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Abstract—In this paper a hybrid global optimization method 
 is further investigated and applied for feed-forward 

neural networks supervised learning. The method is initially 
tested on several benchmark problems and subsequently 
employed for pattern recognition problem. The proposed 
technique is used for training Neural Networks (NN) that have 
to inspect and classify three types of cork tiles images. During 
the feature extraction phase, statistical textural characteristics 
are obtained from the tiles’ images and then used for training 
several different NN architectures. Results from the testing 
phase are discussed and analysed, showing good generalization 
abilities of the trained NN. Finally, directions of future work 
are briefly stated.  

GLP Sτ

 
Index Terms – Supervised neural networks learning, global 

optimization, image processing, feature extraction, cork tiles 
classification. 

I. INTRODUCTION 
Neural Networks are nowadays widely applied in image 

processing, as predicted more than a decade ago ([1]). They 
have been used for preprocessing, feature extraction, 
segmentation, object detection, and pattern recognition. The 
focus of this paper is on the latter of these applications. 

The use of statistical pattern recognition dates from 1950s 
and, although it is not one of the main topics of image 
processing research, it provides an important background – 
especially in the area of automated visual inspection where 
decisions about the adequacy of the products have to be 
made constantly [2]. On the other hand, real industrial 
applications of texture description and recognition are 
becoming more and more common [1, 3]: in industrial 
inspection – quality and process control [4, 5]; in medical 
diagnosis [6, 7, 8]; in defense [9, 10], etc. 

This paper further investigates a hybrid stochastic 
method, called  [11], which combines the  
technique [12], based on 

GLP Sτ LP Oτ

LPτ  low-discrepancy sequences, 
Genetic Algorithms (GA) and Simplex Local Search.  We 
employ this method for supervised Neural Network (NN) 
learning of pattern recognition problem – automated visual 
inspection and classification of cork tiles. The texture 
images are to be classified into three different classes. 
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Initially, feature extraction is performed and the obtained 
statistical textural characteristics are used for training NN of 
several architectures.  

Before employing the investigated  method for a 
pattern recognition problem, we report and discuss results 
from tests on global optimization of multimodal 
mathematical functions and from training NNs, applied for 
benchmark classification and regression tasks. 

GLP Sτ

In the next section, the  global optimization 
technique is briefly discussed and results of optimal NN 
learning from tests on well-known benchmark problems are 
shown. In Section III, the problem of cork tiles classification 
is stated and the employed image processing technique is 
described. Results from the application of NN for tiles 
classification are subsequently reported, analysed and 
discussed. Finally, directions for future work and conclusion 
are given.  

GLP Sτ

II. GL  OPTIMIZATION TECHNIQUE – DESCRIPTION AND 

TEST RESULTS 
P Sτ

We have developed global optimization method called 
 that uses evolutionary computation based on genetic 

operators, low-discrepancy sequences of points and heuristic 
rules to find regions of attraction when searching for a 
global minimum of defined objective function. Once a 
region of attraction with a global minimum is located, the 
Nelder-Mead Simplex local search is used to further refine 
the solution. The combination of the three techniques 
(Genetic Algorithms,  and Simplex Search) provides a 
powerful hybrid heuristic optimization method, which has 
been tested on a number of benchmark mathematical 
functions from 30 to 150 dimensions and has been applied 
for NN training of several classification and prediction tasks 
[11]. 

GLP Sτ

LP Oτ

 

A.  Optimization Technique GLP Sτ

Low-discrepancy sequences of points are deterministically 
generated uniformly distributed points. Uniformity is an 
important property of a sequence of points which, simply 
said, guarantees that the points are evenly distributed in the 
whole domain. When comparing two uniformly distributed 
sequences, there are ways to specify which one of them is 
the better one (Fig.1). In such cases, features as discrepancy 
and dispersion are used in order to quantify the uniformity 
of a sequence.  

