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1. ABSTRACT

In this paper, a new thresholding approach for data denois-
ing is presented. The approach is based minimum noiseless
description length (MNDL), a new method for optimum sub-
space selection in data representation. By using the observed
noisy data, this information theoretic approach provides the
optimum threshold that minimizes the description length of
the noiseless signal. Comparison of the new method with the
existing thresholding methods is provided.

2. INTRODUCTION

The goal of a data denoising approach is to discriminate be-
tween noise and data and to remove the unwanted noise from
data. All denoising methods attempt to restore the noiseless
data. Over the years, various data denoising methods have
been proposed. Traditionally, these methods, such as Wiener
�lters, were linear. However, recently researchers have fo-
cused mainly on nonlinear approaches, since they always con-
verge better than the linear ones.

One of the well known approaches to data denoising is
Wavelet thresholding which was �rst introduced by Donoho
and Johnstone [1]. When orthogonal wavelet basis is used, the
coef�cients with small absolute values tend to be attributed to
the additive noise. Taking advantage of this property, �nd-
ing a proper threshold and setting all absolute value of co-
ef�cients smaller than the threshold to zero can suppress the
noise. Thus, the most crucial issue in these approaches is
de�ning a trustable threshold which is usually obtained by
solving a minmax problem. Different methods have been
proposed to determine the desired threshold. Well-known
thresholding methods are VisuShrink [1], Minimum Descrip-
tion Length (MDL) denoising [2] and SureShrink [3]. Vi-
suShrink proposed by Donoho and Johnstone [1], uses uni-
versal threshold, σ

√
2 log(N), for denoising where σ2 is the

variance of the additive noise and N is the data length. MDL
denoising is a method recommended by Rissanen [2]. In this
method the normalized maximum likelihood (NML) of the
noisy data is de�ned as the description length of data. This
method suggests choosing the subspace that minimizes the
description length of the noisy data and the proposed thresh-
old is σ

√
log(N). Sureshrink is another approach introduced

by Donoho and Johnstone that provides an optimum soft thresh-
old for data denoising.

MinimumNoiseless Description Length (MNDL) is a new
approach to signal denoising which has recently been pro-
posed by Beheshti and Dahleh [4]. This method suggests
choosing the subspace that minimizes the description length
of the “noiseless” data. For this purpose, MNDL provides
bounds on the reconstruction error or MSE (minimum square
error). In this approach, the subset of order m represents the
bases with only m nonzero coef�cients of the estimated de-
noised signal. The bounds on the reconstruction error are esti-
mated in each subset and the subset that minimizes the upper
bound of this error is chosen. With a proper choice of the
competing subsets, the method not only chooses the optimum
subset, but also provides the optimum threshold simultane-
ously. The resulted optimum threshold is a function of the
noise variance σ, the data length N , and the noisy data itself.

Details of the MNDL as a subset selection approach is
provided in [4] and the use of this approach as a thresholding
method is discussed brie�y. In this paper, we explore applica-
tion of MNDL as a thresholding method in detail. As in any
thresholding approach, �rst the sorted version of the basis co-
ef�cients of the noisy signal is calculated. In this paper, we
show that in MNDL thresholding, the effects of the additive
noise are no more the chi-square random variables that are
used in random selection of competing subsets in the existing
MNDL approach in [4]. By consideration of the structure of
the involved distributions in this case, we improve the perfor-
mance of MNDL for threshoding purposes.

The paper is arranged as follows. Section 3 described the
considered thresholding problem. Section 4 brie�y described
the fundamentals of MNDL subset selection. Section 5 intro-
duces the MNDL thresholding approach. Section 6 provides
the simulation results and Section 7 is the conclusion.

3. PROBLEM STATEMENT

The noiseless data {ȳ(n), n = 1, ...., N} of length N has
been corrupted by an additive noise:

y(n) = ȳ(n) + w(n) (1)

where w(n) is an independent and identically distributed (iid)
Gaussian random process with zero mean and variance σ2. In
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the denoising process, we de�ne the noisy data by using an
orthogonal basis. The goal is to provide the optimum thresh-
old for the resulted coef�cients. Thresholding the coef�cients
provides the best estimate of the noiseless data.

Assume that the noiseless data belongs to space SN , ȳ(n) ∈
SN . The space SN can be expanded by some orthogonal basis
vectors

< si, sj >=

{
1 if i = j,
0 if i �= j.

