
Abstract—An associative memory based learning model is
proposed which uses a short and long-term memory and a
ranking mechanism to manage the transition of reference vectors
between two memories. The memorizing process is similar to that
in human memory. In addition, an optimization algorithm is used
to adjust the reference vectors components as well as their
distribution, continuously. Comparing to other learning models
like neural networks, the main advantage of the proposed model
is no need to pre-training phase as well as its hardware-friendly
structure which makes it implementable by an efficient LSI
architecture without requiring a large amount of resources. The
system was implemented on an FPGA platform and tested with
real data of handwritten and printed English characters and the
classification results found satisfactory.

I. INTRODUCTION

The machine learning in artificial systems has attracted a
great amount of attention in recent years. Many different
approaches have been developed for improvement of learning
systems in the literature [1-3]. As for a learning model, one of
the main issues is the feasibility of training online in a real-
time application. However, in most of currently existing
models a pre-training process becomes necessary. For
example in case of neural networks, as a well-known
connectionist learning model, it is known that in most of
practical case the system can only be learned perfectly when
the entire data set is made available to the network in a prior
training procedure [4-5]. If a neural network is just given a
subset of the data, it often fails to learn the correct
generalization and remains stuck in a local error minimum.
The next issue in a learning model is a hardware-friendly
structure. A specialized hardware for a learning system offers
applicable advantages such as higher speed in processing of
repetitive calculations, lower cost by lowering total
component counts, and increased reliability in the sense of
reduced probability of equipment failure. In case of neural
networks, generally the large number of weight parameters as
well as the complicated algorithm of learning which basically
needs a large training data set and a long time of training,
makes it difficult to implement it in an integrated hardware
structure with limited amount of resources.

In this paper, we propose a novel learning model which is
capable to learn from input samples constantly and adjust the
reference pattern set whenever necessary. The underlaying
concept of the learning algorithm is based on taking a short
and long-term memory and a ranking mechanism which
manages inclusion and elimination of reference patterns as

well as their transition between the two memories. Also, the
reference vectors magnitude as well as their distribution are
adjusted continuously by means of an optimization algorithm.
The main advantage of the proposed algorithm comparing to
other learning methods, like neural networks, is that it can be
easily implemented in the lower level hardware as an LSI
architecture with no need to the large hardware resources.

In order to enhance the pattern matching speed, the
classification process is designed on the basis of using a
parallel associative memory. The prototype of associative
memory we use here has been already designed [6] and has a
mixed analog-digital fully-parallel architecture for nearest
Hamming/ Manhattan-distance search.

The prototype of the hardware system was first designed in
a higher level programming language (MATLAB) and then
transferred to HDL code and after synthesis and simulation
was programmed in an FPGA platform of the Altera Stratix
family, successfully. In order to evaluate the system
performance, it was used in the real application of character
recognition. A number of handwritten data samples were used
for testing the system and the results approved the efficiency
of classification with a high speed of pattern matching as well
as the learning functionality.

II. MODEL DESCRIPTION

As it is described in the Introduction, the main feature of
the proposed model is a dynamic learning function which
makes it useful in the real-time applications like video
detection, online text recognition, intelligent systems, etc.
With its hardware-friendly structure, the model can be easily
implemented in different hardware platforms. When compared
with other learning models like neural networks, the main
advantage of the proposed model is that a pre-training phase is
unnecessary and the model has a hardware-friendly structure.
The core part of the model is the learning procedure but it also
includes two further blocks of preprocessing and
classification, prior to the learning. More explanations on the
performance of each block are given in the following.

