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Abstract—Creating a computational metric of the
quality and musicality of a computer generated music
composition is a challenging problem. This paper
describes a possible way to develop numerically based
metrics for standardizing the fitness evaluation of a
population of computer generated music compositions.
These metrics are based on assertions by music theorists
about the dynamic forces within music that provides the
music with a sense of motion and phrasing. The actions of
several musical parameters are ranked according to the
sense of intensity they produce. This process is applied to
an acoustic music composition, and the values are then
plotted on a graph. The composite curve from these values
give the evaluator a sense of the patterns of lower and
higher degrees of intensity, thus providing a sense of how
well the music provides a sense of motion and phrasing.

I. INTRODUCTION

Creating a computational metric to evaluate the quality and

musicality of a population of music compositions generated

by a computer algorithm is a challenging problem. Without a

computational metric of musicality, a human listening to each

music composition must perform each fitness evaluation. This

is demonstrated in a recent work by the author in which a

human-in-the-loop evolutionary algorithm evolves a

population of musical compositions. In this algorithm each

composition is created from a numerical data input is

interpreted using a Circular L-system interpreter [1]. Currently

the fitness function for the evolutionary process for this

system is the intuition of the human evaluator. Relying on

intuition is problematic because the evaluation is potentially

inconsistent, and it cannot be mechanized in any way.

This paper describes a possible way to develop numerically

based metrics for standardizing the fitness evaluation of a

population of music compositions created by a computer

algorithm. These metrics are based on the assertions of several

highly regarded music theorists about the dynamic forces

within music that provide a sense of motion that is shaped into

both small and large gestures or phrases. Aside from some of

the more experimental music in recent decades, listeners tend

to expect music to provide a sense of phrasing, that is, a sense

of growth and decline that can be felt as building tension and

subsequent release of that tension. This emotional response is

the result of a process that often involves a sense of changing

degree of intensity over time. After establishing how music can

provide a sense of phrasing, this discussion moves to how the

actions of several musical parameters can be ranked according

to greater or lesser degrees of intensity that these actions

produce. After determining the numeric values for several

musical parameters of a piece, these values can then be plotted

onto a graph. After plotting a composite from the average of

the individual curves, a fitness function of an idealized

composite curve can be used to evaluate this particular

composite curve. Currently, this work has progressed to the

point of plotting lines of differing degrees of intensity for

individual parameters and a composite curve. Section 4,

“Application to an Acoustic Piece of Music” describes the

process of applying the metrics currently developed to the

“Invention” movement from George Perle’s Wind Quintet No.

4 (1984).

II. PREVIOUS EFFORTS

In the past twenty or so years, composers have

developed computer programs that automatically produce

music compositions that fit within a certain style. An early

example of this tendency is the use by [2] of “predicate

calculus in 1987 to develop more than 350 rules of voice-

leading for creating chorales in the style of J. S. Bach” [3].

More recently, [4] used neural nets to incorporate

Renaissance and Baroque style characteristics. According to

[3], the neural network learns from examples of music

“through a process called backpropagation.” David Cope’s

program “Experiments in Musical Intelligence” has

introduced “association nets . . . for inductive learning.

“Association nets” differ from neural nets in their use of

“unlimited number of interconnected nodes”. In addition,

although they can “chain backward as well as forward, they

do not backpropagate; thus, they do not need the same type

of training as neural nets. Furthermore, “association nets do

not have hidden units, as do neural nets, The nodes in

association nets can be accessed at an time, revealing all of

their explicit and implicit associations” [3].

Others have used evolutionary processes to improve

computer-generated music. An early example, “GenJam,” is a
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genetic algorithm-based model of a novice jazz musician

learning to improvise. This program uses a neural network to

augment its human fitness function [5]. Bill Manaris and

several others have done extensive research in this area.

Recently they have developed a set of metrics using Zipf’s

Law to “classify music according to pleasantness as reported

by human subjects” [6]. This work is further described in [7].

III. MUSICAL DYNAMICS FOR PROVIDING A SENSE OF

PHRASING

Rather than judging music by its “pleasantness” or how
well it fits a given repertoire, this paper proposes measuring
the sense of motion to and from a sense of stability in

computer generated music compositions. Much of the

background for the ensuing examination of the musical

dynamics that lead to a sense of motion is based on [8]. A

sense of musical motion “largely, although not exclusively,

depends on change within one or more element-successions”.

