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Abstract. This paper presents an image segmentation method that 
outlines fractured bones in an X-ray image of a patient’s arm within 
cast materials, and displays the alignment between the fractured 
bones. The cast material overlaying on the fractured bones creates 
extra noises to the X-ray image and provides challenges to the 
segmentation method. Our segmentation method aims on outlining 
the objects from a low contrast and high noise ratio of the X-ray 
images. A geodesic active contour model with global constraints is 
applied to this segmentation task. A prior shape is collected and 
embedded into the active contour model as a global constraint. A 
maximum-likelihood function is derived and used as a feedback 
system for each evolving process to a decision making procedure. 
Mutual Information is employed to measure the difference or the 
likelihood between the prior shape and the evolving curve.  
Experimental results show that the method produces the outlines of 
the fractured bones on the low contrast X-ray images robustly and 
accurately. The computation of our segmentation method is fast and 
efficient.  

1   Introduction 

Segmenting fractured bones and determining bone fracture 
alignment on X-ray images are important aspects in assessing 
the success of fracture treatment. A computer aided diagnostic 
tool for detecting bone fractures and determining their 
alignment could save clinicians time by simplifying the time-
consuming and tedious task. The key part of designing this tool 
is to design a method to effectively segment the broken bones 
from the x-ray image; this would enable the alignment 
calculation. The most difficult part of this segmentation task is 
to overcome the noisy background caused by the overlaying 
cast, especially in the areas around metaphysis where the bone 
objects appear as extremely blurry with very low contrast. 
Metaphysis and its background can barely be separated by 
traditional segmentation techniques. The inconsistent intensity 
pattern that changes from one X-ray to the next also causes 
difficulties in the segmentation process. In this research, we 
address a unique and robust segmentation method that 
specialized on the segmentation from the very noisy images. 
We apply our method to detect the fractured bone. 

Image segmentation plays a key role in computer vision 
applications such as robotics, pattern recognition, and medical 
image analysis and has long been an area of active research. 

Although many successes have been seen, image segmentation 
remains as a most challenging and difficult task and as a 
fundamental goal in computer vision research. The common 
difficulties for segmentation tasks are the ones that the images 
to be processed have a low signal-to-noise ratio or contain very 
complicated scenery where the objects in the image overlap 
(occluding and occluded objects produce poor contrast), or the 
object is embedded in a very noisy environment.   

Image segmentation is also an essential task in medical 
imaging for diagnosis, treatment planning, and monitoring the 
progress of disease or the results of treatment. Extracting 
clinically useful information about anatomic structures imaged 
through CT, MR, PET, and other modalities is typically 
challenging. Recently, medical images have been used to guide 
minimally invasive procedures for patient’s treatment. 
Although modern imaging devices provide an exceptional view 
of the human anatomy, the use of computers to quantify and 
analyze the embedded structures in the image with accuracy 
and efficiency is limited due to the sheer size of the images and 
the technologies used for processing the images. An extensive 
amount of research needs to be done. 

As there are many segmentation techniques available, a 
generic algorithm for solving all segmentation tasks has not 
been born yet. In this research, we combined the techniques of 
segmentation and registration into a single segmentation 
process. Traditionally, image analysis methods view the 
segmentation and registration as separated processes. In fact, 
the two processes are closely related. Each can be improved 
with information that the other provides, as suggested by 
Schwartzkopt [1]. Registration would benefit from correct 
segmentation and segmentation often needs data from 
registration or classification.  

We applied active contouring model with shape information 
as the model constraints. A prior shape is collected and 
employed in our model that allowing the model to evolve 
towards the desired shape. We also applied mathematical 
morphology operations to abstract gradient information for 
controlling the speed and geodesic distance transform for 
generating the narrow band for each curve evolving process. 
The advantages of using mathematical morphology operations 
to detect image gradient is that the shape and size of the noise 
feature can be defined and then removed by specifying the 
structuring elements that are larger than the noise shape in the 
morphological filtering process. Thus, we use dilation and 
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erosion operations with the structuring element size that 
represents the characteristics of the cast material to create a 
gradient image instead of using traditional edge detection 
algorithms. Moreover, our method provides the estimates of 
the confidence level in each evolving process and generates 
system feedback to the next iteration.  

