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Abstract- Studies shows that Electrocardiogram (ECG) 
computer programs perform at least equally well as human 
observers in ECG measurement and coding, and can replace 
the cardiologist in epidemiological studies and clinical trials 
[1]. However, in order to also replace the cardiologist in 
clinical settings, such as for out–patients, better systems are 
required in order to reduce ambient noise while maintaining 
signal sensitivity. Therefore the objective of this work was to 
develop an adaptive filter to remove the contaminating 
signal in order to better obtain and interpret the 
electrocardiogram (ECG) data. To achieve reliability, the 
real-time computing systems must be fault-tolerant. This 
paper proposed a fault-tolerant adaptive filter for noise 
cancellation of ECG signals. Comparison of the performance 
and reliability of non-fault-tolerant and fault-tolerant 
adaptive filters are performed. Experimental results showed 
that the fault-tolerant adaptive filter not only successfully 
extract the ECG signals, but also is very reliable.  

 
Keywords: ECG, adaptive filter, noise cancellation, fault 
tolerant. 
 
 

I. INTRODUCTION 
 

Electrocardiogram is the body-surface manifestation of 
the electrical potentials produced by the heart. The ECG 
is acquired by placing electrodes on the patient’s skin. In 
a resting setting, the principal technical issue in 
interpreting ECG waveforms arise from the existence of 
ambient or background “noise” emanating from other 
electromagnetic sources, including (1) signals generated 
by the other organs, muscles and systems of the body, 
whether from movement or the performance by those 
organs of their bodily functions, and (2) signals generated 
by sources external to the body, such as electronic 
equipment, lights or engines.  Cardiologists can identify 
irregularities in the heart’s rate and rhythm, known as 
arrhythmia, by examining changes in the 0.67 to 40 Hz 
frequency range.  Because of the relatively large 
amplitudes of these waveforms in this range, cardiologists 
can easily identify arrhythmia notwithstanding the 
existence of electromagnetic ambient noise from other 
sources.  However, it is very difficult for cardiologists to 
distinguish physiological signals from ambient noise in 
the broader frequency ranges used to identify different 
types of heart disease, including cardiac ischemia, 
hypertrophy and the existence of past or presently 
occurring heart attacks. The reason for this difficulty is 
that the physiological signals associated with these other 

heart diseases are of a much lower amplitude or strength 
in the lower 0.05 to 0.67 Hz and upper 40 to 150 Hz 
portions of the frequency range, meaning that they do not 
stand-out from the ambient noise in these portions and 
therefore cannot be easily discriminated from that 
ambient noise.  In order to minimize ambient noise in the 
clinical setting, ECGs are normally taken in the hospital 
or physician offices.  Cardiologists instruct the patient to 
lie in the supine position, being as still as possible while a 
reading is taken to reduce ambient noise caused by 
physical movement.  Another method to reduce ambient 
noise is to reduce the sensitivity of the monitoring 
equipment, although this alternative results in a loss of 
signal quality and the ability to read certain signal 
intricacies. Although diagnostic criteria have been 
improved by computerization, many of these techniques 
have not been widely applied, due to the described 
limitations [2]. Therefore, adaptive filtering [3] to remove 
artifact noise without distorting the actual signal is crucial 
to enable computer based clinical ECG.  

Subsequently advances in filtering techniques will also 
improve ambulatory ECG recording routinely used to 
detect infrequent, and asymptomatic arrhythmias [4], [5] 
and to trace  heart activities in fetals [6], [7]. Furthermore, 
it will enhance ECG editing [8] used to supplement 
advances in other technologies such as computer 
tomography used for cardiology [9]. Microprocessor-
based even recorders have been commonly developed and 
used that carry out online signal processing, data 
reduction, and arrhythmia detection [10]. Computational 
power of the microprocessor makes them feasible to 
implement digital filters for noise cancellation and 
arrhythmia detection [11]. 

Adaptive filtering technique using neural networks has 
been shown to be useful in many biomedical applications 
[3]. The basic idea behind adaptive filtering has been 
summarized by Widrow et al. [12]. It reduces the mean-
squared error between a primary input, which is the noisy 
ECG, and a reference input, which is either noise that is 
correlated in some way with the noise in the primary input 
or a signal that is correlated only with ECG in the primary 
input [13]. Adaptive filters permit to detect time-varying 
potentials and to track the dynamic variations of the 
signal. These types of filters learn the deterministic signal 
and remove the noise. Besides, they modify their behavior 
according to the input signal. Therefore, they can detect 
shape variations in the ensemble and thus can obtain a 
better signal estimation. 
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Different filter structures are presented to eliminate the 
diverse form of noise: baseline wander, 60 Hz power line 
interference, muscle noise, and motion artifact [14], [15]. 
60 Hz powerline interference cancellation is a simple but 
important application. In the paper, this kind of noise 
source is used to demonstrate the effectiveness of the 
adaptive filters we introduced. 