“Element-successions” is defined as a succession or series of

one or more musical elements such as harmony, texture, or

timbre. Additionally, according to [8], the usual state of

motion in music “is one of directed activity—courses of

change—in lines of growth or decline at various levels”. Berry

explains that growth entails “increasing intensity” or

“progression,” whereas decline involves “subsiding intensity”

or “recession.” Moreover, [8] considers the possibility of

stasis, a chain of events that do not change in intensity. These

modes of musical motion depend on varying degrees of

intensity created by the actions of a number of musical factors

under several main categories called “elements.” These

elements include tonality, melody, timbre, texture, and rhythm

[8]. These musical elements act individually and in

combination to create lines of increasing and decreasing

intensity.

The goal of this directed motion, according to a number of

other theorists is that of movement away from and toward a

stable base. For instance, in a discussion about structural

downbeats within a tonal context, [9] asserts “passage from a

stable base, or from instability toward a base of

stability/repose, is the essence of musical motion.” Ref. [10]

as well incorporates the notion of goal-oriented musical

motion toward stability in explaining that the human mind

naturally searches for “stable shapes” or the completion of

patterns. For example, after hearing a melodic leap, [10]

asserts the listener “wants” to hear the gap filled in.

Additionally, [10] contends that stability can only occur in a

context of change, explaining that repetitious events or

patterns with only uniform changes “establish no points of

relative stability and closure.” Often pitch elements such as

harmony and melody are considered for creating a sense of

musical motion toward and away from a sense of stability.

However, other parameters can create this sense as well.

Indeed, [8] observes that along with other musical processes,

the use of rhythm plays a key role in the expression of stability

and flux: “Rhythm too undergoes changes with functional

consequences for music’s intensity scale, playing an essential

and telling role in the delineation of processes of growth and

decline, climax and subsidence, stability and flux.”

IV. SHAPING INCREASING AND DECREASING LINES OF

INTENSITY IN SEVERAL MUSICAL PARAMETERS

Motion in music is a felt response in the listener involving

lines of increasing and decreasing intensity. When intensity

increases, one senses that the music is progressive; that is, it

seems to grow in emotional fervor. When intensity decreases,

one senses decline or recession; in other words, the music

seems to become more stable or nearer resolution. These

responses are brought about by the use of certain

compositional techniques within various musical factors.

Outlining the tendencies of the actions of various musical

parameters toward increasing or decreasing intensity is a first

step toward establishing numeric values to plot on a graph.

Thus, this is also a first step toward developing a fitness

function based on the shape of a composite curve of the

intensity curves for the individuals from a population of

computer generated music compositions. Table 1 summarizes

the intensifying effects of the musical parameters involved in

this study, including timbre, rhythm, and texture. Under

“timbre” Table 1 shows that intensity tends to increase with a

greater degree of loudness and a higher register. Although

these two assumptions are intuitive, they do have a physical

basis. In [11] it is pointed out that greater degrees of loudness

involve increasing sound pressure level. Concerning register,

[10] asserts, “because they require special effort and control,

we are particularly sensitive to the covert tension of high,

cantabile tones.” Indeed, studies have shown that listeners

TABLE 1
TENDENCIES TOWARD GREATER AND LESSER DEGREES OF INTENSITY

Timbre Greater intensity Lesser intensity

Dynamics Louder Softer

Register Higher Lower

Texture More complex Less complex

Density-number More components sounding concurrently Less components sounding concurrently

Texture-space Greater musical space between lowest and

highest pitches

Less musical space

Rhythmic interaction Diverse Similar Same

Rhythm Faster rate Slower rate

Attack frequency (density) More frequent Less frequent
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associate higher register with increased physical effort. Ref.

[12] cites an experimental study in [13] that backs up this

assertion by showing that the subjects associated a “greater

degree of muscular or sensory tension” with higher pitches

[12]. Performers also experience this phenomenon. For

example, there is a large degree of muscular tension involved

in producing the highly focused flute embouchure to produce

high notes.