The main contributions of our research are summarized as 
follows: 

1. Embeds global constraints in the evolving process to guide 
the growth of the curve; 

2. Employs mathematical morphology operations to perform 
noise reduction, edge detection and narrow band 
generation; 

3. Provides estimates in the matching process that ensure the 
matching process converges; and  

4. Applied the model to bone fracture and alignment.  

2   Background 

Deformable models provide a robust foundation for the 
representation, segmentation, and manipulation of complex 
objects in an image. Recent developments on segmentation are 
favor with using deformable models due to some of the nice 
properties of the deformable models which result in efficient 
segmentation algorithms. Robust segmentation can be achieved 
by studying the mathematical constraints of the model. In 
medical imaging applications, deformable models have been 
used to segment, visualize, track and quantify a variety of 
anatomy structures including the brain, heart, face, kidney, 
lung, stomach, liver, skull, vertebra, brain tumors, a fetus and 
even cellular structures such as neurons and chromosomes 
[2][3][4]. 

2.1   Snakes versus Level sets  

Deformable model-based image segmentation has seen the 
emergence of two competing approaches: snakes and level-sets.  

Snakes can be viewed as Lagrangian geometric formulations 
wherein the boundary of the model is represented in a 
parametric form. The deformation energy function is 
minimized with ‘internal’ and ‘external’ energies along its 
boundary.   

Level-set method [5] [6] provides a mathematical 
formulation for tracking the motion of a curve which can be 

recast as front propagation problems. The deformation of the 
Level set method depends on the evolution process of the 
initial curve and can be defined by its mathematical 
formulation. The important key to achieve segmentation using 
level set method is to control the speed of the curve evolving. 
The evolving constraints for propagation of an interface can 
also be defined in the problem domain by exploiting 
constraints derived from the image data.  

A geodesic active contour model that appeared in the 
literature after the snake and the level set method took the 
advantages of both the snake and level-set methods. The model 
mathematically inherits the way it handles the topological 
changes from the level-set method and the minimizing 
deformation energy function with ‘internal’ and ‘external’ 
energies along the boundary from the traditional snake method 
by transforming a mathematical formulation of snake with 
partial differential equations (PDEs).  

There are still some drawbacks for the Level-set methods 
that use a function depending on the image gradient as an edge 
detector to stop the curve evolution [5]. The model can only 
detect objects defined by the gradient. This type of 
segmentation using only local information has often been 
frustrating when being used in poorly-contrasted regions due to 
occluding and occluded objects or high noise and is often 
enhanced by the use of prior shape information. In medical 
imaging, geometric shape models provide extrinsic information 
about objects and are often incorporated explicitly, especially 
for the segmentations where prior shape information can be 
collected. This research is specifically aimed on how to 
incorporate shape constraints to the level set method. 

Several methods of incorporating prior shape information 
into the boundary determination of level-set have been 
developed. Staib and Duncan [7] introduced a parametric point 
model based on an elliptic Fourier decomposition of the 
landmark points. The parameters of their curve are calculated 
to optimize the match between the segmenting curve and the 
gradient of the image. Wang and Staib [8] applied a statistical 
point model for the segmenting curve by using principal 
component analysis to the covariance matrices that capture the 
statistical variations of the landmark points. Leventon et al. [9] 
incorporated shape information as a prior model to restrict the 
flow of the geodesic active contour. Their shape model is 
derived by performing principle component analysis on a 
collection of signed distance maps of the training shape. The 
curve evolves according to two competing forces: the gradient 
force and the force exerted by the estimated shape where the 
parameters of the shape are calculated based on the image 

241

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)



X-ray image segmentation using active contour model with global constraints      3 

gradient and the current position of the curve. Chen [10] 
proposed a model that uses the geodesic contour model and an 
“average shape” as the prior shape which defines a term in the 
evolving function of the model. This approach showed 
potential for image segmentation incorporating a shape that can 
be collected before hand. The active contour model proposed 
in this paper is motivated by the method described by Chen 
[10].  In our approach, the global constraints such as shape, 
rotation, scale, and translations are incorporated into the level-
set evolving process. The curve propagates with a velocity 
depending on the image gradients and the prior shape 
information. The propagation stops when the active contour 
arrives at high gradients or closely matches the prior shape. 

