
                                                                                        
 

  

Abstract—A FIR Filter design method and its respective tool 
using genetic algorithms were developed. The main feature of this 
method is to offer a transparent mode for the user who doesn’t 
know evolutionary computation, as well as its parameters. The 
user inputs the filter specifications and gets a sub-optimal result 
in an average number of four attempts. The sub-optimal criterion 
was based on the Rabiner, Parks and McClellan algorithm and 
the implemented software was built using the GALOPPS tool. 
 

Index Terms—FIR filter design, genetic algoritms, Galopps, 
Rabiner Parks and McClellan algorithm, Remez.  
 

I. INTRODUCTION 

The design of FIR (Finite Impulse Response) digital filters 
using techniques of DSP is an automatic procedure. There are 
computer programs like MATLAB and DSPLAY that offer 
this facility. Some of these techniques use methods like 
window, remez and frequency sampling. Details about these 
methods can be found in [1]. The only thing the user needs to 
concern is the the FIR filter specification which can involve 
some few additional parameters related to the method chosen. 

FIR filter design using GAs (genetic algorithms) has been 
studied at least for 16 years [2]. But choosing this way to get a 
digital filter, the user usually has to know a considerable 
number of additional parameters besides the FIR filter 
specifications.  They are the GA parameters. Some of them 
need to be adjusted at each new filter specification. Another 
feature of a method based on GAs is the stochastic behavior of 
this kind of application: the user previously needs to know that 
it can be necessary to run more than one execution to get an 
interesting solution. And this solution can be different at each 
time the application is run. These two features of a FIR filter 
design tool based on GAs tend to restrict it for people that 
have some knowledge of evolutionary computation. One 
illustration of a tool like this is presented in Fig. 1. The main 
contributions this work are two: a) the user doesn´t need to 
specify any GA parameter. All of them already fixed in 
optimal values or are self-adjustable; b) and the quality of the 

 
 

results, on an average number of four attempts are sub-
optimal. Some of these results can be used in hard FIR filter 
specifications in a better condition than the specialist methods. 
A sub-optimal pattern was created and the reference for this 
was the Parks-McClellan method, implemented in MATLAB 
through the remez command [3]. 

  
 
 
 
 
 
 
 
 

Figure 1: One model of a GA FIR filter design tool. 
 

II. FIR FILTER DESIGN 
 Details about the topics covered by this section can be 
found in [1]. A FIR digital filter frequency response can be 
calculated from: 
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In eq. (1): H(k) is the Discrete Fourier Transform complex 

vector. This is the FIR digital filter frequency response; N is 
the number of collected points during the sampling process; k 
is an index varying from zero to N-1; h(n) is the FIR filter 
response vector to the unit impulse. This vector corresponds to 
the FIR filter coefficients; and M is the number of the FIR 
filter coefficients. 

A digital filter gives a realizable version of a desired 
frequency response that was specified as part of the filter 
specifications. This happens because an ideal digital filter 
response is unrealizable. 

To express H(k) as a function of the normalized frequency, 
it can be used [1]: 
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In eq. (2), f is the normalized frequency ranging from 0.0 to 

1.0 cicles/sample. 
 Depending on the number of coefficients and the simmetry 
of h(n), the FIR filters can be classified in four categories 
(types I to IV), three of them requiring some restrictions to 
give a specific frequency response. This work covers the four 
categories. 
 The complex vector H(k) is more useful when viewed as 
separated in magnitude and phase frequency responses. There 
is a symmetry in the FIR filters coefficients that guarantees a 
linear phase frequency response. So, a FIR filter specification 
is often expressed only bit its magnitude frequency response. 
One set of FIR filter parameters often used in a specification is 
presented in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

Figure 2: One set of FIR filter parameters. 
 

The description of these parameters are: a) δ1, δ2: Maximum 
ripple allowed for bands #1 and #2, respectively; b) ∆fp, ∆fr: 
bandwidth of bands #1 and #2, respectively; c) ∆ft: transition 
bandwidth between bands. 

There are also other specification parameters needed which 
were not presented in Fig. 2. They are the amplitude leves of 
bands #1 and #2, A1 and A2, respectively, and the number of 
FIR filter coefficients, M. In this work, a third band was used 
to provide passband and stopband filters. Returning to Fig. 1, 
these parameters are the FIR specifications. 

