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Abstract-This paper presents a new pseudo-label fuzzy 

support vector machine (PLFSVM)–based active learning 
framework in interactive content-based image retrieval (CBIR) 
systems.  One of the main issues associated with relevance 
feedback in CBIR systems is the small sample problem where 
only a limited number of labeled samples are available for 
learning.  This is because image labeling is time consuming and 
users are often reluctant to label too many images for feedback.  
Learning from insufficient training samples often constrains the 
retrieval performance.  To address this problem, we propose a 
new algorithm based on the concept of pseudo-labeling.  It 
incorporates carefully selected unlabeled images to enlarge the 
training data set and assigns proper pseudo-labels to them.  
Further, some fuzzy rules are utilized to automatically estimate 
class membership of the pseudo-labeled images. Fuzzy support 
vector machine (FSVM) is designed to take into account the 
fuzzy nature of some training samples during its training.  In 
order to exploit the advantages of pseudo-labeling, active 
learning and the structure of FSVM, we develop a unified 
framework to perform content-based image retrieval.  
Experimental results based on a database of 10,000 images 
demonstrate the effectiveness of the proposed method.  
 

1. INTRODUCTION 

Content-based image retrieval (CBIR) has been developed 
to retrieve a set of desired images from an image collection.  
It makes use of the visual contents such as color, texture, 
shape and spatial relationship that exist in the images.  These 
low-level features, however, may not correspond to the users’ 
dynamic and subjective interpretation of image contents 
under various circumstances.  In view of this, relevance 
feedback has been introduced to bridge this gap.  Relevance 
feedback is an interactive mechanism that involves user 
participation.  Under this framework, the users provide their 
judgment on the relevance of the retrieved images.  The 
systems then learn the user information needs based on these 
feedbacks.  Many relevance feedback algorithms have been 
adopted in CBIR systems and demonstrated considerable 
performance improvement. 

Despite the previous works on relevance feedback for CBIR 
systems, it is still a challenging task to develop effective and 
efficient interactive mechanisms to yield satisfactory retrieval 
performance.  One key difficulty with relevance feedback is 

the lack of sufficient labeled images since users usually do not 
have the patience to label a large number of images.  
Therefore, the performance of relevance feedback methods is 
often constrained by the limited number of training samples.  
To deal with this problem, some works have been done to 
incorporate the unlabeled data to improve the learning 
performance.  Discriminant Expectation Maximization (D-
EM) algorithm has been introduced to incorporate the 
unlabeled samples to estimate the underlying probability 
distribution [1].  The results are promising, but the 
computational complexity can be significant for large 
databases.  Transductive support vector machine (TSVM) for 
text classification has been proposed to tackle the problem by 
incorporating the unlabeled data [2].  It has also been applied 
for image retrieval [3].  The method proposes to incorporate 
unlabeled images to train an initial SVM, followed by 
standard active learning.  It is, however, observed that the 
performance of this method may be unstable in some cases.  
Incorporating prior knowledge into the SVM has also been 
introduced to resolve the small sample problem [4].  All these 
proposed methods show some promising outcomes, however 
few can learn from the labeled and unlabeled data effectively.   

In this paper, we develop a pseudo-label fuzzy support 
vector machine (PLFSVM) framework to perform content-
based image retrieval.  By exploiting the characteristics of the 
labeled images, unlabeled images are chosen carefully and 
assigned different pseudo-labels such as ‘relevant’ or 
‘irrelevant’.  This process will enlarge the training data set.  
As these images are not labeled explicitly by the users, there 
is a potential imprecision embedded in their class information.  
In view of this, a fuzzy membership function is employed to 
estimate the class membership of the pseudo-labeled images.  
The fuzzy information is then integrated into the FSVM for 
active learning.   

