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Abstract— In classical graph-based image segmentation, a
data-driven matrix is constructed representing similarities be-
tween every pair of pixels. The eigenvectors of such matrices
contain relevant information about the clusters present on
the image. An approach to image segmentation using spectral
clustering with out-of-sample extensions is presented. This
approach is based on the weighted kernel PCA framework.
An advantage of the proposed method is the possibility to train
and validate the clustering model on subsampled parts of the
image to be segmented. The cluster indicators for the remaining
pixels can then be inferred using the out-of-sample extension.
This subsampling scheme can be used to reduce the computation
time of the segmentation. Simulation results with grayscale and
color images show improvements in terms of computation times
together with visually appealing clusters.

I. INTRODUCTION

Image segmentation consists of partitioning an image
into several related regions. It is a fundamental prob-
lem in image analysis, computer vision, object recognition
and is closely related to perceptual grouping. Several ap-
proaches from different perspectives have been developed to
tackle the image segmentation problem: point-based meth-
ods, region-based algorithms, connectivity-preserving tech-
niques and optimization-based methods. Point-based meth-
ods correspond to the simplest algorithms and are based
on thresholding. Therefore, these methods are useful only
when the contrast between the objects and the background
is high enough. Region-based algorithm use merge and split
techniques to create clusters based on some criterion such
as homogeneity and compactness. Connectivity-preserving
methods such as active contours and deformable models start
with some preliminary shape and iteratively shrinks/expands
it according to some energy function. Optimization-based
methods such as neural networks, Bayesian learning and
clustering algorithms aim to create partitions in such a way
that some cost function is minimized. Typical optimization-
based methods are k-means, EM clustering and graph-based
clustering). Graph-based image segmentation methods have
been proven to deliver good segmentation results using low-
level image features such as color, texture and position [16],
[13], [14], [19].

This paper focus on spectral clustering techniques which
are the typical representatives of graph-based clustering.
These methods are relaxations of graph partitioning prob-
lems that are generally NP-hard. The relaxed solutions that
spectral clustering provides correspond to the eigenvectors
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of some data-driven similarity matrix containing pairwise
similarities. When only two clusters are required, the bi-
partitioning can be obtained by thresholding the eigenvector
solution. However, the clustering problem becomes compli-
cated when more than two clusters are required because it
is not clear how to convert the relaxed solutions back to
cluster indicators. For this purpose, several approaches from
different points of view have been proposed [16], [3], [7].
One issue of image segmentation based on spectral clustering
is the size of the similarity matrix. Every pixel in the image
becomes a data point and pairwise similarities with all the
other pixels have to be computed. These similarity matrices
can be very large even for small images and the resulting
eigenvalue decomposition becomes prohibitely slow. Another
issue with spectral clustering is that the obtained clusters are
defined only for the training data with no straightforward
extension to out-of-sample (test) points.

Classical kernel PCA was introduced in [15] as a nonlinear
generalization of PCA by using kernels. It was shown in [2]
that several spectral clustering techniques can be formulated
in terms of weighted kernel PCA. This formulation provides
a unifying view of spectral clustering with primal/dual in-
sights in a clear optimization framework. Therefore, exten-
sions to out-of-sample data points can be calculated in an
exact way by using the projections over the eigenvectors. In
this paper, we take advantage of the out-of-sample extension
provided by the weighted kernel PCA framework to perform
image segmentation in a fast and efficient way. The proposed
clustering method is first trained and validated on subsets
of the image to be segmented and then the clusters for the
remaining pixel subsets are inferred using the out-of-sample
extension.

This paper is organized as follows. Section II contains a
review of spectral clustering techniques. In Section III, we
describe the weighted kernel PCA approach and the links
to spectral clustering. In Section IV, we formulate the out-
of-sample extension together with the subsampling scheme.
Section V contains the empirical results and in Section VI
we give the concluding comments.