A. Learning Procedure
The core concept of learning in the model is based on a

short/long term memory which is very similar to the
memorizing procedure in the human brain. For this, the
memorized reference patterns are classified into two areas
according to their learning ranks. One is a short-term storage

Developing a Reliable Learning Model for Cognitive
Classification Tasks Using an Associative Memory

Ali Ahmadi, Hans Jürgen Mattausch, M. Anwarul Abedin, Tetsushi Koide, Yoshinori Shirakawa,
and M. Arifin Ritonga

Research Center for Nanodevices and Systems, Hiroshima University, Higashi-Hiroshima, Japan
Email: ahmadi@sxsys.hiroshima-u.ac.jp

214

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

1-4244-0707-9/07/$25.00 ©2007 IEEE

area where new information is temporarily memorized, and
the other is a long-term storage area where a reference pattern
can be memorized for a longer time without receiving the
direct influence of incoming input patterns. The transition of
reference patterns between short-term and long-term storages
is carried out by means of a ranking algorithm. Besides, an
optimization algorithm is applied to update the reference
patterns and optimize their distribution as well as the threshold
values used for classification and ranking. The block
flowchart of Fig. 1 shows an outline of the learning procedure.

As can be seen from the flowchart, by taking a nearest-
matching over the reference patterns memory, we get the
winner address and winner-input distance (Dw-i). The winner-
input distance is then compared with a local threshold value
corresponding to each reference pattern to find if the

classification is acceptable or a new reference pattern to be
added. In case that the winner-input distance is under
threshold Dth and also there is a reasonable margin between
winner and nearest-loser, the classification is considered as a
reliable case and we give a high rank-jump to the winner
pattern in the ranking memory, otherwise the winner will get a
low rank-jump. Details of the two main blocks, ranking and
optimization, are described below.

Ranking block: Each reference pattern in the system is
given an “unique rank” showing the occurrence level of the
pattern. A ranking memory is considered for the ranks where
the rank is as the index of the memory and the reference
patterns address (its address in the reference memory) are
saved as the content. The rank is increased by a predefined
jump value in case of a new occurrence (when a new input is
matched with the current reference pattern) , and reduced
gradually when there is no occurrence of matching and other
reference patterns getting higher ranks and shifting up to
higher positions. The reference patterns are classified into the
long-term and short-term memory according to their rank

whereas a specific rank level of s_rank is defined as the
border of short-term and long-term memory. If the rank of
each pattern gets higher then s_rank, it enters into the long-
term memory, and conversely if its rank gets less then s_rank
falls into the short-term memory. Figure 2 shows the
flowchart of ranking process. As can be seen from the
flowchart, if Dw-i<Dth (i.e. a known Ref. pattern case) then we
first search for the existing rank of the winner in the ranking
memory.

If the winner belongs to the short-term memory
(rank<s_rank) the rank advancement is JS, and if the case of
winner is belonging to the long-term memory (rank>s_rank),
the rank advancement becomes JL (JL>JS). Then each of the
patterns having rank between the old and the new winner rank
are reduced in rank by one (Fig. 3). The transition between
short and long-term memory happens by these changes in
rank.

In the case of Dw-i Dth, the system considers input and
winner pattern to be different and takes the input pattern as a
new reference pattern. The top rank of the short-term memory
is given to this new reference pattern (if the long-term
memory is not yet full, then the lowest rank in the long-term
memory will be assigned) and subsequently the rank of each

Search nearest-match
Ref. pattern (winner)

Winner_input
distance

Memorize as a
new Ref.
pattern

Winner> Nearest_loser +C

Set a high
rank-jump

more than threshold Dth

Yes

(reliable case)

Set a low
rank-jump

Ranking process

Update Ref. pattern

Update distance
threshold Dth

No

less than threshold Dth
(Existing Ref. pattern)

Preprocessed
input data

Optimization
block

Ranking
block

Reliability
check

Associative
memory

Learning procedure

Winner address & distance
Nearest-loser address & distance

Search nearest-match
Ref. pattern (winner)

Winner_input
distance

Memorize as a
new Ref.
pattern

Winner> Nearest_loser +C

Set a high
rank-jump

more than threshold Dth

Yes

(reliable case)

Set a low
rank-jump

Ranking process

Update Ref. pattern

Update distance
threshold Dth

No

less than threshold Dth
(Existing Ref. pattern)

Preprocessed
input data

Optimization
block

Ranking
block

Reliability
check

Associative
memory

Learning procedure

Winner address & distance
Nearest-loser address & distance

Fig. 1. Flowchart of the learning procedure. C is a constant value selected
experimentally based on the data condition.