The advantage of the low-discrepancy sequences is that 
they avoid so called shadow effect, i.e., when projections of 
several points on the projective planes are coincident. As it 
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can be seen from Fig.1, the projections from the cubic 
sequence give four different points on the projection plane, 
each of them repeated twice; whether the LPτ  sequence 
gives eight different projection points. Therefore, the low- 
discrepancy sequence would describe a function behavior in 
any of the projection planes much better than the cubic one, 
and this advantage increases with the increase of the 
dimensionality and the number of points. This feature is 
especially important when the function in hand is weakly 
dependent on some of the variables and strongly dependent 
on the rest of them.  

 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Two different uniform sequences: (a) Cubic sequence; (b) LPτ  low-

discrepancy sequence.
 
The  technique [12] can be summarized as follows: 

initially we seed Sobol’s low-discrepancy points (  
points) in the whole search region, from which we choose 
the most promising and seed new  points in hyper-cubes 
with centers in the chosen ones. Then we choose few 
promising from the new ones and again seed in the 
neighborhood of each one and so on, until a halting 
condition is satisfied. We combine  and Genetic 
Algorithms with moderate population size. The GA aims to 
explore the searched space and improve the initial seeding 
with  points by applying genetic operators in a few 
generations. Subsequently, a heuristic-stochastic rule is 
applied in order to select some of the individuals and to start 

 search in the neighborhood of each chosen one. 
Finally, we use a local Simplex Search in order to refine the 
solution and achieve better accuracy.  

LP Oτ

LPτ

LPτ

LP Oτ

LPτ

LP Oτ

Our method combines the effectiveness of GA during the 
early stages of the search with the advantages of  and 
the local improvement abilities of Simplex Search. 
Generally, the technique could be described as follows 
([11]): 

LP Oτ

 
1. Generate a number I of initial  points.  LPτ

2. Select G, (G  I) points, that correspond to the best 
function values. Let this be the initial population p(G) of 
the GA. 

∈

3. Perform GA until a halting condition is satisfied.  
4. From the population p(G) of the last GA generation, 

choose N points (1 < N < G/2) . 

5. Initialize the  search in the neighborhood of each 
chosen point. 

LP Oτ

6. After the stopping conditions of the  searches are 
satisfied, initialize a local Simplex Search in the best 
point found by all searches. 

LP Oτ

LP Oτ

 
For the GA we adopt the selection and mutation operators 

as given in [13], and for the recombination we use a 
conventional one-point recombination. The general form of 
the performed GA is: 
a) From the current population p(G), each individual is 

selected to undergo recombination with probability Pr. If 
the number of selected individuals is odd, we dispose of 
the last one selected. All chosen individuals are 
randomly paired for mating. Each pair produces two new 
individuals by recombination; 

(b) 

x y 

z 

(a) 

b)  From the current population p(G), each individual is 
selected to undergo mutation with probability Pm;  

c)  Among the parent G individuals and those generated by 
the recombination and mutation, select the best G to 
form the new generation p(G); 

d)  If the halting condition is not satisfied, repeat from step 
(a). 

 
Recombination: let x = (x1, …, xn) and y = (y1, …, yn) are the 
parents and n is the dimensionality of the problem. Then a 
random integer k between 1 and n – 1 is drawn and two 
children x  and y  are formed as follows: 
 

 1 1

1 1

( , , , , , ),
( , , , , , ),

k k n

k k n

x x x x x
y y y y y

+

+

=

=

… …
… …

 (1) 

 
where (i i i i i )x x y xα= + −  and (i i i i i )y y x yβ= + −  for i = k 
+ 1, …, n where ,iα  iβ  are randomly drawn numbers in the 
interval [0, 1]. An illustrative example for the two 
dimensional case is given in Fig. 2. Two children are 
produced after shifting one of the coordinates of each 
parent. 
 
 
 
 y  y  
 
 
 
 
 
 
 
 
 
 
Fig. 2. Recombination in the two dimensional case: x and y (circles) are the 

parents and x  and y  (stars) are the children. 
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Mutation: if an individual is selected for mutation, we draw 
a random integer 1  k n. Then, the k-th coordinate of the 
individual is replaced by a randomly drawn value in the 
search interval for this coordinate. 

