
Abstract—A major drawback of medical image registration 
techniques is the performance bottleneck associated with 
similarity computation. Such bottlenecks limit registration 
applications in situations where fast execution times are 
required. In this paper a novel framework for high 
performance intensity-based medical image registration is 
presented. Geometric alignment of both reference and sensed 
images is achieved through a combination of scaling, 
translation, and rotation. Crucially, similarity computation is 
performed intelligently by knowledge sources (KSs) organised 
in a worker/manager model. The KSs work in parallel and 
communicate with each other by means of a distributed 
blackboard architecture. Partitioning of the blackboard is used 
to balance communication and processing workloads. The 
registration framework presented demonstrates the flexibility 
of the coarse-grained parallelism employed and shows how 
high performance medical image registration can be achieved 
with non-specialised architectures. Experimental results 
obtained during testing show that substantial speedups can be 
achieved. 

I. INTRODUCTION

ransform parameter optimisation, re-sampling, and 
similarity computation form the basic steps of an 

intensity-based image registration algorithm [1][2]. During 
transform parameter optimisation, translation, rotation, and 
scaling parameters which geometrically map intensity co-
ordinates in the reference (fixed) image to corresponding 
locations in the sensed (moving) image are estimated. Fixed 
image co-ordinates which map to non-integer locations 
require interpolation, this represents the re-sampling stage. 
Once re-sampled, a metric is used for similarity computation 
in which a degree of likeness between corresponding images 
is calculated [3]. Optimisation of the similarity measure is 
the goal of the registration process and is achieved by 
seeking the best transform parameters. Transform 
parameters are therefore defined as a search space. 
Importantly, due to the iterative nature of registration 
algorithms, computation of the similarity measure represents 
a performance bottleneck which limits the speed of time 
critical applications. 

The similarity metric, used for generation of the similarity 
measure, works by examining corresponding intensities in 

R.J. Tait and A.A. Hopgood are with the School of Computing and 
Informatics, Nottingham Trent University, Clifton Campus Nottingham, 
NG11 8NS, U.K., e-mail: roger.tait@students.ntu.ac.uk. 

G. Schaefer is with the School of Engineering and Applied Sciences, 
Aston University, Birmingham, B4 7ET, U.K., e-mail: 
g.schaefer@aston.ac.uk. 

T. Nakashima is with Prefecture University, Osaka, Japan. 

both fixed and moving images and then formulating a 
measure based on the relationship between these intensities. 
The similarity metric is also required to assume that the 
relationship changes with variations in the spatial 
transformation used to map between images and a maximum 
measure of similarity is achieved when images are in close 
alignment. Selection of the metric is largely dependent on 
the type of registration problem to be solved [4]. For 
example, some metrics produce a search space with a large 
capture range that is well suited to the registration of images 
differing by large transformations. Other metrics, in 
contrast, are less computationally intensive and generate a 
search space that requires initial transform parameters to be 
close to optimum. Intensity equality, which is maximal when 
intensities are equal between images captured with the same 
sensor type, is one such relationship employed as a 
similarity metric in single-modal registration. Unfortunately, 
total equality is seldom reached due to noise and image 
acquisition inconsistencies. 

To overcome the speed constraints associated with 
intensity-based medical image registration, high 
performance computing has been employed by a number of 
researchers. Clinically compatible speeds have been 
achieved by Warfield et al. [5] who introduced a parallel 
non-rigid algorithm based on the work-pile paradigm. In 
their research, a message passing interface and cluster of 
symmetric multi-processors execute parallelised similarity 
computation operations using POSIX threads. Results 
published by the group show that successful registration of 
brain scans has been achieved in less than 10 minutes. 
Christensen [6] in contrast compares two non-thread-based 
architectures, Multiple Instruction Multiple Data (MIMD) 
and Single Instruction Multiple Data (SIMD). The MIMD 
implementation is recorded as being four times faster than 
its SIMD counterpart. Reduced performance of the SIMD 
implementation is reportedly caused by overheads during 
serial portions of the algorithm. 

More recently, multi-threaded programming together with 
data partitioning has been employed by Rohlfing et al. [7] to 
largely eliminate the need for explicit message passing 
between concurrent processes. Despite the need for 
specialised hardware, the scheme is reported to make 
implementation of high performance non-rigid registration a 
comparatively easy task when compared to other 
architectures. Using 64 CPUs registration of two 
256×256×100 voxel images was achieved in approximately 
1.5 minutes. A similar data distributed parallel algorithm is 
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described by Ino et al. [8]. Based on Schnabel’s 
implementation the algorithm achieves efficient alignment 
using information theory and adaptive mesh refinement. 
Experimental results obtained on a 128 processor cluster 
show that images as large as 1024×1024×590 voxels can be 
aligned in minutes rather than hours. Importantly, the 
limitations of memory space when processing images is 
discussed in detail. 