Under “Texture” in Table 1, “Density-number” refers to the

number of simultaneously sounding instruments or voices. As

shown in Table 1, there tends to be increased intensity as the

number of components rises because of the resulting thicker

texture. Table 1 also summarizes tendencies for increasing or

decreasing intensity with texture space (interval between the

highest and lowest pitches sounding at the same time). In

support of this notion, Ref. [14] cites studies in [15] and [16]

that show “well-spaced frequencies” sound louder than

frequencies that are next to each other. Table 1 shows that

musical events that come at a faster rate tends toward greater

intensity than those that come at a slower rate. Quicker rates of

change tend to increase intensity by bringing about a sense of

agitation and movement. Attack frequency in Table 1 refers to

the number of notes being articulated within a given amount of

time. Attacks that are more frequent generally create greater

intensity than less frequent attacks because musical events

arrive at a faster rate, thus providing a sense of greater growth

and excitement. Ref. [9] provides an example of this

phenomenon when he observe that Brahms’s music often

increases the “density of events” (by increasing the number of

notes per beat) to create “a sense of accelerando” or speeding

up without changing the duration of the beat. Decreasing the

density of events has the same result as a ritardando or slowing

down.

V. PROPOSED NUMERICAL METRICS

Assigning numeric values to an intensity scale for each of

the various musical parameters discussed above enables easy

comparison between them and provides a means to measure

the composite effect of all of the musical parameters

combined. This information has the potential to facilitate the

development of a standardized fitness function to evolve a

population of music compositions created by a computer

algorithm. Placing the results in a graph can enable easy

comparison between the compositions. Graphs highlight

processes within individual musical factors and facilitate

comparison between them. For example, it is quicker and

easier to interpret a rising line as a crescendo than to have to

interpret a series of symbols (p, mp, mf, f etc.) to achieve the

same cognitive result. Additionally, graphs show the wave-

like structures created by differing degrees of intensity, vividly

showing patterns of musical growth, decline, and stasis. A

Fig. 1. Intensity curves for mm. 1-10 of George Perle’s “Invention.”
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Fig. 3. Score for mm. 4-10 of George Perle’s “Invention.”

fitness function could then be developed to evaluate the shape

of these curves.

VI. APPLICATION TO AN ACOUSTIC PIECE OF MUSIC

To demonstrate the process, I have created a graph using

the above metrics using data points from mm. 1-10 of George

Perle’s “Invention” from his Wind Quintet No. 4. Fig. 1

contains the graph for mm. 1-10, and Fig. 2 and 3 contains the

score. From the score of the entire movement, I extracted

quantitative data to construct intensity curves for dynamics,

pitch height, (textural) space, attackdens (frequency of attack),

density, and layers (rhythmic interaction between lines). To

construct this graph, I normalized each component so that all

the intensity data points range from zero to ten in order to

facilitate the examination of fundamental trends and the

comparison between factors. I then assigned one data point for

each quarter note beat of mm. 1-10 of Perle’s Invention.

Additionally, I constructed a composite intensity curve to

show the composite effect of the individual curves. To

construct the composite curve, I added the data from each

individual curve for each quarter-note duration and divided the

result by five, the number of individual curves. To normalize

the values for the individual intensity curves, I divided each

data point by the difference between the highest and lowest

data points within the entire movement for each intensity

curve and then multiplied by ten. For example, the data for

dynamics represents pianissimo (very soft) through a triple

forte (extremely loud) (pp = 1, p = 2, mp = 3, mf = 4, f = 5, ff

= 6, and fff = 7). To obtain each normalized data point

dynamicsn for the dynamics intensity curve, I used the

following equation for each “real” data point dynamicsr:

dynamicsn = (dynamicsr / 7) * 10. (1)

To determine the normalized data points for the height

intensity curve, I first determined the lowest and highest

points of the upper voice in the movement—an F3 in m. 76 (7

semitones below middle C) and a B6 in m. 57 (35 semitones

above middle C). Then I added 7 to each data point to start all

the numbers at zero and then divided each by 42, the highest

pitch plus 7. Then I multiplied each point by 10. The

following equation summarizes this operation (heightn
represents each normalized data point for the height intensity

curve, and heightr represents each “real” data point):

heightn = ((heightr + 7) / 42) * 10. (2)

To calculate each normalized data point for the space

intensity curve, I first determined that the highest number of

semitones between the highest and lowest pitches in a given

moment is 40 in m. 33. At this moment, the flute plays an E-

flat6 and the horn plays a B2. Then to obtain each normalized

data point spacen for the space intensity curve, I used the

following equation for each “real” data point spacer:

Fig. 2. Score for mm. 1-3 of George Perle‘s “Invention.”