≤ ≤

 

Stopping condition: we compute the mean f  of all function 
values in p(G). If f* is the current best function value, found 
by the previous generations, the stopping condition is 
considered satisfied if | f - f* | < 0.001* | f* |. This condition 
shows that the GA population has converged to a function 
value that can not be significantly improved any further. If it 
is not satisfied, the algorithms stops when a predefined 
number of generations is reached. The adopted population 
size and maximal number of iterations are smaller than the 
usually used in conventional GA algorithms. For example, 
in [11] we adopted population size of 60 for the 30 
dimensional problems, opposed to 200 in [13] and 100 in 
[14]. As it can be expected, at this stage a global minimum 
can not be found, and the aim is to find regions in which the 

 will be employed to continue the search. LP Oτ

 
Combining GA with : to determine the number N of 

subsequent  searches (see point 4), we proceed as 
follows:  

LP Oτ

LP Oτ

Let p(G) is the last generation of individuals, found by the 
GA run. Firstly, we sort the individuals in a non-descending 
order and then associate rank ri to the first half of them by 
using formula (2):  

 

 max

max min

,i
i

f f
r

f f
−

=
−

 i = 1, …, G/2. (2) 

 
The rank ri takes values in the range [0, 1] and is a linear 
function which decreases with the growth of fi and vice 
versa, as fi decreases, ri increases. In (2), fmax and fmin are the 
maximal and minimal values of the population. 

The best individual of the population p(G) from the last 
generation has r1 = 1 and always competes. It is used as a 
center for a hypercube with side 2R in which the  
search will start. The parameter R is chosen heuristically 
after testing and determined as: 

LP Oτ

 
 R= 50/G + intmax*0.001.  (3) 
 

In (3), the constant intmax represents the largest of all initial 
search intervals. Subsequently, the next individual pi, i = 2, 
..., G/2  is considered. If any of the Euclidean distances 
between the individual and the selected ones is greater than 
2R (so that there is no overlapping in the  search 
regions), another  search with probability P

LP Oτ

LP Oτ LP*ri will be 
initiated, where PLP is a user defined probability constant in 
the interval [0.01, 1].  
The Global Optimization Algorithm τLP O . Each 

search is executed in a hypercube with side 2R and a  LP Oτ

center in the selected point from the last GA generation. 

Let n be the dimensionality of the hypercube, then the 
algorithm can be defined as follows: 
 
1.  Generate *I  initial  points in the hypercube of 

interest and compute the objective function for them. 
Arrange the function values in ascending order; 

LPτ

2.  Choose k ≤  K from the K "best" points for further 
investigation; 

3.  In small hypercubes, each having as a center one of the 
chosen in step 2 points, generate new points and calculate 
the objective function for them; 

4.   If among the new points no better point is detected or the 
predefined maximum number of iterations is reached, stop. 
Otherwise, repeat steps 2-4 with the new points. 

 
Self-adaptation is one of the most important 

characteristics of the  technique. The method is 
constructed on the base of heuristic rules (valid for all of the 
optimized functions) that determine: 

LP Oτ

- Which k regions (and with what size) to be explored; 
- Number of new LPτ  points to be generated in each of 

the regions (the same algorithm is used in order to choose 
the initial number of points *I ). The exact number of points 
is in the range of minimal and maximal user defined values. 
For 30-dimensional test functions in [11] we chose minimal 
possible value of *

minI  = 211 and maximal *
maxI  = 213, and K 

= 20. For the 100-dimentional test functions, the minimal 
and maximal values are increased to 213 and 215 
correspondingly, and K = 80. After the regions of interest 
are found, it is reasonable to generate more points in those 
of them, where the function is changing rapidly (a large 
function change in a small region) and vice versa – less 
number of points in regions where the function is smooth. 
To handle this problem, the  technique includes 
additional heuristic rules, which are given in detail in [12]. 

LP Oτ

All of those rules more or less depend on a parameter , 
which we consider to be the average Euclidean distance 
between any two neighboring points in the current iteration 
i. This parameter is a function of the volume of the searched 
space, the dimensionality n, and the number of points in it. 
The value of decreases with each iteration.  