Fig. 2. Flowchart of the ranking process block.

Fig. 3. Rank advancement for a currently existing reference pattern.

215

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

of the other reference patterns existing in the short-term
memory are moved down by one, and the reference pattern
with the lowest rank will be erased from the memory.

Optimization block: This block is used for renewing the
reference patterns continuously according to the input data
variation. The main purpose is to improve the reliability of the
classification. We take two main updating steps including
reference pattern magnitudes and distance thresholds. The first
step is to decide whether a new reference pattern is generated
or the nearest-matching pattern can be considered as the
winner. The decision maker here is the local distance
threshold Dth corresponding to each reference pattern, which
itself is renewed during the optimization process. If the
winner-input distance is greater than Dth, that is the case of
new reference pattern generating, initial values are given to
the new Dth and Ref pattern. Also, Dth(mean) and Ref(mean) as
well as the input counter memories are set with initial values.
Dth(mean) and Ref(mean) memories are used later for updating of
Dth and Ref patterns. In case of a known reference pattern, i.e.
winner-input distance is smaller or equal to Dth, we update the
mean values of Dth and Ref pattern magnitude (Dth(mean) &
Ref(mean)) for the current winner. The updating process is
explained in the following. If the counter number, i.e. the
number of inputs already assigned to the current winner, is
larger than a predefined threshold Nth, then the Dth and Ref
memory are updated with the last mean values and the counter
is set to 1.

Updating process
Reference pattern magnitude: A reference pattern vector is

a combination of a reference image and its feature vector as
described in the classification section. For each ref. vector we
take a mean vector of input patterns matched with it as

in
x1Ref (1)

where xi is the ith input vector and Ref is the mean-vector of
the last n input assigned to the specific reference pattern. This
mean-vector is updated at each input incoming as follows

nn n
nn

/)Ref)1((Ref
1

x (2)

where 1
Ref

n is the pervious value of mean-vector before
input xn entered. In order to simplify the instructions for
hardware implementation, relation (2) can be written as

nn
nnn

/)Ref(RefRef
11

x (3)
where the division by n is performed only when n is a multiple
of 8, using a simple right shift operator. The replacement of
the reference vector with this updated mean-vector is achieved
after a specific number of incoming inputs (Nth).

Distance thresholds: In addition to reference patterns, the
threshold values for the winner-input distance are updated in
this block. For each reference vector we take a local distance

threshold based on the distribution of local data. Similarly to
relation (1) we have

k
wiD

n
D 1

th
 (4)

where Dwi
k is the winner-input distance of the kth input sample

and
thD is the mean value of last n Dwi. Similarly to (3) we use

following relation for updating this mean value.

nDDDD n
wi

nn
th

n
/)(

1

th

1

th
 (5)

It should be noted that in relation (5) the Dwi
n is not only the

winner-input distance of the inputs falling inside the current
Dth but also of the input samples that are out of Dth but have
been matched to the current reference pattern (however they
are considered as new reference patterns later). This prevents
the distance threshold Dth to become continuously smaller.

The replacement of the threshold Dth with this updated
mean value is achieved after a specific number of incoming
inputs (Nth).

B. Preprocessing Steps
Preprocessing steps are intended to read the input data and

prepare it for the classification task. Since in the current work,
the proposed learning model is applied for a character
recognition task, the preprocessing steps are designed to
provide the necessary preparations of the character input data
prior to the classification step. The preprocessing steps
include following blocks: reading, noise removal, binarizing,
labeling, segmentation, feature extraction, and normalizing.

Reading: Contains a reading device (line-scan sensor)
moving on each line of the text with an appropriate speed and
scans the data continuously as a sequence of thin frames. The
frames between each two word spaces are collected and form
a larger frame as a gray-scale bitmap array which holds all the
word characters.