 
2. LEARNING FROM SMALL SAMPLES 

A.  Small Sample Problem 
In interactive CBIR systems, it is not user friendly to let the 

users label too many images for feedback.  This results in the 
small sample problem where learning from a small number of 
training samples may not produce good retrieval results, even 
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for powerful learning machine such as SVM.  Therefore, it is 
imperative to find solutions to solve the small sample problem 
faced by relevance feedback.   

Considering that obtaining a large number of labeled 
images is labor intensive while unlabeled images are readily 
available, we propose to augment the available labeled images 
by making use of the potential role of unlabeled images.  It is 
worth noting that unlabeled images can degrade the 
performance if used improperly.  Consequently, they should 
be carefully chosen so that they will be beneficial to the 
retrieval performance.  Each selected, unlabeled image is 
assigned a pseudo-label of either ‘relevant’ or ‘irrelevant’ 
based on an algorithm to be explained in subsection 3-B.  
These pseudo-labeled images are fuzzy in nature since they 
are not explicitly labeled by the users.  Therefore the potential 
imprecision embedded in their class information should be 
taken into consideration.  We employ a fuzzy membership 
function to determine the degree of uncertainty for each 
pseudo-labeled image, hence putting into context the relative 
importance of these images. These pseudo-labeled samples 
are then combined with those labeled samples to train the 
FSVM.   

 
B.  Active Learning 

SVM is an implementation of the method of structural risk 
minimization (SRM) [5].  It has been successfully utilized in 
many real-world applications.  The basic idea of SVM for 
binary classification is to find an optimal separating 
hyperplane that maximizes the margin between two classes in 
a kernel-induced feature space.  Despite the superior 
performance of SVM in solving classification problems, it is 
still limited to crisp classification where each training sample 
is classified into exactly one class or another.  Nevertheless, 
there exist situations where the training samples do not fall 
neatly into discrete classes. They may belong to different 
classes with different degree of membership.  To solve this 
problem, FSVM has been developed [6].  FSVM is an 
extended version of SVM that takes into consideration 
different significance of the training samples.  It exhibits the 
following properties that motivate us to adopt it in our 
framework: integration of fuzzy data, strong theoretical 
foundation, and excellent generalization power.   

We develop a unified PLFSVM framework that integrates 
the advantages of pseudo-labeling and FSVM.  It exploits 
inexpensive unlabeled data to augment the small set of 
labeled data, hence potentially improves the retrieval 
performance. This is in contrast to most existing feedback 
approaches in CBIR systems that are concerned with the use 
of labeled data only.  It is noted that the proposed PLFSVM 
differs from the traditional SVM in several ways.  The 
PLFSVM is developed for resolving the small sample 
problem by incorporating pseudo-labeled images, while 
traditional SVM can only handle labeled images.  Further, 
PLFSVM requires less user workload, thus making it more 
appealing for practical applications such as image retrieval 

over bandwidth-limited network.  Lastly, PLFSVM can take 
relative significance of the training samples into 
consideration, and hence, is more general and flexible. 

Active learning is designed to achieve maximal 
information gain or minimize uncertainty in decision making.  
It selects the most informative samples to query the users for 
labeling. SVM-based active learning aims to select samples 
that maximally reduce the version space of SVM [7]. It 
selects samples that are closest to the current SVM decision 
boundary as the most informative points.  Samples that are 
farthest away from the boundary and on the positive side are 
considered as the most relevant images.  The same selection 
strategy is adopted in this work.  Integrating the merits of 
PLFSVM into active learning, we can achieve improved 
retrieval performance with less user labeling.   