*
iR

*
iR

The search always continues in a neighbourhood of the 
current best point. As new points are generated in the 
neighbourhood of each core point, the core point itself is 
still competing in the next pass. Thus, the next best point 
found in the following pass, would not be worse than the 
previous one (descent property). The algorithm would 
terminate if the best point has not been improved during the 
last iteration, or if the predefined number of passes is 
reached. The method does not guarantee that a global 
minimum (GM) is found, but guarantees that a GM region of 
attraction is located (in which a local search can be started). 
As any other stochastic method we have a probabilistic 
guarantee that a GM is found ([12]), which means that with 
the increase of the number of testing points, the probability 
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of reaching a GM, tends to one.  
 
Combining GA and τLP O  with a Simplex Local 

Search to form : the Nelder-Mead simplex method 
for function minimization is a fast local search technique 
that makes use only of function values and does not require 
restrictive conditions on the objective function, such as 
smoothness, Lipschitz continuity, etc. For the parameters 

τGLP S

( , , )α β γ  we adopt the combination of values (1, 0.8, 2). 
The speed of convergence (measured by the number of 
function evaluations) depends strongly on these parameters, 
but mostly, it is influenced by the choice of the initial 
simplex - its coordinates, form, and size. We chose the 
initial simplex to have one vertex in the best point found by 
the  search and another n vertices distanced from it in 
positive direction along each of its n coordinates with 
coefficient 

LP Oτ

λ .  The parameter λ  is chosen to be λ  = R 
(given with (3)) and depends on the size of the search region 
and the GA implementation. The simplex search stops if 
inequality (4) is satisfied:  

 

 
1

2

1

1 ( ) 10
n

i
i

f f
n

+
−

=

− <∑ 9 , (4) 

 
where fi, i = 1, …, n + 1 are the function values in the 
vertices of the current simplex and f  is the function value 
in the centroid of the simplex. This stopping condition 
shows how small the simplex has become. 
 

B. Testing   on multimodal mathematical functions GLP Sτ

The  technique was initially tested on a number of 
multimodal, multidimensional mathematical functions and 
its performance was compared with other stochastic 
methods: Orthogonal Genetic Algorithm with Quantization 
(OGA/Q, [13]) and Fast Evolutionary Programming (FEP, 
[14]).  

GLP Sτ

For all tested benchmark functions, the multiple tests (50 
runs) of our method converged to mean function values very 
close to the optimal extrema. The standard deviation also 
showed low variance of the solution values, indicating a 
good stability of the results. The number of function 
evaluations needed to reach an optimal solution (Fig. 3), was 
reported and compared with other global techniques in [11]. 
Of course fair comparison based only on the number of 
function evaluations is not possible, because there is 
variance in the stopping conditions adopted by the different 
methods, and also sometimes there are hidden and auxiliary 
function calculations used for calibration of the methods’ 
parameters. Nevertheless, the overall number of function 
evaluations can be used as an indicative measure for 
methods’ speed of convergence. Fig. 3 illustrates the 
average number of function evaluations (from 50 runs), 
needed by each of the techniques for all 30 and 100-
dimensional test functions. The overall comparison with the 

other two methods demonstrates very competitive, stable 
and efficient results for our method in terms of both number 
of function evaluations and mean function values [11]. 

 

 
Fig.  3. Test functions – 30 and 100 dimensional, ref. [11]. 

 

C. NN Training and Testing on Benchmark Problems 
The proposed in [11] algorithm was tested on several 

well-known benchmark problems with different 
dimensionalities: some of them classification problems (Iris 
and Diabetes); some prediction problems with continuous 
output (Servo); and one regression example. For 
comparison, a Levenberg-Marquardt Backpropagation 
algorithm was also performed, using Matlab NN Toolbox.  
The investigated NN architectures have static topology in 
which only the adjacent layers are fully connected. Each unit 
i in layer l, 0 ≤  l ≤  L, is indexed as il, il  = 1, 2, …, ul, where 
ul is the number of units in that layer. The input and target 
patterns are denoted with x p  and t p respectively. For a 
given pattern p, p = 1,2,…, P, the activation of a unit i from 