In this paper we introduce a novel parallel processing 
framework designed to achieve high performance intensity-
based medical image registration. Unlike other 
implementations reported in the literature [9], the approach 
adopted is based a distributed blackboard architecture that 
supports multiple knowledge sources (KSs). Preconditions 
attached to KS rule files determine, in accordance with 
information on the blackboard, when a KS can make its 
contribution at any given moment. This reactive behaviour 
removes the need for a dedicated control module and 
associated KS management overheads. The modular 
architecture adopted is easily scalable and allows for 
addition of specialised KSs as required. Comparisons with 
non-distributed implementations confirm efficiency of the 
proposed approach. 

II. THE IMAGE REGISTRATION FRAMEWORK

DARBS (Distributed Algorithmic and Rule-based 
Blackboard System), is a distributed blackboard architecture 
based on a client/server model [10], in which the server 
functions as a blackboard and client modules as KSs. The 
worker/manager model, based on pervious work with a 
distributed blackboard architecture [11], on which the 
framework is built is illustrated in Figure 1. Each KS shown 
represents a structure in which rules and algorithms can be 
embodied: 

The Distributor KS splits an image into segments 
which are then placed on the blackboard. The 
Distributor KS then terminates. 
Worker KSs take segments from the blackboard and 
perform local processing. 
The Manager KS is employed to co-ordinates Worker 
KS activities. 

A. Partitioning of Framework Data 
Storage on the blackboard of image data ensures equal 

access for all KSs. Division of the blackboard into partitions 
that correspond to KS types simplifies management of KS 
activities. Partitioning is also used to balance 
communication and processing workloads. The blackboard 
is divided into the following partitions: 

A Distributor control partition controls division of an 
image into segments. 
Worker n control partitions are used to manage 
processing of segments. 
Supervision of Worker KS activities is achieved by 
means of the Manager control partition. 

System variables are maintained in a Parameters 
partition. 
The Image container partition holds partitioned 
image segments. 

Due to the exhaustive search required, a drop in 
performance can be expected with a single partition 
implementation. Similar inefficiency occurs through 
management and processing of excess partitions. Crucially, 
whenever the content of a partition is modified, the 
blackboard broadcasts a message informing all KSs that the 
partition has changed. Individual KSs then react to the 
changes depending on their implemented behaviour. 

B. Distributed Similarity Computation 
In order for a registration algorithm to be distributed, both 

fixed and moving images require division into segments and 
distribution between Worker KSs. By employing gradient-
based optimisation, the similarity metric can be used to 
produce derivatives of the similarity measure, with respects 
to each transform parameter. To achieve this, transform 
parameters require propagation to all Worker KS. On 
receiving the propagated parameters each Worker KS must 
compute local derivatives of the similarity measure, between 
the segments allocated to it. Once computed the local 
derivatives require accumulation and summation into a 
global derivative by the Manager KS. This allows transform 
parameters to be updated based upon the similarity between 
whole images. Convergence testing can then be performed, 
by the Manager KS, using the newly updated parameters. 
Depending on the success or failure of convergence testing, 
propagation of updated transform parameters and hence 
evaluation of the new parameters can occur. 

C. Information Strings 
To achieve distribution a range of strings were created to 

control firing of KS rules and allow the flow of transform 
and derivatives parameters between framework components. 
Example strings are shown in Figure 2. The region of 
interest string is used to hold the starting co-ordinates and 

Distributor 

Worker 1 Worker 2 Worker 20

Blackboard 

Manager 

Fig 1. The worker/manager model on which the registration framework is 
based. Worker KSs perform concurrent processing of image segments 
while the Manager KS co-ordinates Worker KS activities. 
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size in corresponding dimensions, of a segment without 
borders. Region of interest strings are generated by the 
Distributor KS and placed in all worker control partitions. 
Created and updated by the Manager KS, the current 
parameters string is used for propagation of updated 
transform parameters to all Worker KSs. Generated by the 
Worker KSs, derivative strings are used for accumulation of 
local derivatives. Created by the Manager KS, the final 
parameters string contains optimal transform parameters. 

Employed as a trigger mechanism, the current parameter 
strings co-ordinate the activation of Worker KS activities. 
The creation of derivative strings, in contrast, marks the 
temporary suspension of Worker KS activities. Once 
generated the final parameters strings mark the permanent 
suspension of Worker KS activities. 

III. KS BEHAVIOUR 
Reading from and writing to the blackboard is 

implemented as standard functionality and provides a 
mechanism for communication between KSs. In the 
following section the basic KS behaviour, implemented as 
rule files, is described. 