 
3. PSEUDO-LABEL FUZZY SUPPORT VECTOR 

MACHINE (PLFSVM) 

A.  Formulation of FSVM 
We first provide a brief introduction on SVM.  Let 

1{( , )}n
i i iS y == x  be a set of n training samples, where m

i ÎÂx  
is an m-dimensional sample in the input space, and 

{ 1,1}iy Î -  is the class label of ix .  SVM first transforms 
data in the original input space to higher dimensional feature 
space through a mapping function ( )j=z x .  It then finds the 
optimal separating hyperplane with minimal classification 
errors.  The hyperplane can be represented as: 

   0b× + =w z   (1) 

where w is the normal vector of the hyperplane, and b is the 
bias which is a scalar.  The optimal hyperplane can be 
obtained by solving the following constrained optimization 
problem [5]: 
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where C is the regularization parameter controlling the 
tradeoff between margin maximization and classification 
error.  Larger value of C produces narrow-margin hyperplane 
with less misclassification. ix  is called the slack variable that 
is related to classification errors in SVM.  Misclassifications 
occur when 1.ix > The optimization problem can be 
transformed into the following equivalent dual problem using 
the Lagrangian method: 
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where ia  is the Lagrange multiplier.  The decision function 
of the SVM can be represented as: 
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where ( , )iK x x  is the kernel function in the input space that 
computes the inner product of two data points in the feature 
space.  Using this kernel trick, we can construct the optimal 
hyperplane in the feature space without having to know about 
the mapping j  in explicit form.  There are three common 
types of kernels used in SVM including polynomial kernel, 
radial basis function kernel and sigmoid kernel.   

In FSVM, each training sample is associated with a fuzzy 
membership value 1{ } [0,1]n

i im = Î .  The membership value im  
reflects the fidelity of the data, or in other words, how 
confident we are about the actual class information of the data.  
The higher its value, the more confident we are about its class 
label.  The optimization problem of the FSVM is formulated 
as follows [6]: 
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It is noted that the error term ix  is scaled by the membership 
value im .  The fuzzy membership values are used to weigh 
the soft penalty term in the cost function of SVM.  The 
weighted soft penalty term reflects the relative fidelity of the 
training samples during training.  Important samples with 
larger membership values will have more impact in the 
FSVM training than those with smaller values.  

Similar to the conventional SVM, the optimization 
problem of FSVM can be transformed into its dual problem as 
follows: 
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Solving equation (6) will lead to a decision function similar 
to (4), but with different support vectors and corresponding 
weights ia . 

 
B.  Unlabeled Image Selection and Pseudo-Label Estimation 

Appropriate selection of the unlabeled images to aid 
retrieval is vital as the unlabeled images may not help or even 
degrade the performance if chosen improperly.  In this work, 
we present a method to select the unlabeled images for 
pseudo-labeling by studying the characteristics of the labeled 
images. The selection criterion is to determine certain 
informative samples among the unlabeled ones which are 
‘similar’ to the labeled images in terms of the visual features 
for pseudo-labeling and fuzzy membership estimation.  The 
enlarged hybrid data set consisting of both pseudo-labeled 

and explicitly labeled samples is then utilized to train the 
FSVM. 

It is observed that the labeled images usually exhibit local 
characteristics of image similarity.  To exploit this property, it 
is desirable to adopt a multi-cluster local modeling strategy.  
Taking into account the local multi-cluster nature of image 
similarity, we employ a two-stage clustering process to 
determine the local clusters.  The labeled samples are 
clustered according to their types: relevant or irrelevant.  K-
means clustering is one of the most widely used clustering 
algorithms.  It groups the samples into K clusters by using an 
iterative algorithm that minimizes the sum of distances from 
each sample to its respective cluster centroid for all the 
clusters.  Notwithstanding its attractive features, K-means 
clustering requires a specified number of clusters in advance 
and is sensitive to the initial estimates of the clusters.  To 
rectify this difficulty, we adopt a two-stage clustering strategy 
in this work.  First, subtractive clustering is employed as a 
preprocessing step to estimate the number and structure of 
clusters as it is fast, efficient and does not require the number 
of clusters to be specified a priori [8].  These estimates are 
then employed by K-means to perform clustering based on 
iterative optimization in the second stage.    