II. SPECTRAL CLUSTERING

In spectral clustering, a set of data points can be repre-
sented as an undirected graph G = (V, E). The vertices of
the graph V are the points and the edges E have an associated
weight representing the degree of similarity between every
pair of vertices. The problem of clustering consists of finding
a partition of the graph such that the points within a cluster
have high similarity and points in different clusters have low
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similarity. The simplest way to bipartition the graph into sets
A,B such that A∩B = ∅,A∪B = V is to minimize the cut
which is the sum of the similarities that have to be removed
to create two disjoint sets. The cut is defined as:

cut(A,B) =
∑

a∈A,b∈B

s(a, b)

where s(a, b) is the similarity between vertices a and b.
The problem of minimizing the cut is formulated as

follows [9]:

min
q

Jmincut = qT (D − S)q (1)

such that q ∈ {−1, 1}N

where q is a cluster indicator vector with i-th entry:

qi =

{
1, if i ∈ A

−1, if i ∈ B,

D = diag(d1; . . . ; dN ) is the degree matrix, di =
∑

j s(i, j)
and S is the similarity matrix with ij-th entry Sij = s(i, j).

Minimizing the cut is NP-hard due to the combinatorial
constraint on q. A suboptimal solution can be found by
relaxing the constraint and letting q take real values. The
solution to the relaxed problem with constraint q̃T q̃ = 1 is
given by q̃(N−1) the eigenvector corresponding to the second
smallest eigenvalue of:

Lq̃ = λq̃

where L is the unnormalized Laplacian defined as L = D−S
and q̃ ∈ R

N is the relaxed cluster indicator. The ordered
eigenvalues of L are λ1 ≥ λ2 ≥ . . . ≥ λN = 0 with
corresponding eigenvectors q̃(1), q̃(2), . . . , q̃(N) = 1N . The
relaxed solution needs to be converted back to a cluster
indicator vector by thresholding:

qi = sign(q̃i − θ), i = 1, . . . , N.

The threshold θ can be found using a grid search and
choosing θ such that (1) is minimized. In general, minimizing
the cut leads to very imbalanced partitions because the size
of the clusters is not taken into account.

The normalized cut (NCut) introduced in [16] penalizes
small sets by taking into account the total weight of each
cluster. Its relaxed solution follows from the following gen-
eralized eigenvalue problem:

Lq̃ = λDq̃. (2)

As in the cut, the relaxed solution is the eigenvector
corresponding to the second smallest eigenvalue of (2).

A. K-Way NCut Relaxation

A more general problem consists of partitioning the graph
into k disjoint sets A1, . . . ,Ak, k > 2. The k-way NCut is
defined as:

NCut(A1, . . . ,Ak) =

k∑
i=1

cut(Ai,Ai)

Vol(Ai)

where Vol(A) =
∑

i∈A
di is the volume of A and A denotes

the complement of A.
Consider f (k) ∈ {0, 1}N as the cluster indicator vector

for the k-th cluster such that f (k) has a 1 in the entries
corresponding to the data points in the k-th cluster. The
cluster indicator matrix becomes F = [f (1), . . . , f (k)]. The
k-way NCut can be formulated as

NCut(A1, . . . ,Ak) = k − tr(GT L̂G)

where L̂ = D−1/2SD−1/2 is the normalized Laplacian, G =
[g(1), . . . , g(k)], g(i) = D1/2f (i)/||D1/2f (i)||2, i = 1, . . . , k.

Relaxing the discrete constraint by allowing G to take real
values leads to the k-way NCut relaxation [11]:

max
G̃

NCut(A1, . . . ,Ak) = Tr(G̃T L̂G̃)

such that G̃T G̃ = Ik

This maximization problem can be solved using the Ky
Fan’s theorem [8],[5],[6]. The solution for this relaxed prob-
lem is given by

H̃∗ = UR1 (3)

where U ∈ R
N×k is any orthonormal basis of the k-th

principal subspace of L̃ and R1 ∈ R
k×k is an arbitrary

orthogonal matrix [8].

