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Abstract-The application of pattern recognition techniques to 

radiology has the potential to detect cancer earlier and save 
lives, and consequently much research has been devoted to this 
problem. This worked tackled a subset of the problem, 
investigating a novel method of classifying mammograms using 
an evolutionary approach known as Cartesian Genetic 
Programming (CGP). Microcalcifications, one of two major 
indicators of cancer on mammograms, were used for the 
classification. A large software framework was written in order 
to investigate this, which allows the viewing of images, manual 
segmentation of lesions and then automatic classification. Two 
classification approaches were pursued, the first classifying on 
texture features and the second, a new approach, classifying by 
using the lesion’s raw pixel array. Early results using the system 
showed some potential. It was found that during training, 
networks could obtain correct classification rates of between 80 
and 100%. The best results were approaching those in the 
contemporary literature and suggest the technique warrants 
further investigation. 

I. INTRODUCTION 

Breast cancer accounts for one third of all the cancers in women 
[1] and in 2003 accounted for the deaths of 10,500 women in the 
UK alone. Since breast cancer screening was introduced in 1988, 
incidence of breast cancer has risen but the number of deaths has 
declined. The five year survival rate for people diagnosed as having 
breast cancer is predicted by Cancer Research UK at 76% and the 
earlier the cancer is identified the greater than success of treatment. 
Screening is therefore essential in reducing deaths from breast 
cancer and it is important to make this as accurate as possible.  

The most innovative approach over the past ten years has been 
the use of Computer Aided Diagnosis (CAD), employing specially 
developed image processing and pattern recognition systems. A 
number of commercial systems are now available [2] and improved 
performance has been claimed with an increase in sensitivity from 
74% to 87%. Importantly, it is estimated that for every 100,000 
cancers detected using traditional approaches, an additional 20,500 
could be detected using CAD [3].  However, experience of CAD 
systems in the real world has been disappointing and performance 
obtained below that previously claimed [4]. It is therefore essential 
to continue development of CAD systems, not only to ensure that 
false negatives are minimized, but false positives as well, which 
impact on the workload of the radiologist. 

The aim of the work reported in this paper was to assess the 
potential benefit of using evolutionary algorithms in the 
classification of mammograms as part of a CAD system and 
determine whether further development of such algorithms will lead 
to a more confident diagnosis. 

The implementation of a full CAD system is a huge undertaking 
and not viable or necessary for the evaluation of the algorithms 
proposed. Therefore, rather than develop a complete CAD system 

that acquires, preprocesses and segments appropriate sections of the 
mammogram, this investigation will rely on prior knowledge by 
using previously acquired and processed images of known 
pathology. Thus, only small sub-images taken from previously 
diagnosed mammograms are used where the nature and location of 
the suspicious regions are known and have been documented as 
such by clinical personnel.  

The problem presented to our algorithms reduces to one of 
deciding if the suspicious area is an indication of cancer 
(malignant) or harmless (benign). Two powerful indicators of 
cancer that are commonly used in evaluating mammograms 
are known as masses and microcalcifications. Masses are the 
larger of the two indicators and can be either benign or malignant. 
An example of this type of potential growth can be seen in Fig. 1. 
Characteristics such as the border and density of the mass, which is 
greater for malignant examples, can be used for classification. 
Traditionally, masses are more difficult to classify than 
microcalcifications. Microcalcifications are essentially small 
calcium deposits which occur as the result of secretions from ductal 
structures that have thickened and dried.  They tend to occur in 
clusters (as can be seen in Fig. 2.) and it is reported that 40-50% 
represent cancer [5]. Features that have previously been used to 
distinguish benign and malignant microcalcifications include their 
shape, density, distribution and definition. Not only are these 
characteristics useful for a radiologist attempting to classify a 
mammogram, but they have been used extensively in feature 
extraction for established image processing techniques. 

Although it is believed that evolutionary algorithms can be used 
effectively to analyze masses it was decided, initially, to work 
exclusively with microcalcifications as more work has already been 
done in this area, providing a greater source of literature to which 
comparisons can be made. Additionally, microcalcifications are 
easier to identify than masses and so are more expedient for this 
work. 