(2)

where < si, sj > is the inner product of vectors, si and sj .
The noiseless, using this basis, is as follows:

ȳN =

N∑
i=1

θ∗(i)si (3)

where θ∗(i) is i-th coef�cient of the noiseless data. The noisy
data from (1) in space SN is:

yN =
N∑

i=1

θ(i)si. (4)

In denoising approaches based on thresholding, some of the
coef�cients of the noisy signal are ignored. In general two
thresholding methods exist; Hard and Soft thresholding. Hard
thresholding kills or keeps the coef�cient by comparing them
with the threshold

θ̂(i) =

{
θ(i) if |θ(i)| ≥ Th,
0 otherwise.

(5)

Where Th is hard threshold. Soft thresholding kills the coef-
�cients below Ts and reduces the absolute of the rest of coef-
�cients

θ̂(i)Sm
=

{
sgn(θ(i))(| θ(i) | −Ts) if |θ(i)| ≥ Ts,
0 otherwise.

(6)

In this paper, we use the theory of MNDL to provide a new
thresholding denoising approach.

4. MNDL SUBSPACE SELECTION

In MNDL method, some of θ(i)s are chosen as the noiseless
data coef�cients. Therefore, the noiseless data ŷN

Sm

, can be
de�ned as

ŷN
Sm

=

N∑
i=1

θ̂sm
(i)si (7)

Where Sm, is a subspace of SN that is spanned bym elements
of basis and θ̂Sm

de�ned as follows

θ̂(i) =

{
θ(i) if si ∈ Sm,
0 otherwise.

(8)

MNDL compares subspaces of different order and chooses
the optimum subspace by minimizing the reconstruction error
among the competing subspaces.

The quality of denoised data is generally evaluated by the
minimum square error (MSE) between the denoised data and
the original one. This quantity is not accessible due to its de-
pendance on original data. Different denoising methods have
tried to estimate this quantity. With minimizing this estima-
tion, they suggest an approximation for noiseless data. The
more closer the estimation of MSE to its true value, much
better denoised data will be obtained.

MNDL provides a novel method to calculate the bounds
onMSE error. MNDL is based on a new information-theoretic
criterion, the description length of ”noiseless” data. It sug-
gests choosing a subspace in which the length of noiseless
data is minimum. The calculation of length of noiseless data
leads to the calculation of MSE. Hence, its minimization cor-
responds to the minimization of MSE. Here, probabilistic
bounds on reconstruction error are computed as a function of
noisy data and noise variance. The subspace that minimizes
the upper bound of this error is chosen. After selecting the
optimum subspace or estimating all noiseless coef�cients, the
threshold will be computed.

The desired unavailable MSE error zSm
in subspace Sm

is
zSm

= 1/N ‖ ȳN − ŷN
Sm

‖2

2
, (9)

The novelty of MNDL is that the method uses the avail-
able data error xSm

of the following form

xSm
= 1/N ‖ yN − ŷN

Sm

‖2

2
, (10)

to provide probabilistic bounds on the desired MSE, zSm
.

Note that based on Parseval’s Theorem these error cab be
written in the following form

xSm
= 1/N ‖ θ − θ̂Sm

‖2

2
, (11)

zSm
= 1/N ‖ θ∗ − θ̂Sm

‖2

2
. (12)

The process of providing bounds on zSm
based on observa-

tion of xSm
is explained in [4] in detail. These two values are

samples of random variables ZSm
and XSm

. MNDL studies
the structure of these two random variables and uses the con-
nection between these two random variables. By using one
sample of XSm

, MDL validates the expected value and vari-
ance of this random variables. The validated values are then
used in estimation of second order statistics of ZSm

and en-
ables us to provide probabilistic bounds on the desired zSm

.
The optimum subspace is chosen based on the estimated up-
perbounds for subspaces with different order.

5. MNDL THRESHOLDING

Themain difference betweenMMNDL thresholding andMNDL
optimum subspace selection is in forming the competing sub-
sets. While in MNDL, we assume that the subspaces are cho-
sen a priori and are not functions of the observed data, in
MNDL thresholding, the subspaces are chosen based on the
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observed data. In the thresholding MNDL approach, the com-
peting subsets have to be chosen as nested subsets based on
this sorted version of coef�cients. For example the �rst sub-
set represents the the basis associated with the largest absolute
value of the coef�cients. The subset with two coef�cients in-
cludes this basis and the basis with the second largest value
from the sorted coef�cients. The thresholding question is then
answered by providing the optimum subset. In this case the
threshold is the smallest absolute value of sorted coef�cients
in this subset.