B. From Eigenvectors to Clusters

The solution provided by (3) is a real-valued matrix which
does not correspond to cluster indicators. The problem of
converting the eigenvectors back to cluster indicators is not
straightforward and several approaches have been proposed.
[16], [7], [10]. The classical approach is to perform k-means
on the eigenvectors. This approach is called reclustering and
was proposed in [16]. In [7], the problem of converting
eigenvectors was translated to finding peaks and valley of
a 1-D quantity called cluster crossing. A different approach
was introduced in [3] which proposed looking for a cluster
indicator matrix T that minimizes the difference between the
subspaces spanned by T and U .

Using k-means as a technique for reclustering might not
be appropiate because the eigenvectors are generally aligned
forming lines and k-means assumes spherical clusters. This
motivates the use of different reclustering algorithms such
as k-lines [10]. A summarized description of the k-lines
algorithm introduced in [10] is presented. Given a set of
input variables {xi}

N
i=1, xi ∈ R

k and the number of clusters
k, the algorithm returns a set of k points M = {m1, . . . , mk}
representing lines passing through the origin.

Algorithm 1 K-lines. Each cluster is represented by a vector
mi ∈ R

k of unitary norm i = 1, . . . , k

1: Initialize mi, i = 1, . . . , k (e.g. randomly)
2: For each i ∈ {1, . . . , k}, let Si be the set of points containing

all points xj that are closest to the line defined by mi

3: For each i ∈ {1, . . . , k}, let mi define the line through the
origin which is closest to all points in Si

4: Repeat from 2 until convergence
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III. WEIGHTED KERNEL PCA FRAMEWORK

A. LS-SVM Formulation to Kernel PCA

An LS-SVM approach to kernel PCA was introduced in
[17], [18]. This approach showed that kernel PCA is the dual
solution to a primal optimization problem formulated in a
kernel induced feature space. The underlying loss function
associated to kernel PCA was shown to be L2.

Given a set of N data points {xi}
N
i=1, xi ∈ R

d, kernel
PCA aims to find directions in which the projected variables
e = Φcw have maximal variance along with minimizing
a regularization term. This optimization problem can be
formulated in the primal as:

max
w,e

Jp(w, e) = γ
1

2
eT e −

1

2
wT w (4)

such that e = Φcw

where Φc is the N × nh feature matrix:

Φc =

⎡
⎢⎢⎢⎣

ϕ(x1)
T − μ̂T

ϕ

ϕ(x2)
T − μ̂T

ϕ
...

ϕ(xN )T − μ̂T
ϕ

⎤
⎥⎥⎥⎦ ,

γ is the regularization parameter, μ̂ϕ = (1/N)
∑N

i=1 ϕ(xi)
and ϕ(·) : R

d → R
dh is the mapping to a high dimensional

feature space of dimension dh.
The Lagrangian for this problem becomes:

L(w, e;α) =
γ

2
eT e −

1

2
wT w − αT (e − Φcw)

with conditions for optimality given by:

∂L

∂w
= 0 → w = ΦT

c α

∂L

∂e
= 0 → α = γe

∂L

∂α
= 0 → e = Φcw.

Defining λ = 1/γ and expressing the conditions for
optimality only in terms of α leads to:

ΦcΦ
T
c α = λα.

By making use of the kernel trick ϕ(x)T ϕ(y) = K(x, y),
the following dual eigenvalue problem is obtained:

Ωcα = λα

where Ωc is the centered kernel matrix Ωc = UΩU , U is the
centering matrix U = IN − (1/N)1N1T

N , IN is the N × N
identity matrix, 1N is a vector of N ones and Ω is the kernel
matrix with ij-entry: Ωij = K(xi, xj).