Previous work undertaken in the classification of 
microcalcifications using both traditional image analysis techniques 
and evolutionary algorithms is considered in Section II.  The 
evolutionary algorithm used in the current work will then be 
described in Section III and results applying this technique to a 
number of digitized mammograms will be considered in Section IV.  
Finally, the potential of the proposed algorithm will be evaluated in 
Section V. 

II. PREVIOUS WORK 

Over recent years there has been much research into the 
application of computer aided diagnosis (CAD) to breast cancer 
with numerous different approaches being exploited.  Many of these 
involve image analysis of the digitized mammogram – a low dose x-
ray of the breast. A typical approach is to use a pattern recognition 
scheme comprises (i) sensing, (ii) segmentation, (ii) feature  

258

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

1-4244-0707-9/07/$25.00 ©2007 IEEE



 

Fig. 1.  Highlighted mass lesion. Taken from the DDSM database [6] 
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Fig. 2.  (a) Region of breast tissue with microcalcifications and (b) binarised 
image showing their possible locations.   Taken from the DDSM database [6] 

 

extraction, (iv) feature selection and (v) classification, to isolate and 
then characterize the microcalcifications. Each stage of this 
processing is a potentially complex operation requiring much 
investigation. 

The work presented in this paper is concerned specifically with 
the characterization and classification of the microcalcifications - the 

feature extraction, feature selection and classification stages of the 
pattern recognition scheme. Consequently, the sensing and 
segmentation stages of the scheme, while relevant and important in 
a fully implemented system [7] are not considered here and for the 
purpose of the experiments described in Section IV will be 
undertaken manually. 

A. Feature extraction 
Once segmentation is completed any microcalcifications located 

need describing in terms of features, these features are collected in 
the feature extraction stage. 

Features, as described here, are real numbers obtained by 
applying some mathematical expression to image data, e.g. spatial 
domain pixel values or transformed spectral data. By examining 
these features one can come to a conclusion as to the nature of the 
calcification 

The feature extraction process regularly exploits morphological 
features such as area and perimeter, texture features such as spatial 
grey level dependence matrices and features taken from the wavelet 
transform of the image. Morphological features are often referred to 
as shape features and are useful in classification of 
microcalcifications. Reference [5] provides information for 
radiologists about the varying features of benign and malignant 
calcifications. For example it advises that benign ones have a round 
ring like shape with well defined borders. Malignant on the other 
hand have varying shape and poorly defined borders. Such 
characteristics can be described using morphological feature 
extraction. Reference [8] used a number of morphological features 
and these included: area, mean density (calculated as average of 
pixels gray values above background level in the signal region), 
eccentricity, axis ratio, ratio of x direction to y direction moments. 

In terms of texture features the spatial gray-level dependence 
(SGLD) matrix was used for many features derived including 
correlations, entropy, variance, angular second moment and others. 
Another neural network based paper [9] relied purely on texture 
features concentrating on ones from the SGLD matrix. 

An alternative method is suggested in [10] whereby the discrete 
cosine transform is taken of the image and then they derived “block 
activity and spectral entropy from the DCT coefficients”. Reference 
[11] also gives brief mention of Fourier methods and a wavelet 
method whereby standard features (energy and entropy) were 
extracted from each scale in the transform. A wavelet transform 
allows the splitting of an image into different scales for various 
positions in the image, hence why it is often referred to as a 
multiscale method.  

B. Feature selection 
At the end of the feature extraction stage there may be a 

very large number of features, and whether a statistical 
classifier is being used, a neural network or a genetic 
algorithm (as will be the case in this investigation) it is not 
helpful to have too many features. It may make the running 
time on a computer higher but on a more fundamental level 
the likelihood is that some of the features extracted may be of 
no relevance in discriminating benign and malignant lesions. 
Thus, it is advantageous to select those features which will be 
most effective in the following classification stage. 