Noise removal: As the most noises appearing in the texts
are of the pepper & salt type, we apply a median filter with a
neighborhood size of 3 3 for noise removing. A tree-diagram
is used for finding the median of each 9 neighbor pixels [7].
The method is hardware-friendly and can be implemented in a
pipelined structure.

Binarizing: In this block the input image frame is binarized
to a simple black-white bitmap by taking a local threshold
value extracted via a mean filter with neighborhood size of
7 7. The structure of the mean filter is likely similar to the
median filter explained above in terms of the registering
manner of neighborhood pixels.

Labeling: In the labeling process we scan all the input frame
pixels sequentially while keeping the labels of preceding
neighboring pixels (4 pixels’ labels) in 4 registers and decide
if the current pixel belongs to one of the preceding labels or
gets a new label. The labels for all image pixels are then
extracted in this way and saved in a label memory. In case of
facing with equivalent labels for the same character, like in the

216

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

case of character W, the label equivalences are recorded in
two buffers SLB1 and SLB2.

Segmentation: Once the labeling process is terminated, the
image memory is scanned once again for the segmentation
task. We scan the labeled image N times each time searching
label Li (i=1…N). The label read from memory is then
searched within a lookup-table (SLBF) which is already
created based on data of SLB1 and SLB2 buffers, and is
replaced with the final equivalent label. The addresses of
pixels with label Li are written in a new memory (SM) as a
distinct segment Li. Next, the boundaries of segment Li are
identified and a new 2-dimensional segment vector with
binary values 0 and 1 is generated based on the addresses
already saved in the SM memory.

Feature extraction: In order to have a robust character
classification, some characteristic features of the input pattern
are extracted and grouped in a feature vector. The features are
selected so that they have the minimum dependency on size
and variation of data. Given a segmented (isolated) character
we extract its moment based features as follows: Total mass
(number of pixels in a binarized character), Centroid,
Elliptical parameters (i.e. Eccentricity (ratio of major to minor
axis) and Orientation (angle of major axis)), and Skewness.

 In principle skewness is defined as the third standardized
moment of a distribution as

 (6)
but to simplify the calculations we take a simpler measure of
Karl Pearson [9] defined as

 = 3 (mean – median) / standard deviation (7)
and calculate horizontal and vertical skewness, separately.

All the above six features, i.e. total mass, centroid,
eccentricity, orientation, horizontal skewness, and vertical
skewness are then normalized as is described in the next
section to generate the feature vector.

Normalizing: Each segmented character as well as the
feature vector are normalized prior to the classification. The
segmented character bitmap is rescaled to 16 16 pixels using
a bilinear interpolation technique. As for the feature vector,
each feature value is normalized using the minimum and
maximum of the feature in the memory, and gets a value
ranging between 0 and 1.

C. Classification block
The classification task is carried out by using a nearest-

matching method taking a hybrid distance measure: a
Hamming distance for the main image vector DH (image) which
comes as a 256 bits vector after size normalizing, and an
Euclidean distance for the feature vector DE(feature). Because
of the variations of the magnitudes of two distance measures,
the values should be weighted. We use weighting factors as
follows.

D = DH (image) + DE(feature) (8)

where in our experiments we found =0.25 and =1 as the
most effective values.

III. HARDWARE IMPLEMENTATION

The proposed learning algorithm is intended to be
implementable in the lower level of the hardware structure
with higher speed and minimum resources. As for prototyping
of the whole model including preprocessing and classification
blocks, we have chosen an FPGA platform. Figure 4 shows
the block diagram of the system implemented in the FPGA. A
pipelined architecture is used for the main data flow
conducting between processing blocks. Furthermore, each
block itself is designed in a pipelined structure. An Altera
Stratix family FPGA device (EP1S80) with a resource
capacity of 79K logic cells and 7.4 Mbits of RAM memory is
applied. As for reading device we use the line-scan sensor
ELIS-1024 of Panavision Co. with a resolution level of
1024 1 pixels equipped with a 16mm optical lens. The system
first was designed in Verilog HDL and after synthesis and
functional simulation, we performed route & placement for
FPGA programming. The route & placement is done with the
Altera QuartusII software. An average clock frequency of 20
MHz is selected for all processing blocks.