FIR filters are Linear and Time Invariant systems. So, the 
filtering process can be made trough the convolution of the 
FIR filter coefficients h(n) and the signal x(n) to be filtered: 
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In eq. (3): y(n) is the filtered signal; h(n) is the FIR filter 

unit response; x(n) is the signal to be filtered; * is the 

convolution operator symbol; U is a number which is the sum 
of the number of samples founded in h(n) and in x(n); and n 
varies from zero to U-1. 

It is possible to get from eq. (3) the following conclusion: 
the larger number of h(n) coefficients (M), the more precise 
will be the filtering process. Larger values of M offer a better 
quality of filtering. Better here can be understood as a FIR 
filter frequency response with a minimum transition width and 
a minimum value of ripple. But also through eq. (3), it is 
possible to conclude that for a same signal x(n) to be filtered, 
the number of products between x(n) and h(n) is regulated by 
the number of FIR filter coefficients, M. But larger values of 
M cause larger delays during the filtering process. This can be 
unacceptable in some real-time applications. 

One of the main advantages of the Parks-McClellan method 
is the possibility of previously calculate the value of M that 
will satisfy a FIR filter specification, which will here be called 
the recommended M, or Mrec. This is done through empirical 
formulas. Smaller values for δ1, δ2 or ∆ft, will require a larger 
value for Mrec. 
 This work also tries to enforce the following area of study: 
the fetch for an acceptable FIR filter response in terms of 
quality with a minimum value of FIR filter coefficients. 
 

III. GENETIC ALGORITHMS AND THE PROPOSED MODELING 
 
 Details about the topics covered in this section can be found 
in [4]. 

A GA is based on a sequence of actions that, among others, 
can be represented by Fig. 3. A brief description of these 
actions with the model adopted by this work is: 

a) a possible numerical solution of the problem is codified 
as an individual. Such representation usually adopts symbols 
to codify the numerical solution. The vector of the individual 
corresponds to a chromosome. In this work, an individual is 
the h(n) vector represented by the binary alphabet either in 
Gray or binary positional. As a chromosome, h(n) is yet 
represented by a bit string of integers. The integer to decimal 
decodification is made by portions of 11 bits. Each portion 
gives a 10-3 precision number ranging from –1.0 to 1.0, which 
is one FIR filter coefficient; 

b) a set of individuals is generated at random. This set is 
called population and corresponds to the step 1 in Fig. 3. It is 
called the search space, S, that corresponds to all possible 
solutions that can be formed with the chosen alphabet. In this 
work, the search space is variable with the number of FIR filter 
coefficients according to: 
 

lS 2=                               (4) 
In eq. (4): S is the search space; and l is the size in bits of 

the chromosome. l depends of M and only one half of the 
coefficients must be codified in the chromosome because of 
the FIR filter symmetry proprierty. For example, for M=14, 
only the first seven coefficients must be codified. In this way, l 
= 7 × 11 = 77. So, S = 277 = 151.1 × 1021; 
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Figure 3: A GA basic flow. 
 

 c) this population is submitted to an evaluation. Each 
individual is tested according to how good it is as an optimal 
or sub-optimal numerical solution for the proposed problem. 
In this way, each individual receives a score. This evaluation is 
called fitness. In this work, the fitness function chosen is: 
 

�
−

= �
�
��

�
� −

=
1

0 2
)()(

1N

i
ifiHifdH

fitness             (5) 

 
In eq. (5): fitness is the fitness function; |Hd(f)| is the desired 

(given by user specification) magnitude frequency response; 
and |Hi(f)| is the magnitude frequency response from each 
individual.  |Hi(f)| is calculated through Eq. (1), because an 
individual corresponds to one vector h(n). This fitness 
function numerically indicates how close an answer from an 
individual is from the desired answer. This happens in step one 
of Fig. 3 in the first time; 
 d) it is applied in this evaluated population some mechanism 
of selection. This is an attempt to exclude from the next steps 
individuals with low values of fitness. In this work it was used 
the following selection processes: Roullete Wheel, Stochastic 
Tournament, and the Stochastic Universal Sampling. This 
happens in step two of Fig. 3; 
 e) the next step, with the selected population, is a 
recombination mechanism called crossover. A crossover 
consists basically of changes in portions of the chromosome 
between two individuals. The crossover is applied in this 
selected population with a probability pcross between 0.0 to 
1.0. In this work the following crossover techniques were 
used: one  point and two point crossover. This happens in step 
three of Fig. 3; 
 f) after this, another operation in the chromosomes is 
applied. It is the mutation, that consists basically of a change 
in one or more bits in an individual at random. This operation 
is applied with a probability pmutation also ranging from 0.0 
to 1.0. In this work the following mutation operations were 