A useful comparison of feature selection techniques is 
presented in [8]. This compares two methods of feature 
selection, Linear Discriminant Analysis (LDA) and a genetic 
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algorithm. In LDA features are added to and removed from 
the system used to decide which class (benign or malignant) a 
mammogram belongs to. All the features collected in the 
previous feature extraction stage are available to use. In 
stepwise LDA, the version described in the CAD literature, 
features are added one at a time. To decide if a feature is 
useful in discriminating between two classes the outputs of 
the system must be considered. There are two groups, outputs 
for when the input was malignant, and outputs for when it 
was benign. The analysis is done by comparing the within 
group sum of squares (i.e. variance, between the groups) and 
this is done in the case where the feature is included and 
when it is not. It is equivalent to saying that, if the means of 
the outputs between malignant and benign are similar without 
a feature and different with a feature then that feature is 
useful at discriminating. A threshold is used to determine if a 
feature is powerful enough. There is also a removal step 
where features are removed one at a time and excluded based 
on a threshold, i.e. if taking it out makes little difference it is 
excluded. Termination happens when the calculated power of 
all the features not chosen is less than that needed to enter 
and all those in are greater than the threshold for leaving. 
This is the more traditional selection technique but it is found 
in the comparison that “the GA could select a feature set 
comparable to or slightly better than that selected by stepwise 
LDA” [8]. 

C. Classification 
In the case of breast cancer, the classifier decides if a given 

mass or microcalcification is malignant or benign. It is the 
central part of any computer aided diagnosis scheme and 
ultimately decides whether a breast is deemed potentially 
cancerous, and in need of further investigation, or benign. If a 
scheme is overly cautious then it will have financial and 
resource implications, in that there might be too many check 
ups, or it might unnecessarily use up valuable time for a 
radiologist if it presents too many potential lesions for them 
to examine. On the other hand if it only selects the very 
obvious cases then it may pick up less than a radiologist and 
leave many potential cancers unnoticed. Therefore it requires 
careful design. A number of popular classifiers are identified 
by [11] and listed here: 

• Neural networks: a parallel information processing 
network based on the structure of neurons. It is noted in [11] 
that they are advantageous in the situation where “only a few 
decisions are required from a massive amount of data and for 
the applications where a complex non-linear relation needs to 
be learned”. 

• K-nearest neighbors: This starts with a set of patterns for 
a known sample, for example a set of simple statistics for a 
set of microcalcifications that are known in advance to be 
cancerous. Then new unknown patterns can be compared to 
the known ones. The K nearest samples will be classified as 
having cancer as well. 

• Bayesian classifier: This considers the probability p(wi|x) 
that a given pattern x belongs to a class wj indicating, for 
example, malignancy. By Bayes' theorem this can be seen 
proportional to p(wi)p(x|wi). This type of classifier minimizes 
the total loss - the probability of assigning the pattern to a 
given class when it actually belongs to another class. We 
estimate the p(x|wi) probability density functions (often as 

Gaussian) and use in p(wi)p(x|wi) in order to calculate the 
average loss in deciding that a pattern belongs to each 
possible class. The pattern is classified according to the class 
that yields the smallest loss.  See [12] for more information. 

D. Use of evolutionary algorithms 
Evolutionary algorithms are a family of population based 

algorithms that use facets of biological evolution such as 
natural selection, reproduction, mutation and recombination 
to evolve solutions to problems.  Examples of evolutionary 
algorithms including Genetic Algorithms and Genetic 
Programs are considered below. 

Genetic algorithms (GAs) have previously been used in 
CAD schemes and they have proved successful. One of the 
keys papers that influenced this project is a GA based paper 
[8] in which a genetic algorithm was used for feature 
selection and it proved successful in this area. Performance 
was found to be a match for the well established LDA 
method and even better sometimes. The review paper [8] also 
reported the only use of genetic algorithms as being in feature 
selection as in the aforementioned paper. Neural networks are 
another biologically inspired technique that has been widely 
adopted and successfully but uses of GAs are limited and this 
raises the question of whether genetic algorithms could be 
further used. Genetic Programs (GPs) have previously been 
used in image processing by Cai, Smith and Tyrrell for noise 
removal from images [13]. In this case a form of genetic 
program called Cartesian Genetic Programming (CGP) was 
used (this will be explained shortly). Clearly, the removal of 
noise is a very different to pattern recognition but it suggests 
that application of genetic programs to this type of problem 
could be an interesting avenue to explore. 