2.2   Mathematical morphology 

Mathematical morphology theory [11] defines computing 
operations by primitive shapes. Mathematical morphology 
provides tools for measuring topological shape, size, and 
location in an image. ‘Set Theory’ is used as the foundation 
for many morphology operating functions. Isolating certain 
features of the image can be accomplished by the top-hat
transform [11]. Top-hat transform can be used to select the 
object by defining a structuring element larger than the shape 
of the object.    

2.3 Mutual Information 

We also employed mutual information (MI) in our model to 
measure the difference between the evolving curve and the 
prior shape. Mutual information provides a function of 
transformation between images and is a quantity that measures 
the mutual dependence of two objects [13]. It measures the 
information about object X that is shared by object Y. The 
similarity between the prior shape and evolving curve is 
defined by MI in our active model and used as the feedback to 
the next curve evolving process. 

3. Method 

Before applying deformable models, we have reviewed 
some methods for segmenting bones from X-ray images. We 
were not able to find a satisfactory method for this task. 
Deformable models were being selected and studied for this 
segmentation task.    

3.1  Active contour model - Level-Set Method 

Consider a curve moves in a direction normal to itself with a 
speed function F. Assuming F > 0, the front always move 
“outward” [5]. Figure 1 gives a graphic description of the curve 
movement in 2D and 3D.

Fig.1: Transformation of front motion in 2D and 3D 

Evolution equation for :

0|||| =∇+ φφ xt F  on Ω           

0),0( =•φ        on Ω∂

Boundary value equation:
1|||| =∇ TF x

 on Ω     0=T on Ω∂

(1)

3.2   Signed distance transform 

The distance transform [9] is used in our method to 
formulize narrow bands in our evolving process.  In our 
approach, the  is achieved by using a signed distance function 
for numerical iteration. The distance from zero level set is 
computed towards outside of the zero level set. A contour 
tracing algorithm is used to achieve this distance function. One 
nice property of a distance map is its unit gradient magnitude is 
the same in all directions. A regenerating  function uses a 
distance map by recalculating the distance map after each 
evolving process.  The narrow band for the curvature flow |∇
| is then increased by 1 in each iteration. The driving force is 
taken as F > 0, and the curve evolves outward. The gradient 
image is generated by using morphology gradient operations 
(erosion subtracted from dilation). The structuring element 
used is a 5x5 square which represents the shape and the size of 
the casting materials in the X-ray image. The narrow band for 
the curvature flow |∇  | is then increased to 3 which will cover 
half of the 5x5 square, the same size as the structuring element 
of the morphological gradient operation. 

242

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)



4      Y Jiang1, J Meng1, and P Babyn2 

3.3 Basic morphology operations and TopHat transform 

 ‘Opening’ can be expressed as a composition of an 
erosion followed by a dilation, both by the same input 
structural element. ‘Closing’ can be expressed as composition 
of a dilation followed by an erosion. Gray-scale openings and 
closings by appropriately selecting the structuring element size 
and shape have the property of removing image details. 
Opening removes the features that smaller than the structuring 
element, the rest of the signal is left unchanged.  

3.3.1 Residue 

The residue is a generic name for what is left something is 
removed. For instance if we clean or filter something, the 
residue is what did not pass on the filter. Having two operators, 
one larger that the other, the residue can be computed by their 
difference.  

21 Ψ−Ψ=R , if 21 Ψ≥Ψ

3.3.2 Gradient 

Image gradient can be obtained from the dilations and erosions. 
Gradient is a composition of three basic operators: a dilation 
and an erosion of the input image by the input structuring 
element and a subtraction of these two results. In our approach, 
the gradient image is generated by subtracting the original 
image from the dilated image with a square structuring element 
of size 7. 

3.3.3 Top-hat transform 

Isolating some feature of the image can be accomplished by the 
top-hat transform [11]. It is a very powerful tool in 
mathematical morphology applications since many 
segmentation tasks require isolate some kinds of features in a 
given image.  Top-hat transform can be used to select the 
defined features by defining the bigger structuring element of 
that shape. 

))(min(max)(),( AABAABATopHat
BB

−=−= o

            
(2)

where the structuring element B is bigger than the objects to be 
detected and similar to the shape of the objects. Figure 2 shows 
an example of a TopHat transform. 