Two sets of separate clusters are obtained, relevant and 
irrelevant sets after clustering.  Unlabeled image selection 
and pseudo-label assignment is then based on a similarity 
measure analogous to the k-nearest neighbor (K-NN) 
technique.  That is, samples close in distance will potentially 
have similar class labels.  For each cluster formed by the 
labeled images using the two-stage clustering scheme, K 
nearest unlabeled neighbors are chosen based on their 
Euclidean distances to the center of the respective labeled 
cluster.  The label (relevant or irrelevant) of each labeled 
cluster is then propagated to the unlabeled neighbors.  This is 
referred to as pseudo-labeling process.  As the computational 
cost will increase with respect to the number of pseudo-
labeled images, therefore, only the most ‘similar’ neighbor 
for each cluster is selected in this work. 

 
C. Estimation of Soft Relevance Membership Function for 
Pseudo-Labeled Images 

In consideration of the potential fuzziness of the pseudo-
labeled images, our objective here is to determine a soft 
relevance membership function ( ) : [0,1]m

Pg Â ®x  that 
assesses each pseudo-labeled image Px  and assigns it a 
proper relevance value between [0, 1].  Since clustering has 
been performed on each positive (relevant) and negative 
(irrelevant) class separately to get multiple clusters per class, 
the obtained clusters in each class can be employed to 
generate the membership value.  Intuitively, the closer a 
pseudo-labeled image is to the nearest cluster of the same 
class label, the higher is its degree of relevance.  In contrast, 
the closer a pseudo-labeled image is to the nearest cluster of 
the opposite class label, the lower is its degree of relevance.  
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Based on this argument, an exponentially-based fuzzy 
function is selected:     
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     (7)           

where Siv  denotes the center of the ith cluster with the same 
class label as the pseudo-labeled image Px , while Ojv  
denotes the center of the jth cluster with the opposite class 
label to the pseudo-labeled image 

.Px Τmin( ) ( )P Si P Si
i

- -x v x v  and Τmin( ) ( )P Oj P Ojj
- -x v x v  

represent the distance between Px  and the nearest cluster 
centers with the same and opposite class labels, respectively.  

1 0a >  is a scaling factor.  This membership function is 
divided into two scenarios.  If the distance ratio is smaller 
than 1, suggesting that the pseudo-labeled image is closer to 
the nearest cluster with the same class label, then we will 
estimate its soft relevance.  Otherwise, if the pseudo-labeled 
image is closer to the nearest cluster with the opposite class 
label, a zero value is assigned.    

Further, the agreement between the predicted label 
obtained in subsection 3-B and the predicted label obtained 
from the trained FSVM can also be utilized to assess the 
degree of relevance of the pseudo-labeled samples.  The 
second factor of the fuzzy function is chosen as a sigmoid 
function as follows: 

                                        

2
2

2

1        pseudo-label is positive
1 exp( )

( )
1          otherwise                         

1 exp( )

P
a y

w

a y

ì
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where 2 0a >  is a scaling factor.  y is the directed distance of 
the pseudo-labeled image Px  to the FSVM boundary (the 
decision function output of FSVM for the pseudo-labeled 
image Px ).  We will explain the rationale of the fuzzy 
expression in (8) by first considering that the pseudo-label of 
the selected image has been determined as positive in 
subsection 3-B.  In this case, the upper equation in (8) will be 
used.  If y has a large positive value, this will suggest that it is 
most likely to be a relevant image.  Since there is a strong 
agreement between the predicted pseudo-label from 
subsection 3-B and the predicted class label using the trained 
FSVM, its fuzzy membership value should be set to a large 
value close to unity.  If y has a large negative value, this will 
suggest that it is most likely to be an irrelevant image.  Since 
there is a strong disagreement between the predicted pseudo-
label from subsection 3-B and the predicted class label using 
the trained FSVM, its fuzzy membership value should be set 

to a small value close to zero.  The same arguments apply 
when the pseudo-label of the selected image has been 
determined to be negative in subsection 3-B.   
 Finally, these two measures affecting the fuzzy 
membership are combined together to produce the final soft 
relevance estimate, namely: 

   1 2( ) ( ) ( )P P Pg w w=x x x  (9) 

The estimated soft relevance of the pseudo-labeled images is 
then used in FSVM training.  