TABLE 2
NUMERICAL VALUES FOR THE INTERSITY CURVE “ATTACKDENS”

x 96 e 48 q 24 h. 9

3 : 2 e 64 3 : 2 q 32 h 12
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spacen = (spacer / 40) * 10. (3)

For this movement, each data point for “attackdens” represents

a quarter note at the tempo =132. I used the numerical values

for the note values shown in Table 2.

To obtain each normalized data point attackdensn for the

attackdens intensity curve, I used the following equation for

each “real” data point attackdensr:

attackdensn = (atackdensr / 96) * 10. (4)

The highest number of rhythmically differentiated melodic

lines in this movement is four. To obtain each normalized data

point layersn for the layers intensity curve, I used the

following equation for each “real” data point layersr:

layersn = (layersr / 4 )* 10. (5)

The highest number of voices playing at one time is five.

To obtain each normalized data point densityn for the density

intensity curve, I used the following equation for each “real”

data point densityr:

densityn = (densityr / 5) * 10. (6)

The composite intensity curve in the opening seven

measures before the rest shown by a space in the graph,

features a series of deep fluctuations in mm. 2-3 and more

broad, shallower oscillations in mm. 3-6. In the second large

musical gesture, after the rest, the composite curve shows an

introductory brief shallow curve followed by two well-

developed curves.

In the opening small gesture in mm. 1-2 (delineated by a

dotted line in the highest set of brackets beneath the intensity

curves), the composite intensity begins with a large rise from

3.3 to 5.5. Large ascents in the height, space, and density

intensity curves account for this rise. The height intensity

curve rises significantly from 1.5 to 7.8, reflecting a greater

than two octave ascent from B3 in the opening clarinet motive

to a C-sharp 6 at the end of the rising flute gesture in m. 2. The

space intensity curve begins at intensity level 0, representing

the opening lone clarinet motive. This curve quickly rises to

6.3 by the downbeat of m. 2 due to the increasing space

between the bassoon and the upper voice (the oboe followed

by the flute). The intensity curve for density depicts a rise in

intensity levels from 2 to 10, reflecting the consecutive

entrances of all instruments in the quintet.

The other intensity curves—dynamics, layers, and

attackdens—are more independent in mm. 1-2. The dynamics

intensity curve remains at 4.3 through m. 1, representing a

mezzo piano, and then drops to a 2.9 on the downbeat of m. 2,

representing a piano in all sounding voices. This curve then

returns to 4.3 on the third beat, representing a small crescendo

in all the parts. This crescendo contributes to the general rise

in intensity in m. 2. The intensity curve for layers rises from 2

to 4 in m. 1 because the oboe and bassoon enter with

contrasting rhythms. In m. 2 this curve moves back down to 2

because all sounding voices (oboe and bassoon plus the

entering flute and clarinet) articulate the same rhythm, a series

of staccato eighth notes. The attackdens intensity curve swings

between 10 and 5 in this initial gesture, reflecting a mixture of

sixteenth and eighth notes.

The following small gesture in mm. 2-4 begins with widely

fluctuating intensity levels that subsequently stabilize. In mm.

2-3 the individual intensity curves for height, space, and

density feature deep fluctuations. “Height” quickly fluctuates

between low points 3.2 and 2.9 and high points at 8. The lower

points of this wide fluctuating curve represent an F-sharp4 and

F4 in the lone horn and the high points stand for a D6 in the

flute. The space and density intensity curves also include wide

fluctuations because only one instrument plays during the low

moments and the full quintet enters with the high flute. On the

third beat of m. 3, the composite intensity curve begins a

narrower range of oscillations that are more spread out. Less

dramatic movement in the height intensity curve and the near

constant level of the density intensity curve explain this

difference. The highest sounding voice—the flute—stays

within an octave, rising from C6 to F6 in m. 4, shown by the

height intensity level ascending from 7.6 to 9.3. On the fourth

beat of m. 3, the intensity curve for density drops from 10 to a

sustained level 8 because the horn withdraws and the rest of

the quintet continues to play.