The first aim of this paper is to construct an adaptive 
filter and demonstrate its application in noise cancellation. 
We combine a tapped delay lines to a tapped delay line 
with an ADALINE network to create an adaptive filter. 
The adaptive filter weights are updated by using the Least 
Mean Square algorithm.  The constructed filter is proved 
and demonstrated with a single frequency noise source. 
The second aim is to introduce a fault-tolerant adaptive 
filter and demonstrate its improved reliability. A parallel 
construction is adopted for the fault-tolerant adaptive 
filter whose reliability is compared with that of the non-
fault-tolerant adaptive filter. 
 

II. ADAPTIVE NOISE CANCELLATION 
 

When doctors are examining a patient on-line and want 
to review the electrocardiogram (ECG) of the patient in 
real-time, there is a good chance that the ECG signal has 
been contaminated by a 60-Hz noise source. To allow 
doctors to view the best signal that can be obtained, we 
need to develop an adaptive filter to remove the 
contaminating signal in order to better obtain and interpret 
the ECG data.  
 
A. Adaptive Filter without Fault Tolerance 
 

The adaptive filter without fault tolerance is designed to 
remove the contaminating signal, as shown in Fig. 1. The 
ECG signal, s is the original uncontaminated input signal 
to the network. The desired output is the contaminated 
ECG signal t. The adaptive filter will do its best to 
reproduce this contaminated signal, but it only knows 
about the original 60 Hz noise source, v. Thus, it can only 
reproduce the part of t that is linearly correlated with v, 
which is m. In effect, the adaptive filter will attempt to 
mimic the noise path filter, so that the output of the filter 
a will be close to the contaminating noise m. In this way 
the error e will be close to the original uncontaminated 
ECG signal s. We call (s+m) the primary input, and a the 
reference signal. 

 
 
 
 
 
 

 
 
 
 

Since the adaptive filter output is a and the error is 
amse −+= )( , then the mean square error (MSE) is 

2)(22)(2))((2 aamsmsamse +⋅+⋅−+=−+=

asmssam ⋅⋅−⋅⋅++−= 2222)(  (1) 
Since signal and noise are uncorrelated, the MSE is 

]2[]2)[(]2[ sEamEeE +−=   (2)  
Minimizing the MSE results in a filter error that is the 

best least squares estimate of the signal s. The adaptive 
filter extracts the signal, or eliminates noise, by iteratively 
minimizing the MSE between the primary and the 
reference inputs. 

 
B. The Least Mean Square (LMS) Algorithm 

 
The LMS algorithm is an iterative technique for 

minimizing the mean square error (MSE) between the 
primary input and the reference signal [8]. The adaptive 
filter weights are updated by using the LMS algorithm. 
The LMS algorithm can be written in matrix notation: 
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and b )(2)()1( kekbk ⋅+=+ α   (4) 

where is a set of 

filter weights at time k, and 
i

 is the ith row of the 

weight matrix. p is the 

input vector at time k of the samples from the reference 
signal. The error is 
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desired primary input from the ECG to be filtered, and 

 is the filter output that is the best least-squared 
estimate of . 
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For simplicity, we use a single sine wave noise source. 
In this case a neuron with two weights and no bias is 
sufficient to implement the adaptive filer. The inputs to 
the filter are the current and previous values of the noise 
source. Such a two-input filter can attenuated and phase-
shift the noise v in the desired way. The adaptive filter is 
shown in Fig. 2. 
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Fig. 2. Adaptive Filter for Sine Wave Noise Source 
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C. Proof of Concept  
 

We will first need to find the input correlation matrix R 
and the input/target cross-correlation vector h: 

][ TzzER =  and .   (5) ][tzEh =
In our case the input vector is given by the current and 
previous values of the noise source: 
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while the target is the sum of the current signal and 
filtered noise: 
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Now expand the expressions for R and h to give 
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To obtain specific values for these two quantities we 

must define the noise signal v, the ECG signal s and the 
filtered noise m. We will assume: the ECG signal is a 
white (uncorrelated from one time step to the next) 
random signal uniformly distributed between the values -
0.2 and +0.2, the noise source (60-Hz sine wave sampled 
at 180 Hz) is given by 
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and the filtered noise that contaminates the ECG is the 
noise source attenuated by a factor of 10 and shifted in 
phase by 20/π : 
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Now calculate the elements of the input correlation matrix 
R: 
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Thus R is 
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The terms of h can be found in a similar manner. We 
will consider the top term in Eq. (8) first: 
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Here the first term on the right is zero because s(k) and 

v(k) are independent and zero mean. The second term is 
also zero: 
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Next consider the second element of h: 
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   As with the first element of h, the first term on the right 
is zero because s(k) and v(k-1) are independent and zero 
mean. The second term is evaluated as follows: 
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The minimum mean square error solution for the weights 
is given by: 
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   To find the minimum mean square error, consider the 
performance index: 
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We have just found , h and R, so we only need to find 
c: 

*x
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The middle term is zero because s(k) and m(k) are 

independent and zero mean. The first term, the expected 
value of the random signal, can be calculated as follows: 
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The mean square value of the filtered noise is 
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Substituting , h and R, we find that the minimum 
mean square error is 
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The minimum mean square error is the same as the 
mean square value of the ECG signal. This is what we 
expected, since the ‘error’ of this adaptive noise canceller 

is in fact the reconstructed ECG signal. Fig. 3 illustrates 
the mean square error performance index surface contour.  
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 Fig. 3. Mean Square Error Performance Index 