the l-th layer, is a g i w xi
p

l
p

i j j
p

j

ul
= −

=

−
= ∑( , ) ,w x 1

0

1
, where 

is the connection weight between unit j from the 
previous layer and unit i from the l-th layer. The bias is 

 with corresponding bias weight . The transfer 

function is a standard sigmoid , and for 
a given experiment with P learning samples, the error 

function is given with 

wi j,

x p
0 1= wi ,0

f a ei
ai( ( )) = + − −1 1

(
2

1

1
2

L
p p

p i
i

u
E x t

=

= −∑ )i . The network 

weight vector is an n-dimensional real Euclidean vector W , 
whose components are the weights of the network. The 
GLP Sτ  global optimisation algorithm is employed to 
minimise the objective function given with (5) and to 
perform optimal training: 
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1

1 ( )
P

p
pP

F E W
=

= ∑ .         (5) 

Every couple of rows in Table I shows the NN 
performance for each of the problems, assessing the training 
with the Error Function from equation (5) and evaluating 
the generalization abilities with the Mean Test Error. 

 
TABLE  I 

OPTIMAL ERRORS FOR THE  AND BP  GLP Sτ

Task Measure GLP Sτ  BP 

Error 
Function 

0.00097 (0.00056) 0.0091 (0.05)  
 
Iris 

Mean Test 
Error 

0.029 (0.073) 0.042 (0.078) 

Error 
Function 

0.0245 (0.005) 0.0474 (0.06)  
 
Servo 

Mean Test 
Error 

0.2841 (0.445) 0.4171 (0.5515) 

Error 
Function 

0.001 (0.005) 0.0764 (0.07)  
 
Diabetes 

Mean Test 
Error 

0.2619 (0.386) 0.2831 (0.2541) 

 
Table II illustrates the performance of  for the 

regression example described in [15]. The test results from 
2000 testing samples and 20 independent runs of the 
experiment show preferable performance of our method.  

GLP Sτ

 
TABLE II 

TEST RESULTS FOR THE GL  AND METHODS IN [15] P Sτ

Method Average Max Min Std. Dev. 
RLS 0.1901 0.2567 0.1553 0.0259 
IPRLS 0.1453 0.1674 0.1207 0.0076 
TWDRLS 0.1472 0.1711 0.1288 0.0108 
GLP Sτ  0.1349 0.1602 0.1184 0.0100 

 
 

Based on the reported and discussed results, we found the 
investigated and proposed GL  technique to be very 
competitive and reliable [11]. In this work we investigate 
further and employ the proposed method for a pattern 
recognition real world problem – automated visual 
inspection and classification of cork tiles. 

P Sτ

III. CORK TILES CLASSIFICATION PROBLEM 

A. Motivation 
Natural cork is an environmental-friendly material that 

completely biodegrades and can be recycled without 
creating any significant secondary waste. Although wine 
cork stoppers drive the cork industry [4], floor and wall cork 

covering still give 20% of the total cork business worldwide 
[16]. Insulation cork board has been invented in 1892 
mainly for use in cold storage areas. It consists of various 
sizes of cork granules compressed together under a high 
temperature. It is used for insulation between walls, roofs, 
floors, around pipes, etc, also as decorative element for 
walls and ceilings, for soundproofing purposes, etc. 

 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 

(c) 
 

Fig.  4. (a), (b), and (c): Three classes of tiles. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  5.  Tiles of two different classes do not match when put together. 
 
Automated visual inspection has already been applied for 

quality control of cork stoppers [4, 17]. The image-based 
inspection systems have high production rates and are based 
on a line-scan camera and a computer embedded in an 
industrial sorting machine, capable of acquiring and 
processing in real-time the surface image of stoppers. Our 
intention is to use GL  global optimization technique for 
training of NN capable of inspecting and classifying cork 

P Sτ
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tiles. Initially we consider three types of cork tiles (Fig. 4), 
which are inspected for their appearance. Automated 
classification of the types of cork board is motivated by the 
fact that producers would want to have a box containing a 
number of tiles that belong to the same class of appearance 
(or quality), since the use of different types (Fig. 5) of tiles 
would not be aesthetic (the crude tile images are courtesy of 
Prof. B.Batchelor and Mr. S. Caton from Cardiff University, 
UK). 
 

