
Abstract—An associative memory based learning model is 
proposed which uses a short and long-term memory and a 
ranking mechanism to manage the transition of reference vectors 
between two memories. The memorizing process is similar to that 
in human memory. In addition, an optimization algorithm is used 
to adjust the reference vectors components as well as their 
distribution, continuously. Comparing to other learning models 
like neural networks, the main advantage of the proposed model 
is no need to pre-training phase as well as its hardware-friendly 
structure which makes it implementable by an efficient LSI 
architecture without requiring a large amount of resources. The 
system was implemented on an FPGA platform and tested with 
real data of handwritten and printed English characters and the 
classification results found satisfactory.  

I. INTRODUCTION

The machine learning in artificial systems has attracted a 
great amount of attention in recent years. Many different 
approaches have been developed for improvement of learning 
systems in the literature [1-3]. As for a learning model, one of 
the main issues is the feasibility of training online in a real-
time application. However, in most of currently existing 
models a pre-training process becomes necessary. For 
example in case of neural networks, as a well-known 
connectionist learning model, it is known that in most of 
practical case the system can only be learned perfectly when 
the entire data set is made available to the network in a prior 
training procedure [4-5]. If a neural network is just given a 
subset of the data, it often fails to learn the correct 
generalization and remains stuck in a local error minimum. 
The next issue in a learning model is a hardware-friendly 
structure. A specialized hardware for a learning system offers 
applicable advantages such as higher speed in processing of 
repetitive calculations, lower cost by lowering total 
component counts, and increased reliability in the sense of 
reduced probability of equipment failure. In case of neural 
networks, generally the large number of weight parameters as 
well as the complicated algorithm of learning which basically 
needs a large training data set and a long time of training, 
makes it difficult to implement it in an integrated hardware 
structure with limited amount of resources. 

In this paper, we propose a novel learning model which is 
capable to learn from input samples constantly and adjust the 
reference pattern set whenever necessary. The underlaying 
concept of the learning algorithm is based on taking a short 
and long-term memory and a ranking mechanism which 
manages inclusion and elimination of reference patterns as 

well as their transition between the two memories. Also, the 
reference vectors magnitude as well as their distribution are 
adjusted continuously by means of an optimization algorithm. 
The main advantage of the proposed algorithm comparing to 
other learning methods, like neural networks, is that it can be 
easily implemented in the lower level hardware as an LSI 
architecture with no need to the large hardware resources. 

In order to enhance the pattern matching speed, the 
classification process is designed on the basis of using a 
parallel associative memory. The prototype of associative 
memory we use here has been already designed [6] and has a
mixed analog-digital fully-parallel architecture for nearest 
Hamming/ Manhattan-distance search.

The prototype of the hardware system was first designed in 
a higher level programming language (MATLAB) and then 
transferred to HDL code and after synthesis and simulation 
was programmed in an FPGA platform of the Altera Stratix 
family, successfully. In order to evaluate the system 
performance, it was used in the real application of character 
recognition. A number of handwritten data samples were used 
for testing the system and the results approved the efficiency 
of classification with a high speed of pattern matching as well 
as the learning functionality.  

II. MODEL DESCRIPTION

As it is described in the Introduction, the main feature of 
the proposed model is a dynamic learning function which 
makes it useful in the real-time applications like video 
detection, online text recognition, intelligent systems, etc. 
With its hardware-friendly structure, the model can be easily 
implemented in different hardware platforms. When compared 
with other learning models like neural networks, the main 
advantage of the proposed model is that a pre-training phase is 
unnecessary and the model has a hardware-friendly structure. 
The core part of the model is the learning procedure but it also 
includes two further blocks of preprocessing and 
classification, prior to the learning. More explanations on the 
performance of each block are given in the following. 

A. Learning Procedure 
The core concept of learning in the model is based on a 

short/long term memory which is very similar to the 
memorizing procedure in the human brain. For this, the 
memorized reference patterns are classified into two areas 
according to their learning ranks. One is a short-term storage 
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area where new information is temporarily memorized, and 
the other is a long-term storage area where a reference pattern 
can be memorized for a longer time without receiving the 
direct influence of incoming input patterns. The transition of 
reference patterns between short-term and long-term storages 
is carried out by means of a ranking algorithm. Besides, an 
optimization algorithm is applied to update the reference 
patterns and optimize their distribution as well as the threshold 
values used for classification and ranking. The block 
flowchart of Fig. 1 shows an outline of the learning procedure. 