A. The Distributor KS 
Initial tasks performed by the Distributor KS include 

clearance of all data from the blackboard. Selection of fixed 
and moving images is then manually performed after a 
simple viewer has been shown. Next, an initial transform is 
extracted from the selected images and formatted into a 
current parameters string. To extract the initial transform, 
centres of mass are computed for both fixed and moving 
images using moments of their intensity grey levels. The 
fixed image centre of mass is set as the rotational centre, 
while the translation component is set as the vector between 
the fixed and moving mass centres. Once created the current 
parameters string is added to the Parameters partition. 
Division of images into segments and sending to the Image 
container partition is then performed. Copies of the selected 
images are also sent to the Image container partition. Region 
of interest strings are generated for each segment and added 
to their associated worker control partition. Each region of 
interest generates a border at the edges of a segment. The 
border removes inconsistencies which enter a segment when 

it is translated, rotated, and scaled during the registration 
process. 

B. The Worker n KS 
Connection to the blackboard and initialisation is the first 

[ROI 0_0_700_900] 

[Current 1.34982342..._11.851] 

[Derivative -203.6834..._54.901] 

[Final 1.64514585..._15.79934] 

Fig 2. Information strings for controlling the transform parameter 
optimisation process. Each string consists of an identifying tag followed by 
an underscore delimited list of numbers. 

Start

End

Message from 
blackboard. 

A string has been added 
to the Worker n control

partition.

No

Yes

Fetch the current parameters 
string and use it to generate a 

derivative string. 

A

Is there a current 
parameters string 

in Worker n 
control?

A

In Worker n control replace the 
current parameters string with 

the derivative string. 

Is there a final 
parameters string 

in Worker n 
control?

Yes

No

Fig 3. The Worker KS flow diagram illustrates the iterative retrieval of 
current transform parameters and the generation of derivative strings. 
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job of the Worker n KS. The Worker n KS then waits for the 
current parameters string to appear in the Worker n control
partition. As soon as the current parameters string appears 
fixed and moving segments are retrieved from the Image 
container partition. The region of interest string is also 
fetched from the Worker n control partition. These actions 
are part of a fire once mechanism that prevents the Worker n 
KS from further retrieval of fixed and moving segments 
during the optimisation process. Once the segments and 
region of interest have been retrieved a derivative string is 
generated. The string contains a local derivative which is 
calculated using parameters extracted from the current 
parameters string. The derivative string generated is used to 
replace the current parameters string in the Worker n control
partition. This process is repeated every time a current 
parameters string appears. When the final parameters string 
appears the Worker n KS becomes inactive. Figure 3 
illustrates the Worker n KS by means of a flow diagram. 

In order for the Worker n KS to generate local derivatives 
of the similarity measure, for each intensity co-ordinates in 
the fixed segment corresponding moving segment co-
ordinates are computed using parameters extracted from the 
current parameters string. If transformation of the fixed 
segment co-ordinates results in a corresponding location that 
fall inside of the moving segment a contribution to the local 
derivative is made, otherwise the intensity is considered 
invalid and the next intensity co-ordinates are evaluated. 
Contributions to the local derivative represent a summation 
of intensities from a gradient image, around the mapped co-
ordinates. Using a recursive Gaussian gradient image filter, 
the gradient image is created from the moving segment. The 
gradient image represents a vector field in which every 
vector points in the direction of its nearest edge, an edge 
being a rapid increase or decrease in neighbouring 
intensities. Created once during initialisation of the Worker 
n KS, the gradient image is used for all iterations of the 
optimisation cycle. 

Start Message from 
blackboard. 

A string has been added 
to a worker control 

partition.
A

Fetch the current parameters string and 
propagate to all worker control partitions. 

1

No 

Yes

Fetch all derivative strings and calculate a 
global derivative. Update the current 

parameters string. 

Yes

In all worker control partitions, replace 
derivative strings with final parameters 

strings. 

A

2

Are there 
derivative strings 

in all worker 
control partitions? 

No 

3

Is the updated 
current parameters 

string optimal? 

1

A

In all worker control partitions, replace 
derivative strings with the updated current 

parameters string. 

3
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C. The Manager KS 
The Manager KS is the most complex of all framework 

components. The Manager KS starts by retrieving the 
current parameters string from the Parameters partition. The 
current parameters string is then propagated to all worker 
control partitions. Next, the Manager KS waits for local 
derivative strings to appear in all worker control partitions. 
On appearance of the local derivatives, the strings are 
accumulated and a global derivative calculated. 
Convergence tests that consider the magnitude of the global 
derivative and number of iterations performed are then 
conducted. On success of convergence testing a final 
parameters string is generated, otherwise the current 
parameters string is updated using the global derivative. The 
local derivative strings in all worker control partitions are 
then replaced with the newly updated or final transform 
parameter strings. On generation of the final parameters 
string, copies of the selected images stored in the Image 
container partition are retrieved. The moving image is then 
resampled using the final transform parameters. A flow 
diagram is given in Figure 4. 