In mm. 5-6, the composite intensity curve outlines two

smaller gestures (one in m. 5 and one in m. 6) that are also

delineated by the top brackets in Fig. 1. The individual

intensity curves for height and layers have the same pattern as

the composite intensity curve in both these gestures. For the

small gesture in m. 5, “attackdens” also has the same shape,

and in m. 6, the space intensity curve possesses the same

shape as the composite intensity curve. The intensity curve for

dynamics and density do not change in mm. 5-6, but the

instrumentation does change slightly. The bassoon rests and

the horn comes in.

The composite intensity curve shows that the second

phrasal gesture in mm. 7-10 has a more defined shape than the

first in mm. 1-6. After the opening quick ascent and descent, it

outlines two smaller gestures (one in mm. 7-9 and one in mm.

9-10) delineated by the upper divided bracket under the

intensity curves in Fig. 1. For the first of these smaller

gestures, the composite intensity curve shows a consolidated

ascent to 6.2 on the downbeat of m. 8 and then slowly

descends to 4.4 for the fifth beat of m. 9. Longer note values

and a simpler texture provide the ending of this gesture with a

partial sense of stability.

The closing gesture, beginning on the fourth beat of m. 9,

is quick, straightforward, and emphatic. The composite

intensity curve begins this gesture at 4.4 and rises to 7.2 on the

fourth beat of m. 10, the highest level of intensity thus far in

the movement. This curve then ends with a quick descent to

3.6 on the fifth beat of m. 10. The intensity curves for layers

and density have a similar contour as the composite curve, and

both the space and attackdens intensity curves ascend and

descend twice during this final gesture. The layers intensity

curve rises from 2 to 6 on the third beat of m. 10, depicting an
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increase in rhythmic complexity. Intensity levels decrease

through beats 4 and 5 as rhythmic diversity decreases. (All

sounding voices except the flute play two eighth notes on beat

4, and only the flute plays on beat 5.) The intensity curve for

density rises from 4 to 10 from the fifth beat of m. 9 to the

fourth beat of m. 10 as more voices enter in. This curve drops

significantly on the fifth beat of m. 10 where the flute is the

only remaining voice. Unlike the other intensity curves,

dynamics and height ascend throughout this final gesture. The

dynamics intensity curve remains at 7.1 until the third beat of

m. 10 where it rises to 10, representing a triple fortissimo

(extremely loud) in the flute and sforzando fortissimos

(suddenly loud) in the clarinet and bassoon. The height

intensity curve shows a continuous rise from 0.5 (representing

the G3 beginning this final gesture in the clarinet) to a 5.9

(standing for the F4 in the flute).

VII. CONCLUSIONS AND FUTURE WORK

The next step in this work is to develop criteria for well-

formed composite curves that represent a musical result. Once

this is complete, the system is ready to be used to supplement

the intuition of a human evaluator and possibly to facilitate

automating the entire evolutionary algorithm. Some factors

that could be considered are the time span of waves of the

composite curve and their depth, proportions, and shape. Then

this methodology could be applied to a population of computer

generated music compositions. Applying this would be a three

step process: first to establish numeric data about the various

musical parameters described above, second to plot the results

on a graph, and third to assign a fitness value to the composite

curve. After accomplishing these tasks, further work could be

done to automate the process. This work would include

writing software to ascertain the numerical data for each

computer generated music composition using the MIDI

information from a computer algorithm. Developing software

to plot the results and evaluate the resulting composite curves

would automate the process further.

The musical parameters used in this work can potentially be

expanded. Other textural parameters could include “density-

compression,” where intensity is likely to increase as more

components are packed into a “given total space” [8].

“Distribution,” is a subcategory of “density-compression,” and

entails the intervallic distribution of the components within the

given total space. Ref. [8] observes that a more dissonant PC

or IC content has an intensifying influence on the texture.

Other aspects of rhythm could be plotted also. One aspect

could include tempo, which is the rate of change for musical

events. Another rhythmic aspect that could be developed is

how complex the metrical relationships are. For example,

polymeter, where simultaneously sounding parts have

different meters would have a higher intensity rating than if all

the parts were in the same meter. Additionally, asymmetrical

meters would create a greater sense of intensity than

symmetrical meters.
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