The projection of a test data point x (also called score
variable) onto the i-th eigenvector α(i) becomes:

zi(x) = wT ϕ(x) =

N∑
l=1

α
(i)
l K(xl, x). (5)

B. Weighted Kernel PCA

A generalized formulation for kernel PCA was proposed
in [1]. This formulation was used to impose robustness and
sparseness in kernel PCA by introducing a weighting matrix
and choosing the weights in such a way that outliers have less
influence than the rest of the data. The weighted kernel PCA
formulation has also been used as a unifying framework for
spectral clustering methods [2]. Classical spectral clustering
algorithms such as the NCut, the random walks method,
kernel alignment and the NJW algorithm were shown to be
particular cases of weighted kernel PCA.

Extending (4) to a symmetric positive definite weighting
matrix V ∈ R

N×N

max
w,e

Jp(w, e) = γ
1

2
eT V e −

1

2
wT w (6)

such that e = Φw

with Φ = [ϕ(x1)
T ; . . . ;ϕ(xN )T ], V = V T > 0.

The Lagrangian for this constrained optimization problem
becomes:

L(w, e;α) =
γ

2
eT V e −

1

2
wT w − αT (e − Φw)

with conditions for optimality given by:

∂L

∂w
= 0 → w = ΦT α

∂L

∂e
= 0 → α = γV e

∂L

∂α
= 0 → e = Φw.

By elimination of w and e, the following dual eigenvalue
problem is obtained:

V Ωα = λα (7)

and (5) still holds.
If the weighting matrix V is chosen to be the inverse of

the degree matrix D then weighted kernel PCA corresponds
to the NCut. Links with other spectral clustering methods for
graph bipartitioning were shown in [2].

IV. OUT-OF-SAMPLE EXTENSION

The main advantage of the weighted kernel PCA for-
mulation to spectral clustering is the possibility to apply
the trained clustering model to out-of-sample (test) points.
This is not possible in the classical formulation to spectral
clustering, because there is no underlying model and the
clusters are defined only for training points. Extensions
to out-of-sample points for several unsupervised learning
techniques including spectral clustering were discussed in
[4]. These extensions rely on the Nyström method which is
an approximation of the underlying eigenfunction. On the
other hand, the weighted kernel PCA framework provides
an exact way to extend the model to out-of-sample points
without relying on approximations.

Given a set of Ntest test points {xtest
j }Ntest

j=1, the score
variables corresponding to the i-th eigenvector become:

zi = ΦtestΦ
T α(i)
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Fig. 1. Subsampling scheme

where Φtest is the Ntest × nh feature matrix:

Φtest =

⎡
⎢⎢⎢⎣

ϕ(xtest
1 )T

ϕ(xtest
2 )T

...
ϕ(xtest

Ntest
)T

⎤
⎥⎥⎥⎦ .

Applying the kernel trick leads to

zi = Ωtestα,

where Ωtest = ΦtestΦ
T is the Ntest×N kernel matrix evaluated

using the test points with jk-entry Ωtest,jk = K(xtest
j , xk).

The score variables matrix becomes Z = [z1, . . . , zl]
where l is the size of the subspace spanned by the eigen-
vectors.

A. From Score Variables to Clusters

To obtain cluster indicators from the score variables, the
k-lines reclustering approach over the score variables Z was
used. Note that in the original k-lines algorithm, the input
data are eigenvectors that lie in k-dimensional space, where k
is the number of clusters to be found. We use score variables
lying in k − 1 dimensional space because the first principal
direction already gives a binary partition. Therefore to obtain
k clusters, only the score variables corresponding to the k−1
dominant eigenvectors have to be calculated.

B. Subsampling Scheme

The image to be segmented is first subsampled and several
smaller images are obtained from the original. The clustering
model is then trained on one of those smaller images. Model
selection can be done by optimizing the parameters on a
different subsampled part of the original image. The obtained
model is then applied to the test set which corresponds to
the pixels that were not used in the training and validation
procedures. Figure 1 shows an illustration of the subsampling
procedure. The last step consists of putting all the cluster
indicators of the subsampled parts back into their positions
in the original image.