used: single bit mutation and multiple field mutation. This is 
step four in Fig. 3; 
 g) this new population is evaluated as the same way as made 
in the step described in item c. This happens in step five of 
Fig. 3; 
 h) it is called generation the steps covered by items d to g 
inclusive. Every time a generation is concluded, a finishing 
condition is tested to end the GA execution. In this work the 
finishing condition is a maximum generation number. This is 
step six in Fig. 3; 
 i) if the finishing condition is not true, there is a return to the 
step that corresponds to item d and a new generation cycle is 
executed. This happens in the decision structure 6 in Fig. 3; 

j) if the finishing condition is true, the last population is 
obtained and the individual with the highest value of fitness in 
this population is the best solution the GA can give. In this 
case, it will be the best h(n) founded. 

Returning to Fig 1, these parameters are the ones 
automatically set by the tool, called GA parameters. 
 

IV. FIR FILTER DESIGN WITH GENETIC ALGORITHMS 
 
 Counting from [2] until these days, more than one hundred 
FIR Filter Design methods using GAs are already published, 
e.g., [5], [6], and [7]. In these works, the prior goal was not the 
fetch for a method or software based on GAs for give FIR 
filter coefficients without the need to adjust evolutionary 
parameters at each new specification and with a predetermined 
number of mean trials to get an acceptable answer. 
 Two related works were found. The first is a MATLAB 
toolbox [6]. Some differences between that tool and this work 
are: a) in that tool the GA parameters are configurable, that is, 
the user must know GAs. In this work this kind of knowledge 
is not necessary; b) The platform: to run that application, it is 
necessary to have MATLAB. In this work, the final version of 
the tool runs over Windows directly. The second work, also a 
MATLAB toolbox, is a tool called CSDFIR [7]. The final 
version of this tool is automatic, but today it owned by a 
private company. 
 

V. METHODOLOGY 
 
 To achieve the proposed goals, the following strategy was 
taken:  a) two sub-optimal conditions related to a well know 
specialist method were specified; b) and a bank of FIR filter 
frequency response specifications was specified. These filter 
specifications tried to cover all the possible kinds of hard and 
easy to solve FIR filters. All of them were specified with 0.0 or 
1.0 amplitudes. Arbitrary levels were not proposed because the 
size of the filter bank would grow considerably.  
 With the conditions and the filter bank, a three-phase group 
of tests was proposed: a) Phase 1:  the filter bank was tested 
with a fixed number of coefficients, from types I to IV. Several 
possibilities of combinations with GA parameters were tested 
in this phase considering the chromosome binary 
representation, selection process, crossover operator, mutation 
operator, probabilities of mutation and crossover, and a 
auxiliary technique of selection called elitism[4]. A score 
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based on the quality of the results for each configuration was 
proposed. If the GA with the specific configuration passed 
(presented at least one acceptable result in an average number 
of four trials) to all the filters of the bank, it received a score 
based on the quality of the results. If the configuration didn´t 
pass through all the proposed filters, its score was zero; b) 
Phase 2: with the best score-approved configurations of Phase 
1, the same filter bank was tested, but with a variable number 
of coefficients, to check if the GA with those configuration 
parameters is robust to support different search spaces. The 
GA parameters to be changed in this phase were the 
population size and the maximum number of generations; c) 
and Phase 3: with the most robust version of GA approved 
with a specific configuration of Phase 2, several FIR filter 
specifications, different from the ones present in the filter bank 
were tested, e.g, with variable amplitudes and variable number 
of FIR filter coefficients. Also in this phase, the LTI 
superposition propriety was tested for hard to solve variable 
ampltude filters or filters that could not be solved when 
specified directly. 
 During phase two and three, it was looked for some pattern 
behavior in some GA parameters with the variation of the FIR 
filter coefficients. This was done as an attempt to find some 
mathematical relationship between the number of coefficients 
and them. 
 The limitations of the proposed method and GA modeling 
were: a) do not cover more than three amplitude levels 
between 0.0 and 0.5 cycles/sample; b) do not cover any 
frequency range smaller than 0.01 cycles/sample; c) do not 
cover all the possibilities of arbitrary level response 
frequencies; d) and depending of the number of coefficients 
(which determine the search space), the execution cannot be 
processed in usual machines because of the processing time. 

