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Abstract— The overall objective of this paper is to present a
methodology for reducing the human workload through
adapting an automatic scheme for Content-Based Image
Retrieval (CBIR) engines. The proposed system utilizes an
unsupervised hierarchical clustering algorithm, known as the
Directed Self-Organizing Tree Map (DSOTM) that aims to
closely mimic the process of information classification thought
to be at work in the human brain [1, 2]. To further refine the
search process and increase retrieval accuracy, a Semi-
automatic relevance feedback approach is presented in this
work. The Semi-automatic scheme refers to a relevance
feedback CBIR engine, structured around the DSOTM
algorithm. This system aims to learn from and adapt to
different users’ subjectivity under the guidance of an additional
objective verdict provided by the DSOTM. Comprehensive
comparisons with the Rank-based, relevance feedback, and
automatic CBIR engines, demonstrate feasibility of adapting
the Semi-automatic approach.

[. INTRODUCTION

Rank-based CBIR engines simply neglect the semantic
similarities among target images by searching and retrieving
mmages according to degree of (statistical) similarities
between the query and its neighboring images. Such systems
assume direct association between statistical similarities and
semantics of the query image and disregards inler-
relationships among target images. Fig. 1 clearly illustrates
the limitation of such an approach. In this figure, the query
image 1s located on top-left comer of the figure and the top
16 images are ranked and retrieved — from left to right, and
top to bottom — according to the decaying level of their
likeness with respect to the query. It is evident that target
images with high feature similarities may not be
semantically similar to the query image due to the gap
between low-level features used for image indexing and the
high-level concepts used by human observers.

Past efforts to bridge this gap emphasized simulating
human perception of visual contents via the human-
computer interaction (HCI) - also known as Human-
controlled or Relevance Feedback (RF) — scheme: a learning
mechanism that allows retrieval systems to adapt to the
users” needs by tuning the proximity matching process
toward semantic levels using low-level visual features.

The Human-controlled approach is an extended
application of the modem information retrieval (IR),
proposed by Salton and MecGill [3], in the image retrieval
process. In IR systems, each document is represented by a
set of key words and terms. These (erms are then
concatenated in a set of vectors (a.k.a. “Vector Models™) and
are then made available for search and retrieval. Some of the

Fig. 1: A sample query (top-left) to demonstrate behavior of the rank-based
CBIR system.

well-known implementations of the HCI approach in CBIR
application are Multimedia Analysis and Retrieval System
(MARS) [4], PicToSeek [3], DrawSearch [6], and Viper [7].
In all of the above systems, some kind of query refinement
strategy (i.e., feature weighting) has been adapted to
interactively create a new query with the goal of optimizing
the search process.

There are few problems, however, associated with the
above implementations of interactive learning approach:
First, they suffer from limited degree of adaptivity due to
incapability of distance measurement techniques used in
above systems to adequately model perceptual differences as
seen by the human user [8]. Secondly, these systems require
a high degree of user mvolvement in providing feedback
samples through many cvcles of relevance feedback before
convergence. Lastly. these systems suffer from potential
human (subjective) errors due to their dependency on users’
judgments on resemblance of retrieved images [16].

In view of the above problems. an unsupervised learning
algorithm, namely, the Directed self-organizing tree map
(DSOTM) was introduced [14]. The resulting search engine
aims to minimize both human subjectivity and workload by
replacing repetitive user interaction steps by the DSOTM
module, which adaptively guides relevance feedback, to
bridge the gap between low-level image descriptors and high
level semantics. The proposed system also takes advantage
of an adaptive technique based on non-linear radial-basis
function (RBF) model [9] that aims to model human
perceptual similarities among images. To further reduce this
gap and achieve an enhanced performance for the CBIR
system under study. a RF approach was proposed in
conjunction with the DSOTM. The resulting framework,

275



Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

Image
Database
Feature &) Search tricval
— : > b » retrieval
quers Extraction Unit resulls

query/metric T
daptation

JER

Y

Relevance
Feedback

!

User
Interaction

[y

Fig. 2: Adaptive Human-controlled relevance feedback CBIR system [8].

referred to as Semi-automatic CBIR, aims at leaming
different user subjectivity and increasing retrieval accuracy.

This paper provides some detailed descriptions on both
RF and DSOTM algorithms in Sections 2 and 3: Section 4
discusses the Semi-automatic architecture in the CBIR
application; a comprehensive comparison between Rank-
based, fully interactive, Automatic, and Semi-automatic
CBIR architectures is also presented in Section 5; Section 6
summarizes the paper with some remarks.

II. INTERACTIVE APPROACH IN CBIR

As illustrated earlier in Fig. 1, image retrieval based on
the statistical image representation and the linear similarity
approximation is unable to completely articulate the users’
requirements on semantic levels. This is due to the gap
between low-level features and the high-level concepts, as
pointed out previously.