 
4. EXPERIMENTAL RESULTS 

The performance of the PLFSVM is evaluated on an image 
database consisting of 10,000 natural images with 100 
different categories obtained from the Corel Gallery product.  
Color histogram, color moments and color auto-correlogram 
are used to represent the color feature, while Gabor wavelet 
and wavelet moments are used to represent the texture feature.   

In our experiment, we use objective measure to evaluate the 
performance of the proposed PLFSVM method, and compare 
it with active learning using SVM [7].  The objective measure 
is based on the Corel’s predefined ground truth.  That is, the 
retrieved images are judged to be relevant if they come from 
the same category as the query.  100 queries with one from 
each category are selected for evaluation.  Retrieval 
performance is evaluated by ranking the database images 
according to their directed distances to the SVM boundary 
after each active learning iteration.  Five iterations of 
feedbacks are recorded.  Precision-versus-recall curve is 
adopted in our experiment.  The precision and recall rates are 
averaged over all the queries.  The average precision-versus-
recall (APR) graphs after the first iteration of active learning 
are shown in Fig. 1.  We have shown the results for two 
different numbers of initially labeled images.  From the 
figures, we observe that the PLFSVM method outperforms the 
standard SVM method in both cases.  The PLFSVM method 
achieves higher recall rate at the same precision level.  It also 
offers higher precision rate for the same recall level.  This 
indicates the superiority of the proposed PLFSVM method.  
In our experiments, it is observed that PLFSVM consistently 
achieves better performance than SVM for different values of 
initial labeled images. 
 In addition, we have adopted another measure called 
retrieval accuracy to evaluate the retrieval system: 

relevant images retrieved in top  returnsRetrieval accuracy= T
T

 

     (10) 

where T is the number of top returned images with T = 10 in 
the experiment.  The performance comparison of the 
PLFSVM method and the SVM method is given in Fig. 2 for 
the case of 10 initial labeled images.  The retrieval accuracy 
is averaged over the 100 queries.  We observe that PLFSVM 
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method achieves higher retrieval accuracy than the SVM 
method.  Further, the retrieval accuracy of the PLFSVM 
method increases quickly in the initial stage.  This is a 
desirable feature since the user can obtain satisfactory results 
quickly.  It is worth emphasizing that the initial retrieval 
performance is very important since users often expect quick 
results and are unwilling to provide much feedback.  Hence, 
reducing the amount of user feedback while providing good 
retrieval results is of great interests for many CBIR systems.  
It is observed that our method offers an improvement of 16% 
over the SVM method after the first iteration of active 
learning.  The superiority of our method over the SVM 
method mainly lies in the incorporation of pseudo-labeled 
images for effective learning.  

 
 (a) 

 
 (b) 
Fig. 1.  The average precision-versus-recall graphs (after the first iteration of 
active learning).  (a) APR for 5 initial labeled images,  (b) APR for 10 initial 
labeled images. 

 

 
Fig. 2.  Retrieval accuracy of the PLFSVM and SVM methods in top 10 results.   

5. CONCLUSION 

This paper addresses the small sample problem in 
interactive CBIR systems by incorporating pseudo-labeled 
images into FSVM along with labeled images for effective 
retrieval. By exploiting the characteristics of the labeled 
images, pseudo-labeled images are selected through an 
unsupervised clustering algorithm. Further, the relevance of 
the pseudo-labeled images is estimated using the fuzzy 
membership function. FSVM-based active learning is then 
performed based on the hybrid of pseudo-labeled and 
explicitly labeled images.  Experimental results confirm the 
effectiveness of our proposed method.  
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