In MNDL, the structure of second order statistics of the
two random variables are the main ingredients of the analysis.
Since in subspace selection, the additive noise effects is inde-
pendent from the data, it is shown that these two random vari-
ables are Chi-square random variables and the additive noise
parts in both expected values and variances of these random
variables are in linear form as a function of subspace order.
For example, the general form of the expected values are

E(XSm
) = E(noisexsm) +

1

N
‖ ΔSm

‖2

2
(13)

E(Zsm
) = E(noisezsm) +

1

N
‖ ΔSm

‖2

2
(14)

where 1

N
‖ ΔSm

‖2

2
is the the effect of the discarded noiseless

part of the data in subspace Sm. In other words, ΔSm
is a

vector of length N − m, corresponding to the coef�cients of
the basis that are not in Sm). In the MNDL subspace selection
the noise effects derived from the chi-square structure are

E(noisexsm) = (1 −
m

N
)σ2. (15)

E(noisezsm) =
m

N
σ2. (16)

However, in MNDL thresholding, as the subspaces are chosen
based on the noisy data, the effects of the additive noise is not
simply derived from a chi-square random variable. We esti-
mate the noise part effects in this case by �nding the estimate
of sorted version of the additive noise effects in the coef�-
cients. We generate the noisy part M times and calculate its
mean. In each trial, an additive white Gaussian noise with
variance σ2

w is generated and the associated coef�cients are
sorted. Denote the sorted noise coef�cients of length N with
vi[n] where i represents the ith trial. Therefore, the noisy part
of zSm

is estimated as follows:

E(noisezsm) =
1

M

M∑
i=1

m∑
n=1

v2

i [n] (17)

and noisy part of xSm
is sum of vis from m to M divided by

M :

E(noisexsm) =
1

M

M∑
i=1

N∑
n=m

v2

i [n] (18)

Next, we approximate xSm
with its expected value as follows.

From equation (13) we have

1

N
‖ Δ̂Sm

‖2

2
� xSm

− E(noisezsm). (19)

Using this value we can estimate ZSm
as follows:

ẑsm �
1

N
‖ Δ̂Sm

‖2

2
+E(noisexsm) (20)
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Fig. 1. Noiseless signal ȳ[n] and Noisy signal y[n].
(A)noiseless block. (B)noiseless mishmash. (C)noisy block.
(D)noisy mishmash
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Fig. 2. Noiseless signal coef�cients θ∗ and noisy coef�cients.
(A) noiseless block . (B) noiseless mishmash. (C) noisy
block. (D) noisy mishmash

6. SIMULATION RESULTS

Standard block and mishmash signal were used as tested sig-
nals with length 1024. The block signal was introduced in [1],
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and mishmash was provided in Matlab R12. We chose these
two signals as two extreme cases; the block signal is a signal
with very small number of nonzero coef�cients and the mish-
mash is the one with 1024 number of nonzero coef�cients.
We added noise with different levels σ2 = 1, 3, 5 to the orig-
inal signals. Figure 1 shows the noiseless and noisy signals.
The wavelet transform employs Haar wavelet with �ve scales
of orthogonal decomposition. Figure 2 shows the wavelet co-
ef�cients of both noisy and noiseless signals. MNDL uses the
available data error (xSm

), the error between the noisy signal
and thresholded signal with the mth sorted coef�cient, to esti-
mate unavailable MSE error (zSm

). In this method, the noisy
part of these two errors are estimated by using Chi-square ran-
dom variable. In MNDL thresholding method, the subspaces
are chosen based on the noisy data. Therefore, the noisy part
of errors is not chi-square random variable any more.
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0 200 400 600 800 1000
0
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20

40

Fig. 3. Noisy part of true reconstruction error for (A) noisy
part of block signal when σ2=1, (B) noisy part of mishmash
when σ2=1, and (C) noisy part of mishmash when σ2=5.
Dashed line is MNDL sorted estimate, solid line is the un-
available desired noisy part and dash-dotted line is MNDL
unsorted estimate m

N
σ2.