The resource usage for the whole system excepting the
feature extraction part is reported in Table I. The DSP blocks
listed in the table are used for the noise removal block in the
preprocessing steps. From Table I we can see that only a
reasonable amount of logic cells (19%) and memory block
(38%) are needed for implementation of major system blocks.
The main system clock can also be increases to higher values
if faster I/O devices are used.

I/O

Read Noise
Removal

Labeling Segme
ntation

Normalize Classifica
tion

In_mem Med_mem
Labeling
_mem

Segm_
mem

Ranking_
mem

I/O

Ranking

Ref_mem

Ref_mem2

Ref_mem1

Ref_mem3

Ref_mem4

Optimization

I/O
controller

Clock
Generator

Load
Reference
Patterns

SLB
8 8

5
5

5
8

Main Controller

Learning unit

To all units

Data
from
scanner

1

Winner
vector

5

Bw_mem

Binarize

8 8

Mean_mem

Dth_mem

Cnt_mem
Output
pattern

Process-enable signal Process-finished flag

111 1 1

1

1

1

1

2

2

Preprocessing units

I/O

Read Noise
Removal

Labeling Segme
ntation

Normalize Classifica
tion

In_mem Med_mem
Labeling
_mem

Segm_
mem

Ranking_
mem

I/O

Ranking

Ref_mem

Ref_mem2

Ref_mem1

Ref_mem3

Ref_mem4

Optimization

I/O
controller

Clock
Generator

Load
Reference
Patterns

SLB
8 8

5
5

5
8

Main Controller

Learning unit

To all units

Data
from
scanner

1

Winner
vector

5

Bw_mem

Binarize

8 8

Mean_mem

Dth_mem

Cnt_mem
Output
pattern

Process-enable signal Process-finished flag

111 1 1

1

1

1

1

2

2

Preprocessing units

Fig.4. Block diagram of the system implemented in the FPGA.

TABLE I
ROUTE & PLACEMENT RESULTS FOR THE WHOLE SYSTEM IMPLEMENTED IN

AN ALTERA STRATIX FPGA.

Fitter Status Successful
Quartus II Version 4.2 Full Version
Top-level Entity Name OCR
Family Stratix
Device EP1S80B956C7
Timing Models Final
Total logic elements 15,451 / 79,040 (19 %)
Total pins 281 / 692 (40 %)
Total virtual pins 0
Total memory bits 2,854,174 / 7,427,520 (38 %)
DSP block 9-bit elements 28 / 176 (15 %)
Total PLLs 1 / 12 (8 %)
Total DLLs 0 / 2 (0 %)

217

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

Handwritten characters

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11
Winner-input distance

Sa
m

pl
es

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000
Input samples/ classified samples

M
is

cl
as

si
fie

d
ra

te
 (%

)

Vs. Input samples

Vs. Classif ied samples

We have also achieved an ASIC full-custom design for a
simple model of the Ranking block only, suitable for
implementation in an LSI architecture [8,11].

IV. EXPERIMENTAL RESULTS AND EVALUATION

We examined the system performance in a real application
for character recognition. The system was applied for
recognition of both printed and handwritten English
characters. As for printed characters a total number of 25
datasets including data of five different fonts (Times, Arial,
Monotype, Symbols, Comic), noisy data, color background
data, slightly rotated data, and data with different resolution
were gathered and tested. Each set contained 26 characters.
The classification results were very satisfactory and
comparing to the results for handwritten data, with much less
misclassifications. Here, we only report the results of
experiments on handwritten data. A number of 35 datasets of
English characters written by four different writers were used
for the experiments. To have a variation limited data for this
step of the test, the writers were asked to adhere to standard
writing style and not to use a complicated writing manner.
Additionally, we have also made some tests on more
generalized datasets like CEDAR [10] and the results will be
presented in our later works.