As can be seen from the flowchart, by taking a nearest-
matching over the reference patterns memory, we get the 
winner address and winner-input distance (Dw-i). The winner-
input distance is then compared with a local threshold value 
corresponding to each reference pattern to find if the 

classification is acceptable or a new reference pattern to be 
added. In case that the winner-input distance is under 
threshold Dth and also there is a reasonable margin between 
winner and nearest-loser, the classification is considered as a 
reliable case and we give a high rank-jump to the winner 
pattern in the ranking memory, otherwise the winner will get a 
low rank-jump. Details of the two main blocks, ranking and 
optimization, are described below. 

Ranking block: Each reference pattern in the system is 
given an “unique rank” showing the occurrence level of the 
pattern. A ranking memory is considered for the ranks where 
the rank is as the index of the memory and the reference 
patterns address (its address in the reference memory) are 
saved as the content. The rank is increased by a predefined 
jump value in case of a new occurrence (when a new input is 
matched with the current reference pattern) , and reduced 
gradually when there is no occurrence of matching and other 
reference patterns getting higher ranks and shifting up to 
higher positions. The reference patterns are classified into the 
long-term and short-term memory according to their rank 

whereas a specific rank level of s_rank is defined as the 
border of short-term and long-term memory. If the rank of 
each pattern gets higher then s_rank, it enters into the long-
term memory, and conversely if its rank gets less then s_rank
falls into the short-term memory. Figure 2 shows the 
flowchart of ranking process. As can be seen from the 
flowchart, if Dw-i<Dth  (i.e. a known Ref. pattern case) then we 
first search for the existing rank of the winner in the ranking 
memory. 

If the winner belongs to the short-term memory 
(rank<s_rank) the rank advancement is JS, and if the case of 
winner is belonging to the long-term memory (rank>s_rank),
the rank advancement becomes JL (JL>JS). Then each of the 
patterns having rank between the old and the new winner rank 
are reduced in rank by one (Fig. 3). The transition between 
short and long-term memory happens by these changes in 
rank.

In the case of Dw-i Dth, the system considers input and 
winner pattern to be different and takes the input pattern as a 
new reference pattern. The top rank of the short-term memory 
is given to this new reference pattern (if the long-term 
memory is not yet full, then the lowest rank in the long-term 
memory will be assigned) and subsequently the rank of each 
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Fig. 1.  Flowchart of the learning procedure. C is a constant value selected 
experimentally based on the data condition. 

Fig. 2.  Flowchart of the ranking process block. 

Fig. 3.  Rank advancement for a currently existing reference pattern. 
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of the other reference patterns existing in the short-term 
memory are moved down by one, and the reference pattern 
with the lowest rank will be erased from the memory. 

Optimization block:  This block is used for renewing the 
reference patterns continuously according to the input data 
variation. The main purpose is to improve the reliability of the 
classification. We take two main updating steps including 
reference pattern magnitudes and distance thresholds. The first 
step is to decide whether a new reference pattern is generated 
or the nearest-matching pattern can be considered as the 
winner. The decision maker here is the local distance 
threshold Dth corresponding to each reference pattern, which 
itself is renewed during the optimization process.  If the 
winner-input distance is greater than Dth, that is the case of 
new reference pattern generating, initial values are given to 
the new Dth and Ref pattern. Also, Dth(mean) and Ref(mean) as 
well as the input counter memories are set with initial values. 
Dth(mean) and Ref(mean) memories are used later for updating of 
Dth and Ref patterns. In case of a known reference pattern, i.e. 
winner-input distance is smaller or equal to Dth, we update the 
mean values of Dth and Ref pattern magnitude (Dth(mean) & 
Ref(mean)) for the current winner. The updating process is 
explained in the following. If the counter number, i.e. the 
number of inputs already assigned to the current winner, is 
larger than a predefined threshold Nth, then the Dth and Ref 
memory are updated with the last mean values and the counter 
is set to 1. 

Updating process 
Reference pattern magnitude:  A reference pattern vector is 

a combination of a reference image and its feature vector as 
described in the classification section. For each ref. vector we 
take a mean vector of input patterns matched with it as 

in
x1Ref                                     (1) 

where xi is the ith input vector and Ref is the mean-vector of 
the last n input assigned to the specific reference pattern. This 
mean-vector is updated at each input incoming as follows 

nn n
nn

/)Ref)1((Ref
1

x                   (2) 

where 1
Ref

n  is the pervious value of mean-vector before 
input xn entered. In order to simplify the instructions for 
hardware implementation, relation (2) can be written as 
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11

x                (3) 
where the division by n is performed only when n is a multiple 
of 8, using a simple right shift operator. The replacement of 
the reference vector with this updated mean-vector is achieved 
after a specific number of incoming inputs (Nth).