An example of the use of genetic algorithms as an 
alternative feature selection method starts with a data 
structure termed a chromosome which is the length of the 
total number of features available. Each gene in the 
chromosome is a bit which is 1 or 0 where 1 indicates that a 
particular feature is included. For example bit 5 might be 
chosen to represent image entropy. There is a population of 
random chromosomes and for each one classification is 
performed. A new population is generated using parent 
selection, crossover and mutation. When the parents are 
selected it is designed so that ones deemed fitter are more 
likely to be chosen. By fitter it is meant the ones that resulted 
in a more accurate classification. This is continued for either 
a certain number of population generations or until a certain 
level of classification is obtained. It should be noted that 
there might be bias in the classifier, such that a certain set of 
input values might favor a particular set of features; to avoid 
this, the broadest range of data sets should be used. 

III. IMPLEMENTATION OF THE EVOLUTIONARY 

ALGORITHM 

A graph based evolutionary algorithm system called 
Cartesian Genetic Programming (CGP) has been chosen for 
this work.  A more recent form of Genetic Programming 
developed by Julian Miller [14], it differs from conventional 
genetic programming in structure that is evolved. Rather than 
using trees representing computer programs it uses a two 
dimensional array or network of functions, which can be 
visualized as being closer to a digital circuit than a program. 
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More formally, it can be viewed as genetic programming 
generalized from tress to acyclic graphs where edges mark 
connections and nodes are functions. The functions here are 
not in the form of any programming language but can be 
simple blocks such as an AND gate and some of the earliest 
uses of CGP have been in evolving digital circuits. A CGP 
system involves the evolution of these networks to find the 
optimal one for a problem. Fig. 3 shows an example of the 
structure but without connections which go from inputs to 
functions to either more functions or outputs. Note that the  
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Fig. 3. CGP network structure 
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Fig. 4. An example CGP network 

signal path can only go towards the output, i.e. from one 
column to one on its right, not backwards. As an example 
consider a very simple network with two inputs, one output 
and size 2x2 (4 functions) as shown in Fig. 4. Assuming each 
function has two inputs, the network inputs could be the 
numbers 2 and 5. One function could be multiplication, the 
second addition, the third a mean function and the fourth 
another addition. If the output had connected to the first 
function and both the function’s inputs connected to the first 
network input then the output would be 25. 

A CGP network is initially specified by the following 
parameters: 
• Number of rows 
• Number of columns 
• Number of inputs to the network 
• Number of inputs to a node 
• Number of network outputs 
• Available functions 
• Number of columns back a node can connect 

Connections are made randomly, and functions are 
randomly chosen out of the listed available functions. For 
each network the inputs are applied to the network input and 
an output is produced. A fitness function is applied to the 

output to calculate fitness. Once all fitnesses are calculated a 
new generation is made and this is all repeated as explained 
earlier for genetic algorithms. 

A.  Strengths and weaknesses of CGP 
It was stated previously that GAs are a search technique 

finding effective solutions in the solution space. The key 
observation to make about many engineering solutions is that 
they are based on set procedures and algorithms. 

Design of a digital filter would be based around some key 
mathematics such as discrete Fourier and Z-transforms. 
Design of a digital adder is very methodical, building up a 
circuit from some set block units. The use of these 
methodologies is essential in engineering in making the 
problem simple so that people can work with it. However 
they also cut out many potential solutions. 

CGP adopts an evolutionary strategy that provides a 
randomly guided search in which no assumptions are made 
regarding the search space, allowing solutions to occur that 
would not normally result with conventional techniques. One 
of the most powerful techniques at the moment in image 
processing is the use of wavelets, effectively a transform 
similar to Fourier but in this offers both scale and frequency 
information instead of just spatial domain information or just 
frequency. However whilst being sophisticated it is still quite 
conventional with implementation involving blocks of filter 
banks. For the basis or mother wavelet only one of 3 or 4 
families (for example Haar or Daubechies) tends to be used 
because a lot is known about them, not because it is best for 
the problem. CGP is far less conventional and solutions could 
involve what appear to be random arrangements of adders, 
multipliers, filters, comparators, functions to calculate means 
or anything else. 