B. Texture Features Extraction 
Texture is defined as the variation of intensity (or variation 
of colour) in the image. There are five major categories of 
features for texture classification: statistical, geometrical, 
structural, model-based, and signal processing features 
([18]). One commonly applied and referenced statistical 
approach to texture features extraction is the co-occurrence 
method, introduced by Haralick [19]. The texture features 
based on these matrixes have been already successfully used 
for classification of wood, corn, grass, and water ([2]). The 
texture measures are easily computable and utilize the grey-
tone spatial dependencies. All of them are based on the 
assumption that the texture information of an image is 
contained in the overall or “average” spatial relationship, 
which the gray tones in the image have to one another. We 
used the Matlab Image Processing Toolbox in order to 
compute the co-occurrence matrix with the default eight 
grey levels. As commonly accepted by many authors ([18]), 
we used the nearest neighbour pairs at orientations of 0°, 
45°, 90°, and 135°. The Matlab Image Toolbox was used for 
the computation of the Contrast, Correlation, Homogeneity, 
and Energy characteristics in each direction. We considered 
the mean values of all four directions to be the parameters 
fed into the NN, and treated the classification to be rotation 
invariant task. Hence, each image was characterized by a 
four dimensional feature vector. Typical examples of the 
feature vectors for the three classes are given in Table III.  
 

TABLE III 
EXAMPLE OF THE FOUR-DIMENSIONAL FEATURE VECTOR FOR EACH CLASS.  

Class Contrast Correlatio
n 

Homogeneity Energy 

1st  0.2381 0.4211     0.8829     0.4547 
2nd  0.4795     0.5712     0.7971     0.1814 
3rd 0.3034 0.4679 0.8539 0.3467 
 
Fig. 6 and Fig. 7 show how the feature values are distributed 
for each of the classes and illustrate the mean values and the 
standard deviations of the four characteristics (16 samples 
for each class). It is seen from the figures that there is some 
major overlapping of all features for the first and the third 
class and the two classes are not linearly separable. For the 
Contrast, Homogeneity, and Energy characteristics, the first 
class contains most of the values of the third class. There is 
greater difference for the Correlation feature, but still the 
classes are not separable. This makes the task of correctly 
classifying them very challenging. The second class 

overlaps with the first one only for the Correlation feature 
(Fig. 7), while it is completely separated from the third class, 
which makes the correct classification of instances of class 
two easier. However, future research needs to be done 
concentrating on the various feature extraction techniques. 
As mentioned in [1], the search for the optimal set of 
features that gives the best class separability is a never-
ending quest. 
 

Fig.  6.  Distribution of the Contrast and Correlation features for the three 
classes – mean and standard deviation values. 

 
 

Fig.  7.  Distribution of the Homogeneity and Energy features for the three 
classes – mean and standard deviation values. 

 

C. Experimental Setup and Results  
For the Neural Networks learning problem, we used non-
overlapping images of three different tile types, adopting 
size of 150x150 pixels for each sample.  The aim was to 
classify correctly each testing image. From each of the three 
classes we used 8 samples for training and 8 different ones 
for testing. Therefore, in total, the NN was trained with 24 
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samples and tested with another 24.  We used the 
architecture described in Section II (B) where the input layer 
consists of four neurons. In the hidden layer three different 
cases were considered with the number of neurons being: 7, 
8 and 10 (this implies problem dimension of n = 51, n = 58, 
and n = 78, respectively). In all cases, the third layer had 
two neurons and the outputs for the three classes were coded 
as (0, 0) – for the first, (1, 0) – for the second, and (0, 1) – 
for the third class. 

The investigated NNs were not only with different 
topology but also two types of transfer functions were 
employed for the output layer – Heaviside and Sigmoid. In 
the second case, output values greater than 0.5 were 
assumed to be 1, and otherwise – 0. 