We achieved the evaluation of system performance by a
Matlab simulation program in the three levels of:
classification, learning, and hardware efficiency. Details of
each level are described in the following.

Classification results: The classification results during and
after the learning process are reported in Table II and III. It is
worth-noting that the system has started learning without any
initial reference patterns or a predefined dataset. The data are
given to the system in a random order. As can be realized
from the Table II, the number of patterns added as new
references as well as the misclassification rate is high in the
beginning of the process but when the learning goes on and
system gets to a more stable condition by adjusting
continuously the reference pattern memory and distance
thresholds, the misclassification rate reduces dramatically.

TABLE II
CLASSIFICATION RESULTS FOR FOUR DATASETS FROM DIFFERENT WRITERS

DURING THE LEARNING PERIOD (TAKING NO INITIAL REF. PATTERNS).
Dataset A
(52 samples)

Dataset B
(52 samples)

Dataset C
(52 samples)

Dataset D
(52 samples)

Writer Mis
classify

New
Ref.

added

Mis
classify

New
Ref.

added

Mis
classify

New
Ref.

added

Mis
classify

New
Ref.

added
1 9 42 12 25 11 19 19 14
2 11 36 9 26 16 19 10 31
3 10 36 6 20 10 21 12 12
4 11 39 14 20 13 22 5 20

Total (%) 19.7 73.6 19.7 43.8 24 38.9 22.1 37

In Table III we can see the classification results for two
different datasets after a short period of learning (832

samples). The average misclassification rate is around 5%
which is reasonable for this type of application.

The histogram of the winner-input distance for the
classification of handwritten datasets is shown in the Fig. 5.
From this histogram it can be found that the number of
accurate classifications, that is classifications with lower
winner-input distance, is very large which could imply high
reliability of the classification.

TABLE III
CLASSIFICATION RESULTS FOR TWO TEST DATASETS AFTER A PERIOD OF

LEARNING.

Fig. 5. Histogram of winner-input distance for classification of handwritten
characters.

Figure 6 depicts the misclassification rate during the
learning process. The first plot shows the misclassification
rate versus the number of input samples and the second one
versus the number of classified samples (i.e. input samples
excluding the samples added as new reference patterns).

Fig. 6. Changes in the misclassification rate during the learning process.

Learning results: As it is mentioned above, the model was
applied in a learning task without initial reference patterns and
we let the new patterns to be learned over the time. By a
“learned” pattern we refer to a pattern that after a rank-jump
process has entered into the long-term memory and can be

Test Set 1
(26 samples)

Test Set 2
(26 samples)

Writer Mis
classify

New Ref.
added

Mis
classify

New Ref.
added

1 0 0 2 5
2 1 0 1 6
3 1 1 3 7
4 1 0 2 4

 Total (%) 2.8 0.9 7.4 20.4

218

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400
Input samples

D
is

ta
nc

e

Winner-input-Distance

Distance Threshold

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000
Input samples

Le
ar

ne
d

sa
m

pl
es

Learning Appr. 1
Learning Appr. 2

considered as a stable reference pattern. To investigate the
efficiency of learning, we tested two different approaches for
ranking a new reference pattern. In the first approach, the new
reference pattern is initially given the highest unoccupied rank
in the long-term memory as long as unoccupied ranks are
available, whereas in the second approach it gets the top rank
in the short-term memory from the beginning. The plot of Fig.
7 shows the learning progress for both approaches and is
based on handwritten data listed in Table II. As can be seen
the learning process is faster in the first approach, however,
the approach two is more reliable.

Fig. 7. Learning speed in the experimental tests on handwritten data.

It is described earlier in the description of ranking algorithm
that the key parameters for ranking up a reference pattern and
shifting it up to the higher locations in the long-term memory,
are JL and JS which are currently taken as 7 and 5 for a reliable
classification case and 5 and 3 for other cases. By taking other
values for JL and JS, depending on the data distribution, the
learning speed will be changed significantly. Also, the border
rank (s_rank) separating short-term and long-term memory,
now is predefined as 180, but can be defined dynamically
based on a statistical calculation. In that case, the learning
speed will be varying during the learning process.