Distance thresholds:  In addition to reference patterns, the 
threshold values for the winner-input distance are updated in 
this block. For each reference vector we take a local distance 

threshold based on the distribution of local data. Similarly to 
relation (1) we have 

k
wiD

n
D 1

th
                           (4) 

where Dwi
k is the winner-input distance of the kth input sample 

and
thD is the mean value of last n Dwi. Similarly to (3) we use 

following relation for updating this mean value. 
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It should be noted that in relation (5) the Dwi
n is not only the 

winner-input distance of the inputs falling inside the current 
Dth but also of the input samples that are out of Dth but have 
been matched to the current reference pattern (however they 
are considered as new reference patterns later). This prevents 
the distance threshold Dth to become continuously smaller. 

The replacement of the threshold Dth with this updated 
mean value is achieved after a specific number of incoming 
inputs (Nth).

B. Preprocessing Steps 
Preprocessing steps are intended to read the input data and 

prepare it for the classification task. Since in the current work, 
the proposed learning model is applied for a character 
recognition task, the preprocessing steps are designed to 
provide the necessary preparations of the character input data 
prior to the classification step. The preprocessing steps 
include following blocks: reading, noise removal, binarizing, 
labeling, segmentation, feature extraction, and normalizing.

Reading:  Contains a reading device (line-scan sensor) 
moving on each line of the text with an appropriate speed and 
scans the data continuously as a sequence of thin frames. The 
frames between each two word spaces are collected and form 
a larger frame as a gray-scale bitmap array which holds all the 
word characters. 

Noise removal: As the most noises appearing in the texts 
are of the pepper & salt type, we apply a median filter with a 
neighborhood size of 3 3 for noise removing. A tree-diagram 
is used for finding the median of each 9 neighbor pixels [7]. 
The method is hardware-friendly and can be implemented in a 
pipelined structure. 

Binarizing: In this block the input image frame is binarized 
to a simple black-white bitmap by taking a local threshold 
value extracted via a mean filter with neighborhood size of 
7 7. The structure of the mean filter is likely similar to the 
median filter explained above in terms of the registering 
manner of neighborhood pixels.  

Labeling: In the labeling process we scan all the input frame 
pixels sequentially while keeping the labels of preceding 
neighboring pixels (4 pixels’ labels) in 4 registers and decide 
if the current pixel belongs to one of the preceding labels or 
gets a new label. The labels for all image pixels are then 
extracted in this way and saved in a label memory. In case of 
facing with equivalent labels for the same character, like in the 
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case of character W, the label equivalences are recorded in 
two buffers SLB1 and SLB2. 

Segmentation: Once the labeling process is terminated, the 
image memory is scanned once again for the segmentation 
task. We scan the labeled image N times each time searching 
label Li (i=1…N). The label read from memory is then 
searched within a lookup-table (SLBF) which is already 
created based on data of SLB1 and SLB2 buffers, and is 
replaced with the final equivalent label. The addresses of 
pixels with label Li are written in a new memory (SM) as a 
distinct segment Li. Next, the boundaries of segment Li are 
identified and a new 2-dimensional segment vector with 
binary values 0 and 1 is generated based on the addresses 
already saved in the SM memory. 

Feature extraction: In order to have a robust character 
classification, some characteristic features of the input pattern 
are extracted and grouped in a feature vector. The features are 
selected so that they have the minimum dependency on size 
and variation of data. Given a segmented (isolated) character 
we extract its moment based features as follows: Total mass
(number of pixels in a binarized character), Centroid, 
Elliptical parameters (i.e. Eccentricity (ratio of major to minor 
axis) and Orientation (angle of major axis)), and Skewness.

 In principle skewness is defined as the third standardized 
moment of a distribution as 

 (6)
but to simplify the calculations we take a simpler measure of 
Karl Pearson [9] defined as  

 = 3 (mean – median) / standard deviation         (7)
and  calculate horizontal and vertical skewness, separately. 

All the above six features, i.e. total mass, centroid, 
eccentricity, orientation, horizontal skewness, and vertical 
skewness are then normalized as is described in the next 
section to generate the feature vector. 

Normalizing: Each segmented character as well as the 
feature vector are normalized prior to the classification. The 
segmented character bitmap is rescaled to 16 16 pixels using 
a bilinear interpolation technique. As for the feature vector, 
each feature value is normalized using the minimum and 
maximum of the feature in the memory, and gets a value 
ranging between 0 and 1.  

C. Classification block 
The classification task is carried out by using a nearest-

matching method taking a hybrid distance measure: a 
Hamming distance for the main image vector DH (image) which 
comes as a 256 bits vector after size normalizing, and an 
Euclidean distance for the feature vector DE(feature). Because 
of the variations of the magnitudes of two distance measures, 
the values should be weighted. We use weighting factors as 
follows.  