Surface Contour  
 
D. Adaptive Filter with Fault Tolerance 

 
Real-time computing systems must be fault-tolerant: 

they must be able to continue operating despite the 
failure of a limited subset of their hardware or 
software. A fault is a physical defect, imperfection or 
flaw that occurs within some hardware or software 
component. A fault can be caused by specification 
mistakes, implementation mistakes, component 
defects or external disturbance. Fault tolerance is the 
ability of a system to continue to perform its tasks 
after the occurrence of faults. The fault tolerant 
adaptive filter is shown in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
E. Reliability Analysis of Fault Tolerant Adaptive Filter 
 

The reliability at time t, R(t), is the conditional 
probability that the system performs correctly during the 
period [0,t], given that the system was performing 
correctly at time 0. The unreliability, F(t), is equal to 1-
R(t). Often referred to as the probability of failure. Now 
we compare the reliability of a non-fault-tolerant adaptive 
filter and that of a fault-tolerant adaptive filter.  

R = 1 – F     (23) 
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Fig. 4  Fault Tolerant Noise Cancellation System
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For a parallel construction, as shown in Fig. 4, two 
parts are considered to be operating in parallel if the 
combination is considered failed when both parts fail. The 
combined system is operational if either is available. 
From this it follows that the combined availability is 1 - 
(both parts are unavailable). The combined availability is 
shown by the equation below: 

)21)(11(1211 RRFFR −−−=⋅−=    (24) 
When the redundancy of a parallel construction is N, 

the reliability is 

NFFFR ⋅⋅⋅−= K211      
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)1(1
1

1     (25) 

The reliability of fault-tolerant adaptive filter is 
)21)(11(1 RRR −−−=     (26) 

where  is the reliability of adaptive filter 1, and  
is the reliability of adaptive filter 2.  

1R 2R

Assume the reliability of the two filters are equal, the 
reliability of the fault-tolerant adaptive filter is simplified 
as 

))11(1())11(1(2)11(1 RRRR −−⋅−+=−−=  
)12(1 RR −⋅=     (27) 

12
1

R
R

R
−=      (28) 

Since 0 , so1 . In other word, the 
reliability of fault-tolerant adaptive filter is greater than or 
equal to that of the non-fault-tolerant adaptive filter. 

11 ≤≤ R 212 ≤−≤ R

 
 

III. EXPERIMENTAL RESULTS 
 

In the first experiment, the input signal is a white 
(uncorrelated from one time step to the next) random 
signal uniformly distributed between the values -0.2 and 
+0.2, the noise source (60-Hz sine wave sampled at 180 
Hz). A non-fault-tolerant adaptive filter is used. In order 
to judge the performance of the noise canceller, the 
original random signals, noise, contaminated signals (i.e. 
random signals + noise), and the restored signals (i.e. 
filtered signals) were plotted in Fig. 5. From the fourth 
subplot, we can see that: at first the restored signal is a 
poor approximation of the original random signals. It 
takes about 0.2 second for the filter to adjust to give a 
reasonable restored signal. The fifth subplot compares the 
original random signals and the restored signal. It shows 
that the restored signal favorably matches the original 
signal.  

In the second experiment, MIT-BIH Arrhythmia 
Database data was used as the input: reference annotation 
(100.atr), data file (100.dat), and header file (100.hea). 
The result is shown in Fig. 6. A non-fault-tolerant 

adaptive filter is used. At the 500th time step, the weights 
of adaptive filter 1 were all set to 0s. From the fourth 
subplot we can see that: the filtered ECG decayed to zero 
at about the 550th time step. The fifth subplot compares 
the original ECG signal and the restored signal. It shows 
that the adaptive filter cannot give the right response after 
the 550th time step.  

In the third experiment, the same MIT-BIH Arrhythmia 
Database data was used as the input: reference annotation 
(100.atr), data file (100.dat), and header file (100.hea). 
The result is shown in Fig. 7. This time a fault-tolerant 
adaptive filter is used. At the 500th time step, the weights 
of adaptive filter 1 were all set to 0s. However, from the 
fourth subplot we can see that: the system was not 
affected by the failure of the first adaptive filter and 
operated normally. The fifth subplot compares the 
original ECG signal and the restored signal. It shows that 
the restored ECG signal exactly matches the original ECG 
signal.  
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IV. CONCLUSIONS 
 

A reliable neural network based fault-tolerant adaptive 
filter was designed. The filter does not need computation 
for voting and error detection. As a result, it requires very 
little computational power or memory while still 
maintaining the ability to handle complex signal 
processing. We analyzed the reliability of the non-fault-
tolerant and fault-tolerant adaptive filters. The 
experimental results showed that the fault-tolerant 
adaptive filter is highly reliable after a permanent fault 
occurs. Thus the adaptive filter approach as described 
herein can be applied to readily remove 60Hz artifact 
noise while minimally distorting the true ECG signals.  
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