With this strategy the expectation was to find a 
configuration that covered the requisites of any FIR filter 
specification, through tests. 
 

A. First and Second Sub-optimal Conditions 
 To make the quality response comparisons, it was chosen 

the MATLAB implemented version of the Parks-McClellan 
method, with equal weights for pass and reject bands. A FIR 
filter frequency response given by the GA that is considered 
accepted must satisfy two conditions. 

The condition here called the First Sub-optimal Condition, 
FSC is: 
 

5)2/log(20)2/log(20 ≤+×−+× iRiAiAGiA δδ     (6) 

 
In eq. (6): δiAG are the GA ripples of bands #1, #2, #3; δiR 

are the Parks-McClellan ripples of bands #1, #2, #3; and Ai are 
the amplitude specifications of bands #1, #2, #3. 
 And the Second Sub-optimal Condition, SSC, is: 
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In eq. (7): fiAG are the GA transition frequency edges 
between the bands; fiR are the Parks-McClellan transition 
frequencies edges between the bands. 
 

B. The FIR Filter Bank 
Some FIR filter specifications of the filter bank are 

presented in Table I. 
TABLE I 

SOME FIR FILTER SPECIFICATIONS 
# f12 f21 f22 f31 A1 A2 A3 
1 0.35 0.42 0.45 0.45 1 0 0 
5 0.15 0.19 0.30 0.30 1 0 0 
7 0.04 0.04 0.05 0.12 0 0 1 
8 0.35 0.35 0.40 0.47 0 0 1 

10 0.40 0.40 0.44 0.47 0 0 1 
12 0.05 0.11 0.39 0.45 0 1 0 
16 0.05 0.10 0.40 0.45 1 0 1 
18 0.15 0.16 0.44 0.45 1 0 1 

 
 For all filter specifications: f11 = 0.0 and f32 = 0.5 
cicles/sample. 
 The differences between this work and a previous one 
described in [8] are: a) in that work, the probabilities of 
crossover and mutation were considered fixed. In this one, 
these values are considered in the first phase; b) In that work, 
the number of attempts were fixed in four. If a configuration 
failed, it received a zero degree. In this work it was used an 
average number of four attempts. The zero degree is set only if 
a configuration exceeds eight attempts for one FIR filter 
specification of the filter bank. With this change the method 
became automatic. 

Details about the software can be found in [9]. 
 

VI. RESULTS 
 
 Table II presents some GA parameters configurations scores 
in Phase 1. It was used a population size of 160 individuals, a 
number of FIR filter coefficients M of 15 and 16 and the 
computer used was a Pentium notebook, 1.7 GHz with 512 Mb 
of RAM. It can be seen in configuration #2 of Table II, that the 
canonic version of the model could not satisfy the proposed 
goals, requiring more advanced GA configurations. 

The convensions for Table II are: type = filter type, 
selection = selection process, maxgen = max generation 
number, crossover = crossover operator, mutation = mutation 
operator, bin rep = binary representation, tAG = time spent, 
suselect = Stochastic Universal Sampling process, rselect = 
Roullete Whell process, tselect = tournament process, twoptx 
= 2-point crossover, oneptx = one-point crossover, bitmutat = 
single bit mutation operator, multmut = multiple field mutation 
operator, Gray = Binary Gray representation, Pos = Binary 
positional representation, pcross/pmut = probabilities of 
crossover/mutation. 
  It was observed that the elitism was always present with 
the configuration that passed through the filter bank. The 
binary Gray codification offered more resolution than the 
conventional binary positional codification. This was 
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expected, because in Gray codification only one bit can change 
from one number and its next. The Stochastic Tournament 
selection process did not pass in Phase 1, but it presented very 
interesting results (more successful results than the Roullete 
Wheel selection process). The Stochastic Universal Sampling 
selection method presented the following useful behavior: at 
each attempt, one different sub-optimal result was obtained. 
Comparing it to the Stochastic Tournament, this one presented 
always the same sub-optimal result for different attempts. 
 

