, (a) For Linear Time-Invariant System. (b) For Linear Time-Variant System. 
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Fig. 4 FIR RLS Filter, (a) Echo From far-End Speech. (b) Residual Echo. (c) Echo Suppression. 

( 256=AECL taps, forgetting factor 98.0=λ ) 
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Fig. 5 Acoustic Echo Cancellation By Using Proposed IIR RLS Filter  

With Compare To Real Far-End Echo In Car Environment. 
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Fig. 8 Mean Square Error (MSE) Of Proposed IIR RLS Algorithm, 

(Feed Forward Coefficients N =100, Feed Back Coefficients M =15). 

Fig. 6 Mean Square Error (MSE) Of FIR RLS Algorithm, Filter Length AECL =115 taps. 
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Fig. 7 Mean Square Error (MSE) Of FIR RLS Algorithm,  Filter Length AECL =256 taps. 
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