To update the current parameters string, the gradient-
based optimisation scheme advances the current transform 
parameters in the direction of the global derivative. If the 
direction of the global derivative abruptly changes, it is 
assumed that an optimum has been encountered and the step 
length through the transform parameter search space is 
reduced by a half. After repeated iterations the step length is 

significantly reduced, thus restricting the selection of 
parameters to a small area of search space. Once step length 
becomes smaller than a predefined minimum the 
optimisation process is considered as having converged. 
This allows the precision of the final transform parameters 
to be specified. 

IV. EXPERIMENTAL RESULTS

Speed tests were conducted in order to demonstrate the 
performance increase of medical image registration in non-
distributed and distributed processing environments. The 
spatial mapping of intensities during the registration process 
is achieved with a rigid 3D transform component. B-spline 
interpolation is used to evaluate moving intensities at non-
discrete locations. To determine accuracy of alignment after 
the application of a transform, a normalised correlation 
similarity metric is provided. Optimisation of the computed 
similarity measure, using a search space defined by 
transform parameters, is achieved with a rigid 3D transform 
optimisation component. 

In the non-distributed environment a sequential algorithm 
constructed from the same components, is hosted and run 
using a single processor. In the distributed environment, an 
algorithm is hosted using the registration framework 
described. For each experiment, the distributed testing 
represents an ideal case, i.e. one processor for the 
blackboard and one processor for each KS. Obtained from 
BrainWeb [12], testing was performed on three image pairs, 
each containing 181×217×180 voxels with a known 
translation and rotation. The selected images were divided 
by the Distributor KS into 1–14 segments and a 20-voxel 
wide border assigned. In all cases, times were combined and 
an average calculated. 

A. Sequential vs distributed normalised correlation 
Computed over all intensities in both images, normalised 

correlation calculates the intensity-wise cross-correlation of 
the images to be registered. Accurate alignment of images 
results in values near to one being generated. Misalignment, 
in contrast, produces values of less than one. The distributed 
similarity S(F,M) between fixed and moving images, as 
computed by the framework, is defined in (1) 

where F and M are fixed and moving segment intensity 
functions respectively. T is a spatial transform and xij is the 
jth voxel of segment i from the fixed image. R is the number 
of segment an image is divided into and Qi is the number of 
valid voxels between segments identified by i. The 

Fig 4. The Manager KS flow diagram illustrates the iterative generation of 
current transform parameters and their propagation to the worker control 
partitions. 
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derivative S/ p of the normalised correlation similarity 
metric with respects to transform parameter p is computed 
using (2) 

where M(T(xij,p)) represents a discrete input which has 
been interpolated using a B-spline interpolation scheme and 
M(T(xij,p))/ p corresponds to a summation of intensities 

from a gradient image, around the mapped co-ordinates. 
Figure 5 shows results of speed testing with distributed 
normalised correlation as a similarity measure. As can be 
seen, the average execution time reduces from 
approximately 68 minutes to 9 minutes when ten Worker 
KSs are employed. This is a speedup factor of roughly 7 
over the sequential algorithm. The distributed algorithm was 
observed to converge after the same number of iterations, 
with the same transform parameters as those computed by 
the sequential algorithm. 

V. CONCLUSIONS

Continued research has shown that concurrent similarity 
computation in medical image registration can be achieved 
and provides better speed performance than non-parallel 
implementations. In general, large speedups and high 
efficiency rates are historically difficult to achieve and only 
specialised hardware are capable of maintaining these rates 
when scaled. Unfortunately, the multi-processor 
architectures employed in the majority of research projects 
[6][7][8][9], restricts the usefulness of high performance 
algorithms to research labs. Also, due to the fine-grained 
parallelism employed, development of such distributed 
strategies is difficult. The framework described by this 
paper, in contrast, is based on a worker/manager model and 
provides an architecture that can reside on a network 
connected by the TCP/IP communication protocol. Although 
smaller speedup and scalability is achieved when compare 
with fine-grained parallelism, the coarse-grained approach 
employed has been shown to realise substantial performance 
increases when compared to a sequential implementation. 
Crucially, the modular nature of the architecture allows 
implementation of alternative similarity computation 
strategies, as specialised KSs, which can be added 
dynamically to the existing framework without changes. 
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correlation as a similarity metric, with increasing numbers of Worker KS. 
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