Figure 3 shows the true noisy part of reconstruction error,
zSm

, the noise estimate N
m

σ2 used by MNDL and the new es-
timate proposed in this paper for both signals. The noise vari-
ance in this case is one. As the �gure shows, for block signal
with almost 70 nonzero coef�cients, for smaller values of m,
the noisy part coincides with N

m
σ2. However, for higher val-

ues of m, the new approximation from (17), performs better
than N

m
σ2. For noise variance larger than one, the similarity

between the true noise effect and the new approximation is
valid for larger values of m. As we increase m, the new esti-
mation outperforms the existing MNDL approach. For mish-
mash signal, with almost 1024 nonzero coef�cients and unit
noise variance, the true noisy part of reconstruction error is
very close to N

m
σ2. For this signal with smaller noise vari-

ances, since the noiseless signal coef�cients are larger than

that of noise, we sort the signal coef�cients rather than the
noise. Therefore, to estimate the noise effects, we do not use
the sorted noise and the noise estimate is the same as that of
the existing MNDL.
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Fig. 4. Desired unavailable reconstruction error zSm
and

its estimates using MNDL thresholding and existing MNDL
methods for block signal with noise variance σ2 = 3.

(1) (2) (3)

σ2 = 1 72 77 91
σ2 = 3 34 29 40
σ2 = 5 22 18 37

Table 1. Optimum order mopt for block signal with different
noise variances using (1) true zSm

; (2) estimate of zSm
with

the proposed MNDL thresholding; and (3) estimate of zSm

with existing MNDL subspace selection method.

The true zSm
, its estimates using existing MNDL, and

MNDL thresholding methods have been plotted in Figure 4.
In this simulation, the noise variance is 3. To have a better
comparison between these two methods, the optimum sub-
space order mopt from different approaches are provided in
Table 1 for different noise variances. This optimum order cor-
responds to an m that minimizes zSm

or its estimates. This
value directly provides the optimum threshold. A method that
itsmopt, and consequently, its threshold is closer to true zSm

’s
is a better method. Table 1 shows that mopt of MNDL thresh-
olding is closer to truemopt than that the existing MDL for all
levels of noise variance. In addition toMNDL,MNDL thresh-
olding has also been compared with other existing threshold-
ing methods VisuShrink and MDL thresholding. Table 2 pro-
vides the resulted thresholds of these methods. The MSE of
these methods are displayed in Table 3. As the table shows,
in the case of block signal with small nonzero coef�cients,
MNDL thresholding outperforms all the existing methods ex-
cept for unit noise variance. For this noise variance MNDL
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thresholding and MDL thresholding provide similar results.
However, for mishmash signal with large nonzero coef�cients,
when the level of noise is small, MNDL thresholding works
much better than existing methods.

(1) (2) (3) (4)

σ2 = 1 2.14 2.7 2.6 2.6
σ2 = 3 6.5 11 7.8 9.6
σ2 = 5 14 18.6 13 17.8

Table 2. Thresholds of different thresholding methods for
different noise variance levels:(1) existing MNDL; (2) Vis-
ushrink; (3) MDL thresholding; (4) proposed MNDL thresh-
olding .

Block (1) (2) (3) (4)

σ2 = 1 0.2 0.19 0.18 0.18
σ2 = 3 2.18 1.70 1.76 1.58
σ2 = 5 4.38 3.8 4.1 3.7

Mishmash

σ2 = 1 1.2 3.27 2.1 1
σ2 = 3 7.4 7.34 7.38 8.4
σ2 = 5 15 7.9 10.25 7.86

Table 3. Mean square error (MSE) of different threshold-
ing approaches for different noise variance levels: (1) existing
MNDL; (2) Visushrink; (3) MDL thresholding; (4) proposed
MNDL thresholding .

7. CONCLUSION

A new thresholding method based on MNDL basis selection
approach was proposed. MNDL is a new subspace selection
method that provides bounds on the desired reconstruction
mean square error (MSE) for subspaces of different order.
The approach uses the available data error to provide estimate
of the desired MSE for comparison of competing subspaces.
In this approach, the structures of the desired MSE and the
data error play important roles. These two quantities are sam-
ples of two random variables and the approach heavily relies
on the second order statistics of these two random variables.
In this paper, we developed MNDL thresholding by provid-
ing the exact required statistics for when MNDL is used for
thresholding. In this case, the subspace selection is based on
the observed data and unlike the exiting MNDL, the statistics
of the involved random variables are data dependent. We pro-
vided a new approach for calculation of the desired statistics
of MNDL in thresholding approach. We also compared the
proposed MNDL thresholding with the existing thresholding
methods. It was shown in the simulation results that the new

proposed method outperforms all the existing approaches. It
is important to mention that although the main focus of this
paper was on hard thresholding approaches, the fundamental
arguments in this paper can be generalized for soft threshold-
ing using MNDL and need to be developed in future research
studies.
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