Figure 2: a,e) structuring element; b,f) original image; c,g) 
opening (resp. closing); d,h) result from subtraction 

3.4  Mutual Information 

The information that X tells about Y is the uncertainty in X 
plus the uncertainty in Y minus the uncertainty in both X and 
Y [13]. A series of statements regarding entropy are:  

I(X, Y) = H(X) – H(X | Y); I(X, Y) = H(Y) – H(Y | X);
I(X, Y) = H(X) + H(Y) - H(X, Y); I(X, Y) = I(Y, X); 
I(X, X) = H(X) 

3.5 Shape Model 

 The standard shape model used to define the shape 
information described in this paper is collected from the initial 
X-rays obtained prior to cast application. The segmentation on 
this X-ray image using the level-set method introduced by 
Jiang [14] produces accurate results.  Following cast 
placement, segmentation can be quite problematic. 

3.6 Curve Evolving with global constraints

Shape is a powerful property to distinguish an object from 
its surroundings in an image. Shape is commonly used to 
complete the information provided by local properties of the 
image. A computerized method should utilize shape 
information like a human would identify an object’s 
appearance in an image by both its shape and by the color of 
the object. Incorporating shape information into our 
recognition process is explained in this section. Suppose two 
contours, C1 and C2, have the same shape. Then there exists a 
scale S, a rotation matrix R with respect to an angle , and a 
translation vector T such that C1 coincides with:
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                    C2
new = SRC2 + T (3)

Following the principle in (4), our active model is designed 
to employ a new term: a prior shape. Therefore the new active 
model is described as:  

Let C(p) = (x(p),y(p)) (p  [0,1]) denote a differentiable 
parameterized curve in an image I. Let C* be a curve 
representing the shape prior, and g|∇I(x,y)|) be the function 
defined as:  

g|∇I(x,y)|) = 1 / (1 + |∇I(x,y)|2) (4)

To get a smooth curve C that captures higher gradients, the 
arc-length of C in the conformal metric ds = 
g|∇I(x,y)|)C(p)|C(p)|dp is minimized. To capture the shape 
prior C*, the curve C and the transformation S, R, T is 
calculated such that the curve Cnew = SRC + T and C* are 
perfectly aligned. The energy function to be minimized is: 

dppCTpRCdpCIg
TRC

|)(|)})((
2

)))((|(|{min '21

0,,,
++∇∫ μλ

μ
(5)

  Where  > 0 is a parameter, and d(x,y) = d(C* ,(x,y)) is the 
distance of the point (x,y) from C* . The minimization problem 
now can be solved by finding steady state solutions to the 
following system: 

)(),0(, 0 pCpCvn
t

C =−=
∂

∂

∫ =⋅∇−=
∂
∂

0
' )0(,|)(| μμλμ dppCRCdd

t

∫ =⋅∇−=
∂
∂

0
' )0(,|)(|)( θθ

θ
λμθ dppCC

d
dRdd

t

∫ =⋅∇−
∂
∂

0
' )0(,|)(| TTdppCdd

t
T λ

(6)

The curve evolves as: 

kdRnddsgkngv 2)()( λλ +⋅∇++⋅∇= (7)

Where n is the outward unit normal to C, and k is the curvature 
of the curve C. The function d is evaluated at SRC(p) + T. The
mutual transformation function is defined as below:  
max(AreaOverlap(CruveA,CurveB)  
min(CurveDifference(CurveA,CurveB) 

4   Result 

We have tested our model on more than 20 cases of human 
arm data set. The initial curve is manually located within the 
piece of the bone to be segmented. Our algorithm allows the 
curve evolving towards the model and the model adjusts itself 
towards the curve. The model provides an evolving constraint 
to the evolving curve and limits the curve grow within the 
shape of the model. The algorithm performs this segmentation 
task efficiently. There is one failed case that the fractures in the 
X-ray image can barely recognized by our expert radiologist 
due to poor contrast of the image. Some results are presented in 
Fig.3 and Fig.4. Figure 3 presents some of the segmentation 
results. Figure 4 shows the alignment calculation after the 
segmentation process.    

          

                                    

Fig. 3 Experiment results : Yellow colored curves are 
the initial curves and the blue colored curves are the final 
segmentation results. 
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Fig. 4 Alignment calculation based on the 
segmentation result. 

5  Discussion 

We have provided a model-based segmentation method that 
segments the fractured bones on the X-ray image.  Our method 
can be applied to other segmentation tasks. This approach is 
computationally efficient and robust. Future work will be to 
investigate an automatic curve initialization procedure.   
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