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Abstract - In this paper, we present a progressive image 

reconstruction scheme based on the semantically scalable multi-
scale edge representation of images, with the resolution and 
visual quality scalable to various bitrate requirements. In the 
multi-scale edge representation an image is decomposed into its 
multi-scale primal sketch and the background where the multi-
scale primal sketch preserves the structural semantics of images, 
and the background represents the smooth locale. Edge 
compensation is performed to smoothly remove edges at each 
scale. The multi-scale edges are then embedded encoded using 
the GFA modeling. The image reconstruction is progressively 
achieved by synthesizing multi-scale edges on the reconstructed 
image obtained from previous scale. As edge synthesis is 
performed at consecutive scales, the visual quality of the 
reconstructed image is progressively enhanced. Experiment 
shows that the proposed scheme performs well at low bit-rate 
multiresoultion representation and progressive reconstruction.  

 
I. INTRODUCTION 

 
Wavelet-based image multiresolution representation and 

reconstruction [1-3] is advantageous compared with other 
methods such as the block-based ones, due to its unique joint 
space-frequency characteristics. However, the structural 
aliasing caused by the subsampling in wavelet transforms 
leads to seemingly inevitable artifacts and blurring around 
edge areas since the structural information sampled off could 
not be effectively compensated.  This instigates the design of 
other forms of semantic representations of images. 
     The multi-scale edge representation was studied by Mallat 
et al. [4] in the framework of wavelet theory. It shows that 
multi-scale Canny edge detection is equivalent to finding the 
local maxima of a wavelet transform and the evolution of 
wavelet local maxima across scales characterizes the local 
shape of irregular structures. An algorithm that reconstructs a 
close approximation of image from its multi-scale edges is 
also presented [4]. However, the reconstruction method is 
complex and computationally expensive. Moreover, the 
quality of reconstructed image decreases significantly as the 
number of edge scales in the model drops.    
     Considering the drawbacks of pure wavelet-based coding 
and the essence of edges for visual perception, a number of 
papers proposed to integrate edge information into the coding 
streams. Schilling et al. [5] and Zhu et al. [6] presented, 
respectively, the schemes where edges are extracted and 
encoded separately while the original images are encoded by 
wavelets. Then, the coding of edges is multiplexed with the 

wavelet coefficients of the original images. Obviously, the 
performance improvement at visual quality is traded off by 
longer coding streams. Li [7] proposed another approach 
which transforms the original image to scale space by the 
forward diffusion with a Gaussian kernel at the chosen scale. 
The diffused image is then encoded by wavelet. When the 
image is decoded, an inverse diffusion is used to reconstruct 
the image. But this approach is computationally expensive 
and suffers the following that the inverse diffusion only works 
for a specific class of signals: ideal step edge whereas ramp 
edges and pulse edges are present in most natural images.  
     Xue et al. [8] proposed a multi-scale edge model which 
formulates a semantics-driven and directly operable image 
representation, aimed at supporting many common operations 
in visual computing and communications.  In the multi-scale 
edge model, an image is decomposed into its multi-scale 
primal sketch (MSP) and the background. Multi-scale primal 
sketch is the union of the pulse and the ramp edges extracted 
and organized at consecutive scales and the background is the 
small image survived after a hierarchical scale transform of 
edge-removed image. The sample-based representation, such 
as DCT, wavelet and VQ, directly operate on low-scale image 
models. The object-based representation, as exemplified by 
MPEG4, facilitates some high-scale image operations such as 
scene composition of objects and background. Compared to 
these two representations, multi-scale edge model is a 
versatile hybrid semantic-statistic image representation, 
compromising between low-scale and high-scale image 
representations. 
 

II. MULTI-SCALE EDGE MODEL 
 

In this section, we briefly discuss the multi-scale edge 
model and the scale transform.  A detailed description of the 
model can be found in [8]. 
 