Fig. 8. Distribution of the average of winner-input distance and threshold
values (Dth).

Figure 8 displays the changes in the average of winner-input
distance as well as the distance threshold values (Dth) during
the learning process. The distance thresholds take initial value
of 10 and become averagely smaller during the optimization
process which implies a more accurate classification.

Hardware efficiency: Using a pipelined structure in the
hardware, we could save hardware resources as well as
processing time. As we use a pipelined architecture also
between the main processing blocks, the block with the

longest processing time is the bottleneck of the system and its
processing time can be considered as the overall pipeline time.
We realized that the segmentation block with processing time
of roughly n(P+p) is the system bottleneck where P is the
pixels number of input frame read by the sensor, p is pixels of
each segmented character, is the time period (1/f), and n is
the number of characters in a word. Given a main clock cycle
of f=20 MHz and taking the average values of 15000, 1500,
and 5 for parameters P, p, and n, respectively, we will get a
pipeline process time of 82.5 s per character and 4.12 ms per
word, which are very satisfactory for this application. The
main system clock and consequently the overall processing
speed can still be increased to higher values if faster I/O
devices are used.

V. CONCLUSION

In this paper we have proposed a learning model based on a
short/long-term memory and an optimization algorithm for
constantly adjusting the reference patterns. The system was
implemented in an FPGA platform and tested with real data
samples of handwritten and printed English characters. The
classification results obtained from a simulation program
showed an acceptable performance of classification and
learning. We intend to improve the learning performance by
taking more dynamic parameters in the ranking process.

ACKNOWLEDGMENT

This work has been supported by the 21st century COE
program, Ministry of Education, Culture, Sports, Science and
Technology, Japanese government. Authors would like to
express their thanks for this support.

REFERENCES

[1] T.G. Dietterich, “Machine Learning Research: Four Current Directions,”
AI Magazine, Vol. 18, No. 4, pp. 97-136, 1997.

[2] T. Mitchell, Machine Learning, McGraw Hill, USA, 1997.
[3] T.G. Dietterich, “Ensemble methods in machine learning,” Proc. of the

First Int’l Workshop on Multiple Classifier Systems, Lecture Notes in
Computer Science, pp. 1-15, Springer, Cagliari, Italy, 2000.

[4] C. Harris, Parallel distributed processing models and metaphors for
language and development. Ph.D. Dissertation, University of California,
San Diego, 1991.

[5] S. Haykin, Neural Networsk. New Jersey: Prentice Hall, 1999.
[6] H.J. Mattausch, T. Gyohten, Y. Soda, and T. Koide, “Compact

Associative-Memory Architecture with Fully-Parallel Search Capability
for the Minimum Hamming Distance,” IEEE Journal of Solid-State
Circuits, Vol. 37, pp. 218-227, 2002.

[7] J. Smith, Xilinx Design Hints and Issues, Address on the Web:
http://www.xilinx.com/xcell/xl23/xl23_16.pdf.

[8] Y. Shirakawa, M. Mizokami, T. Koide, and H.J. Mattausch, “Automatic
Pattern-Learning Architecture Based on Associative Memory and
Short/Long Term Storage Concept,” Proc. of SSDM'2004, pp. 362-363,
Japan, 2004.

[9] Wikipedia: http://en.wikipedia.org/wiki/Skewness.
[10] A database of handwritten texts generated by CEDAR research group in

university of Buffalo. Web address: http://www.cedar.buffalo.edu/.
[11] Y. Shirakawa, H.J. Mattausch, and T. Koide, “Reference-Pattern

Learning and Optimization from an Input-Pattern Stream for
Associative-Memory-Based Pattern-Recognition System”, Proc. of
MWSCAS'2004 (IEEE In’l Midwest Symposium on Circuits and
Systems), Vol. I, pp. 561-564, Japan, 2004.

219

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