Results from the training and testing of NNs with three 
different topologies are given in Table IV. For each 
configuration, the NN was trained and tested 50 independent 
times and the obtained average results from the simulation 
are shown in Table IV. The fourth and fifth columns 
illustrate the classification rate and the mean test error for 
the cases of Sigmoidal transfer function. For the case of 
Heaviside function, mean test error is not applicable, since 
the error is always 0, 0.5, or 1. These measures evaluate the 
generalization ability of the corresponding Neural Network. 
The third column shows the mean train error from equation 
(5) and the corresponding standard deviation (given in 
parentheses). It demonstrates and assesses the minimization 
abilities of the  global optimization technique. GLP Sτ

 
TABLE  IV 

CORK TILES CLASSIFICTATION WITH TWO DIFFERENT TRANSFER FUNCTIONS 
IN THE OUTPUT LAYER. TRAINING AND TESTING RESULTS.   

Architectur
e 

Dimension 

Transfer 
function 

Mean Train Error 
Function (std) 

Mean Test Error 
(std) 

Test Success 
Rate 

Heav. 0.059 (0.021) – 74.9% 4-7-2, 
D  = 51 Sigm. 0.072 (0.0015) 0.094 (0.076) 72.17% 

Heav. 0.0633 (0.0117) – 72.9% 4-8-2, 
D = 58 Sigm. 0.069 (0.0015) 0.092 (0.097) 71.33% 

Heav. 0.0746 (0.015) – 72.25% 4-10-2, 
D = 72 Sigm. 0.067 (0.0014) 0.089 (0.067) 71.5% 
 

While natural cork stoppers are manufactured by 
punching a one-piece cork strip (and may have cracks and 
insect tunnels), insulation board consists of various sizes of 
granules compressed together under high temperature [16] 
and cracks are not likely to appear. Therefore, in [4] the 
authors are looking mostly for cracks in the cork stoppers, 
whereas in our case gray density changes and overall 
appearance are of interest. In [4], the authors classified three 
different types of stoppers and reported overall success rate 
between 65% and 79% (depending on different features and 
on different parts of the stoppers considered – body or tops). 
Comparing with their data, the results for the three types of 
cork tiles classification included in Table IV show strongly 
competitive values. 

 For all configurations, the test success rate was more than 
70%. These are promising results, since this experiment is 
just in an initial stage of building methodology for 
automated visual inspection of cork tiles. In all cases the 
train error function was minimized to values less than 0.072 
and the small standard deviation values indicate stable 
results for all 50 runs. Best minimization results were 
achieved in the case of 4-7-2 architecture with a Heaviside 
transfer function in the output layer. This was also the case 
with the best success rate – 74.9%, which gives us an 
optimal NN configuration with acceptable generalization 
abilities for the problem at hand. 

 

D. Future Work 
Success rate over 70% is a very good rate, considering that 
only few texture values were used and the data set was very 
limited. However, we expect that the results could be further 
improved if the following steps are implemented as future 
work: 

• Higher number of texture features to be examined. 
We  also intend to employ other techniques for 
feature extraction (e.g., filtering).  

• The effect of normalization of the input data to be 
investigated. 

• Different sizes of the processed images to be 
considered (here we used only 150x150). 

• The number of training and testing samples to be 
increased, as well as to include more types of cork 
tiles in the classification problem. 

• Different cross-validation approaches to be 
investigated when larger data sets are available.  

IV.  CONCLUSION 
In this work we investigated initial stages of building an 

automated system for visual control and inspection of cork 
tiles. Image features were extracted based on co-occurrence 
matrices. Feed-forward Neural Networks were applied for 
the classification of texture images (Fig.4). The NN were 
trained with the GL  global optimization technique and 
subsequently their generalization abilities tested with unseen 
samples. Six different NN architectures were employed for 
the task and all of them achieved classification success rate 
over 70%. However, in order to improve these results, a 
number of system alternations and research steps (listed in 
section III (D)) could be considered and investigated as a 
future work. 
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