V. EMPIRICAL RESULTS

In this section, experimental results are shown. We used
one grayscale image and one color image from the Berkeley
image dataset [12]. For all the experiments, we subsampled
the original image leaving 3 pixels out. This leads to a
reduction of the number of pixels of the original image
by a factor of 16. Shifting the subsampled image to cover
all the original image leads to 16 possible combinations of
shifted images. The first combination is used for training, the
second for validation and the remaining 14 are test images
for which the cluster indicators are inferred using the out-of-
sample extension. . The edge similarity was calculated using
a composite RBF kernel function [16]. If

||X(xi) − X(xj)||2 < r

then the edge similarity becomes:

Sij = e
−

(
||F (xi)−F (xj)||22

σ2
F

+
||X(xi)−X(xj)||22

σ2
X

)
(8)

otherwise Sij = 0, where F (xi) represents the feature vector
for the point xi (e.g. intensity for grayscale images, RGB or
HSV representations for color images) and X(xi) denotes
the spatial position of xi. The σ2

F parameter was tuned using
k-lines , and r = 0.8

√
Np, σ2

X = 0.6r where Np is number
of pixels of the image as proposed in [?].

A. Grayscale Segmentation

We report results on the classical “baseball” image in-
troduced in [16]. Segmentation results are shown in Figure
2. The obtained clusters are visually and perceptually more
appealing than the original NCut algorithm. Figure 3 shows
the model selection plots indicating that the k-lines criterion
can be used for parameter tuning and as a reclustering
approach.

(a) Original “baseball” image
(240 × 160)

(b) Training image (60 × 40)

(c) Labeled-region image using
the proposed method

(d) Original results using the
NCut as shown in [16]

Fig. 2. Grayscale segmentation - Training, validation and test scenario
obtained by subsampling.
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variables for the validation set. Note that the three clusters are strongly
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B. Color Segmentation

For color segmentation, we used the “peppers” image
from the Berkeley image dataset [12]. Figure 4 shows the
original and subsampled training image. The model selection
plots showed similar behavior to the grayscale segmentation
experiment. The tuned σ2

F was 1 × 10−3. Figures 5 and
7 show the segmentation results compared with a human
segmentation taken from the Berkeley image dataset. The
first segmented region comprises the background of the
image while the second region groups the wooden boxes that
correspond to the foreground. The third and fourth segmented
regions correspond to detailed information of the image. The
cluster boundaries are comparable to the boundaries found
by the human segmentation. Figure 6 shows the computation
times of the standard NCut and the out-of-sample extension
relative to the number of pixels in the image. The experiment
was carried out using Matlab on a Pentium 4, 2.8 GHz, 1
GB RAM.

VI. CONCLUSIONS

An image segmentation method based on the weighted
kernel PCA approach to spectral clustering is derived. An
advantage of this approach is the possibility to infer cluster
indicators for test pixels using the out-of-sample extension.
This extension is characteristic of the weighted kernel PCA
framework and is based on primal/dual insights. This leads
to a reduction in the algorithm computation times by a factor

(a) Original “Peppers” im-
age (160 × 240)

(b) Subsampled training
image (40 × 60)

Fig. 4. Color segmentation - “Peppers” dataset. Original and training
images.

(a) Segmented region 1 (b) Segmented region 2

(c) Segmented region 3 (d) Segmented region 4

Fig. 5. Color segmentation - “Peppers” dataset - Segmentation results.
The segmented regions show the background, foreground and detailed
information of the image.

of at least 8 compared to the standard NCut using the full
set of pixels. The obtained clusters were obtained in fast
way and the segmented regions were comparable to human
segmentation. The k-lines algorithm was empirically shown
to deliver good results for model selection and reclustering.
This is due to the fact that the eigenvectors and score vari-
ables are aligned forming lines when relevant and visually
appealing clusters are present on the image.
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