A. Aliasing Effect of Wavelet Transform 

The edges correspond to the variation of intensity values 
and two types of edge waveforms: pulse edge and ramp edge 
correspond to two different scene characteristics: short-term 
transients and object boundaries, respectively (figure 1). The 
multi-scale edge model recognizes the difference between 
these scene characteristics. The scalability is an intrinsic 
property of edges and, with a fixed image resolution, 
represents the spatial distance across which the intensity 
variation happens. Within this spatial distance, the gray of 
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pulse edge varies approximately quadratically, and that of the 
ramp edge varies linearly. The scalability can be 
quantitatively described by edge scales [8], defined as 

⎣ ⎦ks 2log= , where k  is the number of transfer pixels. If 

k  = 0, the scale of the edge is defined to be s  = 0.Pulse 
edges and pulse edges with scale 0, 1, 2 are illustrated in 
Figure 1.  Edges of different scales may not be well preserved 
in wavelet transform due to subsampling in each scale.  It may 
be observed  
 edges of scale 0 at even or odd locations are poorly 

approximated by even- or odd-phase subsampling, 
respectively, causing edge aliasing 

 the approximation improves drastically as edge scale 
increases to 1 or 2 

Figure 1: Edge Type and Scale. (a) pulse edges with scale 0, 1 and 2, which 
has 1, 3 and 5 transfer pixels respectively. (b) ramp edges with scale 0, 1 and 

2, which has 0, 2 and 4 transfer pixels respectively. 

 
Figure 2. An example of multi-scale edge model 

 
B. Multi-scale Edge Model 

Multi-scale edge model decomposes an image into its 
multi-scale primal sketch (MPS) and the background [8].  An 
illustration of the multi-scale edge model is given in Figure 3. 
The left-upper image is the original input image. The pulse 
and ramp edges of scale 0 are extracted and represented as 
primal sketches, shown in the middle of the first row. The 
image is smoothed at the locations of the removed edges to 
minimize the discontinuity. This process is called edge 
compensation. Wavelet transform is then performed on the 
edge-compensated image and only the baseband image is 
retained as a new input image to the next scale of edge 

modeling. The edge modeling is repeated recursively for other 
scales.   
 
C. Scale Transform 

The scale transform, defined in [8], along with edge 
compensation and synthesis formulates the transform between 
images and their multi-scale edge representation. Scale 
transform can be derived from a wavelet transform as follows 
[8].  Consider the (biorthogonal) wavelet transform 
{ } { } { } { }.~,~,, nnnn ghgh  A sequence { }0

nc  is dyadic 

decomposed to its low- and high-frequency components { }1
nc  

and { }1
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The input sequence may be reconstructed using only the low-
frequency component  
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Equation (1) is called the forward scale transform which along 
with the edge compensation transforms an image into its 
multi-scale edge model and (2) the inverse scale transforms 
which with the edge synthesis reconstructs the image from its 
multi-scale edge model. Integer scale transforms may be 
designed to facilitate the efficient and progressive 
reconstructions on limited devices. The generation of the 
multi-scale edge model consists of edge classifications and 
edge compensation and synthesis.  An efficient algorithm for 
the multi-scale edge representation generation is discussed in 
[8]. 
 

III. MULTIRESOLUTION IMAGE RECONSTRUCTION 
 

 
 

Figure 4. Detected edges of scale zero, scale one and scale two, respectively 
 
In the multi-scale edge representation, the image is 
progressively described by the background and the multi-
scale primal sketch, where the multi-scale primal sketch is 
scalable semantically, equivalent to reconstructing edges from 
high scales (dull structures) to low scales (sharp structures).  
As the progression of the reconstruction, higher frequency 
information is superposed onto the reconstructed image and 
the visual sharpness and resolution of reconstructed image are 

199

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)



 

progressively enhanced.   Figure 4 shows the extracted images 
of the multi-scale edges for image Pepper. Figures 5-7 show 
the progressive reconstruction sequence from the background 
and the primal sketches of scales 2 to 0, recursively, with their 
PSNR values for Pepper. For the reconstruction from the 
three-scale primal sketch, the edge blurring is observed, 
which is mainly due to the edge compensation and synthesis.  
An edge-compensated deblurring method may be designed.   
 

 
Figure 5. Progressive reconstruction from one-scale primal sketch (a) 
background; (b) with scale-zero primal sketch (PS) at PSNR=29.97 
 

 
Figure 6. Progressive reconstruction from two-scale primal sketch (a) 
background; (b) with scale-zero PS (c) with scale-one PS at PSNR=27.36 
 

 
Figure 7. Progressive reconstruction from three-scale primal sketch (a) 
background; (b) with scale-zero PS; (c) with scale-one PS; (d) with scale-two 
PS at PSNR=25.16 
 

The reconstruction is noticeably related to the contents in 
the images. Some images may contain very complex 
structures or greatly varying illuminations. A large number of 
short and dense edges may be extracted for such images and 
as a result, the bit rates increase accordingly. However, by 
properly thresholding the edge detection, the bit rates can be 
controlled within the budget of coding, traded-off by slight 

degradations of quality due to absence of some high 
frequency information. In other images, the background is 
rather simple and the foreground is well structured with a few 
large smooth regions, resulting in a few sparse and long edges 
 