CGP is not without its disadvantages, however. Firstly, 
since the design has not been engineered but rather evolved it 
can be hard to analyze and so unlike a conventional design 
it’s difficult to know why it works. As a consequence it is 
difficult to guarantee it will work reliably. There is no 
guarantee that CGP will find a good solution, for example if 
it is not given the right functions or enough functions then it 
will fail. CGP can be very slow to evolve, taking minutes for 
example to evolve a 4 bit multiplier on a P4 2.66 MHz 
processor in tests. In complex problems it may prove too 
slow to be used practically even if it is possible for a solution 
to be found given the functions available to the network. 

CGP has proven useful in image processing already. For 
example, it has been found to have some effectiveness in 
removing noise from an image and so it is quite likely that it 
can be of use in processing mammograms. 

B. How CGP can be used for classification 
So far a CGP network has been described and also GAs 

have been described, but how these fit together remains to be 
seen. The proposed flow for using CGP is therefore presented 
here:  

1. Begin with the pixel locations of a microcalcification 
2. Extract features from these pixels and place into an array of 
features 
3. Repeat steps 1 and 2 for all the microcalcifications that are to be 
used. 
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4. At this point there are N arrays of features. Split these arrays into 
a training set and a testing set 
5. Select a set of functions which can be used by the CGP networks 
(arrays of functions) 
6. Initialize a population of random CGP networks built using 
random connections and random functions chosen from within the 
function set. 
7. Take an array of features for a single microcalcification and apply 
it to a network. Use a threshold function on the output in order to 
choose between malignant or benign. 
8. Repeat 7 for all microcalcifications 
9. Compare the actual outputs against the desired ones, i.e. the true 
pathology and use this to calculate a fitness for each network 
10. Repeat 7, 8 and 9 for all networks 
11. Using some predetermined evolutionary strategy generate a new 
population 
12. Repeat step 7 to 11 until a perfect fitness has been obtained, i.e. 
it gets the pathology right on all mammograms or till it has run for a 
certain amount of time 
13. Now do steps 7 to 9 using the testing inputs, applying to the 
fittest network and analyze the performance 
 
C. Choice of function set 
The functions that are available to a CGP network will 

have an important effect on what fitness that network can 
ultimately achieve. For instance, if a network was of size 5 
columns by 5 rows there would be a total of 25 functions. If 
all these functions were either a logical AND function or a 
logical OR function then it is very unlikely the network will 
be able to perform complex image processing unless a much 
larger network is utilized. 
If instead those 25 functions include exponentials, 

multiplications, additions then there is a much better chance 
of complex processing being done. What is best to use is 
dependent on the problem, using an exponential function is 
inappropriate if evolving a digital circuit, for example. 

In this instance the problem is an image processing one and 
so it is in fact more likely that a good selection of 
mathematical functions would be necessary (considering 
pattern recognition is normally done using involved 
mathematical techniques). For this project any type of 
function was considered as the project was being 
implemented in software and was about proof of principle. It 
might be that at a later stage that hardware implementation is 
desirable and this would place restrictions on the functions 
available. This is not the case here though so practical 
implementation constraints are not considered. However, run 
time of the training algorithm was an issue and it should be 
remembered that selection of a cosine function over an add 
function might increase run time significantly depending on 
the processor being used. 

Up to a point, choice of function is arbitrary as the whole 
reason to use the CGP technique is that evolution is being 
allowed to decide how best to solve the problem and what is 
best is not known in advance. Some sensible choices though 
are as follows: Add and multiply functions - many filters and 
other functions can be made out of these; Comparison 
functions - these allow the filtering of one of two values 
dependent on a condition; Divide function - is useful, 
allowing a large number to be obtained here multiplying two 
numbers below 0 (as would happen with CGP features) 
would make even smaller numbers; Complex functions such 
as sine and exponential - making these available could allow 

easier processing of frequency content. There is no way to be 
certain what is ideal without experimentation but it is 
important to ensure the functions available allow a lot of 
potentially varied and powerful networks to be evolved.Those 
functions chosen were as follows: 
• add – all inputs added  
• subtract – inputs 1-N subtracted from input 0 for N 

inputs 
• multiply – calculate the product of all the inputs 
• divide – input 0 divided by input 1, returns 1 if second 

is 0 
• greatest – outputs the largest input 
• least – outputs the smallest input 
• greater than or less than – compares input 0 to input 1, 

returns 1, -1, or 0 for greater I[0] > I[1], I[0] < I[1], 
I[0] = I[1] respectively where I is the input vector. 