D = DH (image) + DE(feature)                  (8) 

where in our experiments we found =0.25 and =1 as the 
most effective values.  

III. HARDWARE IMPLEMENTATION

The proposed learning algorithm is intended to be 
implementable in the lower level of the hardware structure 
with higher speed and minimum resources. As for prototyping 
of the whole model including preprocessing and classification 
blocks, we have chosen an FPGA platform. Figure 4 shows 
the block diagram of the system implemented in the FPGA. A 
pipelined architecture is used for the main data flow 
conducting between processing blocks. Furthermore, each 
block itself is designed in a pipelined structure. An Altera 
Stratix family FPGA device (EP1S80) with a resource 
capacity of 79K logic cells and 7.4 Mbits of RAM memory is 
applied. As for reading device we use the line-scan sensor 
ELIS-1024 of Panavision Co. with a resolution level of 
1024 1 pixels equipped with a 16mm optical lens. The system 
first was designed in Verilog HDL and after synthesis and 
functional simulation, we performed route & placement for 
FPGA programming. The route & placement is done with the 
Altera QuartusII software. An average clock frequency of 20 
MHz is selected for all processing blocks.  

The resource usage for the whole system excepting the 
feature extraction part is reported in Table I. The DSP blocks 
listed in the table are used for the noise removal block in the 
preprocessing steps. From Table I we can see that only a 
reasonable amount of logic cells (19%) and memory block 
(38%) are needed for implementation of major system blocks. 
The main system clock can also be increases to higher values 
if faster I/O devices are used. 
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Fig.4. Block diagram of the system implemented in the FPGA. 

TABLE I
ROUTE & PLACEMENT RESULTS FOR THE WHOLE SYSTEM IMPLEMENTED IN 

AN ALTERA STRATIX FPGA.

Fitter Status Successful
Quartus II Version 4.2  Full Version
Top-level Entity Name OCR
Family Stratix
Device EP1S80B956C7
Timing Models Final
Total logic elements 15,451 / 79,040 ( 19 % )
Total pins 281 / 692 ( 40 % )
Total virtual pins 0
Total memory bits 2,854,174 / 7,427,520 ( 38 % )
DSP block 9-bit elements 28 / 176 ( 15 % )
Total PLLs 1 / 12 ( 8 % )
Total DLLs 0 / 2 ( 0 % )
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We have also achieved an ASIC full-custom design for a 
simple model of the Ranking block only, suitable for 
implementation in an LSI architecture [8,11]. 

IV. EXPERIMENTAL RESULTS AND EVALUATION

We examined the system performance in a real application 
for character recognition. The system was applied for 
recognition of both printed and handwritten English 
characters. As for printed characters a total number of 25 
datasets including data of five different fonts (Times, Arial, 
Monotype, Symbols, Comic), noisy data, color background 
data, slightly rotated data, and data with different resolution 
were gathered and tested. Each set contained 26 characters. 
The classification results were very satisfactory and 
comparing to the results for handwritten data, with much less 
misclassifications. Here, we only report the results of 
experiments on handwritten data. A number of 35 datasets of 
English characters written by four different writers were used 
for the experiments. To have a variation limited data for this 
step of the test, the writers were asked to adhere to standard 
writing style and not to use a complicated writing manner. 
Additionally, we have also made some tests on more 
generalized datasets like CEDAR [10] and the results will be 
presented in our later works.

We achieved the evaluation of system performance by a 
Matlab simulation program in the three levels of: 
classification, learning, and hardware efficiency. Details of 
each level are described in the following. 

Classification results: The classification results during and 
after the learning process are reported in Table II and III. It is 
worth-noting that the system has started learning without any 
initial reference patterns or a predefined dataset. The data are 
given to the system in a random order. As can be realized 
from the Table II, the number of patterns added as new 
references as well as the misclassification rate is high in the 
beginning of the process but when the learning goes on and 
system gets to a more stable condition by adjusting 
continuously the reference pattern memory and distance 
thresholds, the misclassification rate reduces dramatically.  