TABLE II 
SOME GA CONFIGURATION SCORES FOR PHASE 1 

config #. 1 2 3 4 
type I I I I 

selection suselect rselect tselect/4 tselect/4 

maxgen 500 500 500 500 

cross twoptx oneptx twoptx oneptx 

pcross 0.85 0.90 0.85 0.90 

mutation bitmutat multimu
t 

multimu
t bitmutat 

pmut 0.10 0.01 0.01 0.10 
bin rep Gray Pos Pos Gray 
elitism Yes Yes No Yes 

tAG 11 s 11 s 11 s 11 s 
score 5.00 0.00 0.00 0.00 

     
config. # 5 6 7 8 

type II II III IV 
selection suselect suselect suselect suselect 

maxgen 500 1000 500 500 

cross twoptx twoptx twoptx twoptx 

pcross 0.85 0.85 0.85 0.85 
mutation bitmutat bitmutat bitmutat bitmutat 

pmut 0.10 0.10 0.10 0.10 
bin rep Gray Gray Gray Gray 
elitism Yes Yes Yes Yes 

tAG 11 s 11 s 11 s 11 s 
score 0.00 5.00 7.81 5.42 

 
 A GA FIR filter magnitude frequency response in dB that 
does not satisfy Eq. (6), the FSC, is presented in Fig. 4. An 
example of a FIR filter magnitude frequency response in dB 
that does not satisfy Eq. (7), the SSC, is presented in Fig. 5. 
Figure 6 presents one result that satisfies both FSC and SSC. 
 Fig. 7 is a result that demonstrates the aplicability of this 
method for a hard FIR filter specification. M in this figure is 
15. The calculated value for Mrec that must be used in the 
Parks-McClellan method to satisfy this FIR filter specification 
is 103. 
 Observing the scores presented in Table II, one GA 
parameters configuration mantained its stability. It was the one 
presented in configurations #1, #6, #7, and #8, except for the 
maximum number of generations. This GA parameters 
configuration was the one used in Phase 2. 
 On Phase 2, only population size and maximum number of 
generations were changed. The GA parameters configuration 
mantained its stability of results, i.e., compliant with Eq. (6) 
and Eq. (7), for several values of M (several search spaces). 

One example: population size = 2310, and maximum number 
of generations = 1500 for a number of coefficients (M)  = 20. 
 In Phase 3, for hard to solve and arbitrary levels 
specifications, the LTI superposition principle was also valid. 
Among other tests, this was verified in Phase 3. The GA FIR 
filter frequency response presented in Fig. 8 was obtained 
directly as well as trhough the sum of a low-pass and a high-
pass FIR filter specification. 

The final fixed GA parameters configuration obtained was: 
binary representation = Gray, fitness function = Eq. (5), 
selection = Stochastic Universal Sampling, crossover = two-
point crossover, mutation = single bit mutation, elitism = yes, 
probability of crossover = 0.85, and probability of mutation = 
0.10. For all the filter specifications of the filter bank proposed 
and for more than fifty others, this GA did run on in an 
average number of four times to satisfy the conditions 
specified in Eq. (6) and Eq. (7). Returning to Fig. 1, these were 
the GA parameters fixed in the tool. 

It was possible to stablish, together with prior tests [9], the 
following relationships: 
 

88.3160 −×= Lposize       (8) 

8,50)8(1000 ≥×−+= LLmaxgen
  

(9) 
 
 In equations (8) and (9): popsize is the population size; L = 
M/2 for M even and (M+1)/2 for M odd, maxgen is the 
maximum number of generations. Returning to Fig. 1, these 
equations were used in the GA parameters to adapt the GA 
tool to receceive a variable FIR filter specification with a 
variable number of coefficients M. 
 

VII. CONCLUSIONS 
 

A GA method and its repective tool with predefined GA 
parameters was obtained to solve variable coefficients, 
variable filter type, and fixed in zero or one amplitude FIR 
digital filter specifications. Future research will be the 
development of a tool with a more user friendly interface and 
the automatic FIR filter design with coefficients expressed in 
powers-of-two samples. 
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Figure 4: GA filter response that does not satisfy the FSC. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: GA filter response that does not satisfy the SSC. 
 
 
 
 
 
 
 

 
 
 

 
 

 
 
 

 
 

 
 
 
 
 

Figure 6: One result that satisfy the FSC and the SSC. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 7: One hard FIR filter specification (M < Mrec). 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Arbitrary level filter response obtained in Phase 3. 
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