• mean – calculates the mean of the inputs 
 

D. Choice of evolutionary strategy 
In generating a new population there are a number of 

different strategies that can be employed. A tournament 
strategy is where two chromosomes are picked at a time and 
the fitter of the two is used in the new population. Crossover 
can then be applied to this fitter population. The advantage of 
this technique is that it ensures a lot of diversity in the 
population. The disadvantage is that it can be slow to 
converge and requires a large population which is 
computationally intensive. Therefore a different strategy will 
be employed known as λ+1. In this case a lambda of 5 will be 
used keeping the population small. It works as follows: 
• Evaluate the fitness of each chromosome 
• Select the fittest 
• Replicate the fittest 5 times 
• Mutate 4 of the 5 

This technique can converge quickly and relies purely on 
mutation for diversity. Because it is only ever keeping the 
fittest there is a danger of local maxima being found and it 
must be ensured that there is sufficient mutation to limit this. 

E. Fitness function 
In order for genetic algorithms to work it is very important 

to select the correct fitness function. If the designer 
misinterprets what result they are wanting to achieve then the 
network may train to a high fitness but will not do what is 
expected. Sometimes certain features the fitness function may 
cause unwanted side effect in what is evolved. Fortunately it 
is possible to define a relatively straightforward fitness 
function. Since the aim is to correctly classify mammograms 
then the total fitness can be defined as: 
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where ei is the expected output provided by the threshold and 
ai is the actual output for input set i. The aim of the project 
was to investigate if there was any diagnostic merit in using 
CGP and so no conditions were added such as making a false 
negative more serious than a false positive or vice versa. 

F. Features 
As described in part B of this section, image features are 

the inputs to the CGP network and it is only by these features 
that the network is able to distinguish a benign mammogram 
from a malignant one. From the pixels the following features 
were selected: 
• Mean 
• Second Moment 
• Third Moment 

The spatial grey level dependence (SGLD - sometimes 
called grey level co-occurrence matrix) was also extracted 
and from this the following features were extracted: 
• Mean 
• Second Moment 
• Third Moment 
• Entropy 
• Element difference moment 
• Uniformity 

More information and definitions of these features can be 
found in [12]. All the features selected are texture based 
features which were found in [8] to be more effective in 
classification than morphological ones. 

 

IV. RESULTS 

For the first set of results, 17 images were used for training 
the CGP network and 12 images for testing in one data set 
and 27 images used for training and 19 images used for 
testing the second data set. The CGP parameters used are 
shown in Table 1 and were determined through trial and error 
for the purpose of these preliminary experiments, but future 
work will investigate evolving optimal parameters. Run time 
for the algorithm was in the region of one and a half hours on 
a Pentium 4, 2.66GHz processor (pre HyperThreading 
generation) with 1 GB of RAM, using the parameters listed in 
Table 1. The results of the experiment are given in Table 2 
and are averaged over 3 runs for each of the data sets.  

TABLE1 

CGP PARAMETERS – EXPERIMENT 1 

Parameter Setting 

Number of rows 5 

Number of columns 16 

Number of inputs per node 2 

Number of generations 14000 

Mutation rate 0.1 

 
 

TABLE 2 

RESULTS - EXPERIMENT 1 

Data set Training Fitness Testing Fitness 

1 71% (12/17) 67% (8/12) 

2 81% (22/27) 63% (12/19) 

 

A round robin system was used whereby all inputs sets but 
one are used for training and the remaining one is used for 
testing. The testing set is then returned to the training set and 
another is used for testing. This continues until all items have 
been used for testing or for as long as is deemed necessary 
(e.g. due to time constraints). This is a standard technique 
often used in the literature (for example in [9]). In total, 20 
combinations were used here and the results are given in 
Table 3.  