TABLE II
CLASSIFICATION RESULTS FOR FOUR DATASETS FROM DIFFERENT WRITERS 

DURING THE LEARNING PERIOD (TAKING NO INITIAL REF. PATTERNS).
Dataset A 
(52 samples)

Dataset B 
(52 samples)

Dataset C 
(52 samples)

Dataset D 
(52 samples)

Writer Mis
classify

New
Ref.

added

Mis
classify

New
Ref.

added

Mis
classify

New
Ref.

added

Mis
classify

New
Ref.

added
1 9 42 12 25 11 19 19 14 
2 11 36 9 26 16 19 10 31 
3 10 36 6 20 10 21 12 12 
4 11 39 14 20 13 22 5 20 

Total (%) 19.7 73.6 19.7 43.8 24 38.9 22.1 37 

In Table III we can see the classification results for two 
different datasets after a short period of learning (832 

samples). The average misclassification rate is around 5% 
which is reasonable for this type of application. 

The histogram of the winner-input distance for the 
classification of handwritten datasets is shown in the Fig. 5. 
From this histogram it can be found that the number of 
accurate classifications, that is classifications with lower 
winner-input distance, is very large which could imply high 
reliability of the classification. 

TABLE III
CLASSIFICATION RESULTS FOR TWO TEST DATASETS AFTER A PERIOD OF 

LEARNING.

Fig. 5. Histogram of winner-input distance for classification of handwritten 
characters.

Figure 6 depicts the misclassification rate during the 
learning process. The first plot shows the misclassification 
rate versus the number of input samples and the second one 
versus the number of classified samples (i.e. input samples 
excluding the samples added as new reference patterns). 

Fig. 6. Changes in the misclassification rate during the learning process.

Learning results: As it is mentioned above, the model was 
applied in a learning task without initial reference patterns and 
we let the new patterns to be learned over the time. By a 
“learned” pattern we refer to a pattern that after a rank-jump 
process has entered into the long-term memory and can be 

Test Set 1 
(26 samples)

Test Set 2 
(26 samples)

Writer Mis
classify

New Ref. 
added

Mis
classify

New Ref. 
added

1 0 0 2 5 
2 1 0 1 6 
3 1 1 3 7 
4 1 0 2 4 

  Total (%) 2.8 0.9 7.4 20.4 
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considered as a stable reference pattern. To investigate the 
efficiency of learning, we tested two different approaches for 
ranking a new reference pattern. In the first approach, the new 
reference pattern is initially given the highest unoccupied rank 
in the long-term memory as long as unoccupied ranks are 
available, whereas in the second approach it gets the top rank 
in the short-term memory from the beginning. The plot of Fig. 
7 shows the learning progress for both approaches and is 
based on handwritten data listed in Table II. As can be seen 
the learning process is faster in the first approach, however, 
the approach two is more reliable. 

Fig. 7. Learning speed in the experimental tests on handwritten data. 

It is described earlier in the description of ranking algorithm 
that the key parameters for ranking up a reference pattern and 
shifting it up to the higher locations in the long-term memory, 
are JL and JS which are currently taken as 7 and 5 for a reliable 
classification case and 5 and 3 for other cases. By taking other 
values for JL and JS, depending on the data distribution, the 
learning speed will be changed significantly. Also, the border 
rank (s_rank) separating short-term and long-term memory, 
now is predefined as 180, but can be defined dynamically 
based on a statistical calculation. In that case, the learning 
speed will be varying during the learning process. 

Fig. 8. Distribution of the average of winner-input distance and threshold 
values (Dth).

Figure 8 displays the changes in the average of winner-input 
distance as well as the distance threshold values (Dth) during 
the learning process. The distance thresholds take initial value 
of 10 and become averagely smaller during the optimization 
process which implies a more accurate classification. 

Hardware efficiency: Using a pipelined structure in the 
hardware, we could save hardware resources as well as 
processing time. As we use a pipelined architecture also 
between the main processing blocks, the block with the 

longest processing time is the bottleneck of the system and its 
processing time can be considered as the overall pipeline time. 
We realized that the segmentation block with  processing time 
of roughly n(P+p) is the system bottleneck where P is the 
pixels number of input frame read by the sensor, p is pixels of 
each segmented character, is the time period (1/f), and n is 
the number of characters in a word. Given a main clock cycle 
of f=20 MHz and taking the average values of 15000, 1500, 
and 5 for parameters P, p, and n, respectively, we will get a 
pipeline process time of 82.5 s per character and 4.12 ms per 
word, which are very satisfactory for this application. The 
main system clock and consequently the overall processing 
speed can still be increased to higher values if faster I/O 
devices are used. 

V. CONCLUSION

In this paper we have proposed a learning model based on a 
short/long-term memory and an optimization algorithm for 
constantly adjusting the reference patterns. The system was 
implemented in an FPGA platform and tested with real data 
samples of handwritten and printed English characters. The 
classification results obtained from a simulation program 
showed an acceptable performance of classification and 
learning. We intend to improve the learning   performance by 
taking more dynamic parameters in the ranking process.  
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