IV. EXPERIMENTAL RESULTS 
 

We apply the multi-scale edge model based progressive 
image reconstruction on various benchmark images aimed at 
showing the effectiveness and rate-distortion performance of 
the scheme. Since at each scale some high frequency 
information may be misrepresented by multi-scale primal 
sketch, the loss of information is proportionally correlated to 
the scales of wavelet transforms. As the number of scales 
increases, the bitrate decreases but the reconstruction error 
increases, and vice versa. Therefore the scheme may be 
optimized and compromised on the multi-scale edge 
representation, visual quality and resolution scalability. 
Conventionally, a typical 512 × 512 image should be 
transformed to three or four scales for the multi-scale edged 
model based reconstruction.  

Since the reconstruction is progressive and scalable at 
resolution and visual sharpness, the scheme is adaptive to 
various multimedia computing and communications. Figure 8 
shows the reconstructed Peppers using one-, two and three-
scale primal sketches. The PSNR measures of the 
reconstructed images from three-scale PS are around 25 dB, 
comparable to the result in [9]. Figure 9 shows the visual 
effect comparison for Lena at bitrates 0.01 and 0.04 between 
the proposed scheme and the well-known SPIHT scheme [3].  
As expected, at the extreme low bitrates, since the proposed 
scheme allocates most of bit budget to the background and the 
high-scale structural constructs, only smooth background and 
the dull structures (high-scale sketches) are reconstructed. As 
the bitrate increases, sharper structures will be reconstructed. 
The rate-distortion comparison between the scheme and the 
SPIHT is plotted in figure 10. 

 
PSNR=29.97 (1-scale)   PSNR=27.36 (2-Scale)   PSNR=25.16 (3-scale) 

Figure 8. Reconstruction with bitplanes 7-0 (hybrid GFA and run-length 
code) 
 

Table 1 gives their respective PSNR values. Note that the 
performance degrades as the complexity of the contents 
increases. However, the global structures and local 
smoothness are well preserved.  The PSNR comparisons 
between the PS scheme and SPIHT at various bitrates are also 
given in Table II. Experiments show that our approach is 
comparable with SPIHT at rate-distortion performance but 
offers a semantically-embedded code stream for the 
progressive and scalable reconstruction at resolution and 
visual quality.    
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(a) SPIHT at 0.04 bpp                (b) SPIHT at 0.1 bpp     

 
 (c) PS at 0.04 bpp          (d) PS at 0.1 bpp 

Figure 9. Visual effect comparison of the PS and SPIHT scheme 
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Figure 10. Rate-distortion of PS versus SPIHT 

 
TABLE I. THE BIT BUDGETS OF MULTI-SCALE EDGE MODELS 
WITH DIFFERENT SCALES 
 

Bit budgets  
 

Images 

1-scale Base Total bpp 

Peppers 9545 59340 68885 0.2627 
Lena 9830 66187 76017 0.289 

 2-scale Base Total bpp 
Peppers 11890 14480 26370 0.1046 

Lena 13107 16538 29645 0.113 
 3-scale Base Total bpp 

Peppers 14239 3650 17889 0.07 
Lena 16384 4153 20537 0.078 

 
TABLE II: PSNR VALUE COMPARISON WITH SPIHT FOR LENA AND 

PEPPERS 
 

SPIHT PSNR/bpp Images 

0.2 0.1 0.08 1-scale 2-scale 3-scale 

Peppers 32.73 29.84 28.89 29.97/0.26 27.36/0.1 25.16/0.07 
Lena 33.15 30.22 29.35 31.70/0.28 27.10/0.11 25.13/0.07 

 

V. CONCLUSION 
      

We propose a progressive image reconstruction scheme 
scalable semantically on the multi-scale edges and 
resolutions, based on a low bit-rate multi-scale primal sketch 
representation. The scheme is asymmetric with a 
computational expensive multi-scale primal sketch modeling 
but a very efficient reconstruction process. The reconstruction 
scheme is progressive and scalable at resolution and edge 
semantics (scales) with the GFA-embedded code stream, 
enabling numerous multimedia communication applications 
over heterogeneous networks. The reconstruction scheme is 
comparable with the SPIHT at rate-distortion performance 
quality at very low bitrate. The design of the reconstruction 
based on fixed-point scale transform is also given to facilitate 
multimedia computing and communications on limited 
devices such as PDAs and mobile devices. 
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