TABLE 3 

 ROUND ROBIN PERFORMANCE – EXPERIMENT 2  

Data 
set 

Sensitivity Specificity FPR FNR Training 
Fitness 

Test 
Fitness 

 

1 0.9 0.6 0.4 0.1 80% 
(41/51) 

70% 
(14/20) 

 

 

Fig. 5. Receiver Operating Characteristic (ROC) curve for round robin 
performance (Experiment 2). TPF – True Positive Fraction, FPF – False 

Positive Fraction 

  Significant performance can be seen throughout these 
results with high sensitivity and specificity. Training results 
are also strong here even though a much larger data set of 51 
images has been used for training each time. Overall 
classification accuracy is also good at 70%.  The Receiver 
Operating Characteristic (ROC) curve analysis given in Fig. 5 
shows an area under the ROC Az of 0.69 which is comparable 
to values found in the literature. For example, review paper 
[11] found two neural network classifiers to have Azs of 0.74 
and 0.6 and a K-nearest neighbor method to produce an area 
of 0.82 for grey level features and 0.72 for SGLD based 
features as used in the CGP method described in this paper. 

Results up to this point were based around feeding an array 
of features into a CGP network’s input. This technique is a 
very conventional way of doing the classification in that it is 
very similar to how a neural network is used, although clearly 
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0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 0.2 0.4 0.6 0.8 1 1.2 

FPF 

TPF 

a=1.24 b=2.23 Az=0.6941 CGP diagnosis 

263

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)



the system itself will behave differently. The experiment 
evaluates performance of CGP by using the network in a very 
different way. In this case no features are extracted from the 
mammogram, but a pixel region of size 8x8 is fed directly to 
the network (after having first linearised the array).  

TABLE 4 

CGP PARAMETERS – EXPERIMENT 2 

Parameter Settings 1 Settings 2 

Number of rows 16 16 

Number of columns 16 16 

Number of inputs per node 2 2 

Number of generations 8000 20000 

Mutation rate 0.1 0.1 

 

The experimentation for this approach was carried out with 
2 sets of CGP parameters which are presented in Table 4. 
Note that again the network size has been significantly 
increased. This is because there are now 64 inputs as opposed 
to the 15 used before. The number of generations was further 
increased for the latter 3 runs since the first suggested they 
were insufficient. Four runs were carried out in total.  

The results for the 4 runs are presented in Table 5. The 
training scores are a lot lower than before, high sensitivities 
are countered by low specificities and so the overall 
classification is always higher than chance but not 
significantly.  

                                                 TABLE 5 

RESULTS - EXPERIMENT 2 

Data 

set 

Sensitivity Specificity FPR FNR Training 

Fitness 

Test 

Fitne
ss 

1 0.9 0.22 0.77 0.1 55% 58% 

2 0.9 0.44 0.55 0.1 57% 65% 

2 0.9 0.3 0.7 0.1 59% 60% 

2 0.8 0.3 0,7 0.2 57% 58% 

 

A ROC analysis indicated the technique is more effective 
than the sensitivities and specificities would suggest. The 
ROC is plotted in Fig. 6 for the second row in Table 5 which 
is the run with the most effective classification. Az is close to 
0.78 which is comparable to, if not better than, performance 
in commercial classifiers, although it is lower in the other 
runs, being closer to 0.7 and below. Thus, some potential is 
shown but with a lot more work needed. 

       

V. CONCLUSIONS 

In this paper a novel application of an evolutionary algorithm, 
Cartesian genetic programming (CGP) has been applied to 
the classification of microcalcifications segmented from 
mammograms. CGP was used not only to optimize a number 
extracted features from the image, but also classify the 
microcalcifications based on the raw pixel values.  This is 
effectively evolving an algorithm to extract and select 
features and classify the image accordingly. Initial results in 
both cases were variable in performance but reached levels 
comparable to those in the literature. The data set was 

relatively small and so the statistical significance of the 
results is limited. However, it does indicate that CGP has 
potential in the classification of mammograms and further 
work should be carried out. In addition, it indicates that the 
novel technique of classifying purely on raw pixels as 
opposed to features may be effective and should also be 
investigated further. With more sophisticated segmentation, 
extraction of further features (e.g. morphological), a larger 
data set and refinement of the CGP algorithm, it is anticipated 
a significant increase in performance can be achieved. 
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Fig. 6. Receiver Operating Characteristic (ROC) curve for pixel data set 2. 
TPF – True Positive Fraction, FPF – False Positive Fraction. 
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