Fig. 2 illustrates the adapted architecture for the RF-based
CBIR system, proposed by Muneesawang et al. [8]. This
system takes advantage of an adaptive technique based on
non-linear RBF model for learning the users’ notion of
similarity between images. In this process, the user is
provided with a set of retrieved images and is asked to select
those with the highest (semantic) similarity with respect to
the query image. Feature vectors extracted from selected
images are then used as training seeds to determine centers
and widths of different RBF units in the network. RBF is an
attractive technique for simulating the human perception.
Using the RBF-based learning model offers further
adaptability to the retrieval system to refine the search to
different users and various types of images rather than to
enforce a fixed metric for comparisons.

RBF is a kemel function that has an outstanding
approximation  capability  for  non-linear  proximity
evaluation. One of the major properties of RBF is its
localization capability: the trait that is determined by its
exponentially decaying (or growing) behavior with respect
to the distance from a mean point |9].

In this work, a one-dimensional Gaussian RBF is
associated with each component of image feature vector and
1s used for the purpose of the nonlinear proximity evaluation
between query., z, and inpul image, x, leature vectors. On the
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Fig. 3: Machine controlled CBIR system [11].

other hand, each RBIF unit provides a nonlinear mapping of
distance versus similarity where the highest similarity is
achieved when z = x.

In addition to utilizing a non-linear metric for annotating
perceptually resembled images, refining the query to a best
representation of such likeness 1s also important. In the
process of image retrieval, there are situations where the
selected query can not entirely reflect users” preferences due
to uncertainty of image interpretations as a result of
ambiguous image contents (i.e., the presence ol several
objects of interest). Under such circumstances, the system
often generates trivial or even irrelevant retrieval results due
to its incapability of extracting all the required information
that leads it to converge toward the query (relevant) class. In
such situation, readjusting query location more toward a best
representative class with the objective of retrieving more
relevant images at subsequent RF iterations can significantly
improve the retrieval accuracy. This is possible through the
so-called Query Modification process [10]. These
modifications are carried out based on information (or
preferences) provided by the user from earlier iterations of
RF.

Several schemes have been studied for the purpose of
query modification in the literature. Tuning the query
position to the center of mass of relevant samples via
calculating the mean value of the training vectors associated
with users’ selected images can be a good indication of both
the relent class itself and users’ preferences. This method is
effective in situations where there are significant numbers of
relevant samples available for the user to select from (i.e.,
late stages of retrieval). In a situation where there is a small
subset of the actual relevant class available (i.e., early stages
of retrieval), this query modification scheme will not
perform adequately since sparse data resolution can
extensively impact the modified query by diverging it from
the true position of the relevant cluster center. In such
circumstances, the query can be modified by the information
extracted from both relevant and irrelevant sub-samples. As
a result, the query is adjusted to a new position by shifting it
away from the irrelevant group and more toward the
relevant image cluster.

The combination of wuser’s interactions, query
modification, and RBF learning unit enables the retrieval

276



Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

_____ Initial Search____ - Automatic Search ____
i H 1
1 ]
1 1
Feature 3 A Feature i
Extraction 1 ! i Retrieval | | = :' Extraction 2 E

[ o
i A T DO 1 i
H i ' H
! H ! Classifier '
: i Iterations H
: e ’
i b | :

!
i (| i
1 i ] Query i
b v

E Query Image E i1 Modification i

i I !
] i ! :

Fig. 4: Machine-controlled CBIR system - A closer look [8].

system to directly integrate users’ preferences (semantics)
into the retrieval process. Usually. depending on the nature
of the query image, quality of feature descriptors, and
learning curve of the system, duration of users’™ supervision
is varied from a few to tens of interactions before the
algorithm converges (i.e., until a satisfactory result is
achieved). Such limitation makes the human-conirolled
CBIR engine essentially unsuitable in practice.

In view of the above limitation, an automatic image
retrieval scheme is proposed here. Such system aims to
minimize both human subjectivity and workload by
replacing the required interactions with an unsupervised
learning unit, namely, the Directed self-organizing tree map
(DSOTM). This scheme is subject of the next section.

III. AUTOMATIC APPROACH IN CBIR

Fig. 3 illustrates the proposed architecture for an
automatic CBIR. The automatic image retrieval system in
this figure differs from its interactive counterpart via
mtegrating unsupervised data clustering principles into the
retrieval process, thereby exploiting the DSOTM algorithm.
Fig. 4 provides a detailed representation of Fig. 3. This
figure can also be generalized to Fig. 2 by replacing the
(unsupervised) Classifier Iterations module with the
(supervised) User Interactions.

The DSOTM is an unsupervised machine learning
algorithm and 1s inspired by principles found in Kohonen’s
self-organizing feature map (SOFM) [12] and Kong's Self
Organizing Tree Map (SOTM) [13]. Similar to both SOFM
and SOTM, DSOTM tends to follow the self-organization
and competitive learning principles discussed in [1];
however unlike SOFM, DSOTM tends to grow a more
dynamic topology (more plastic than SOFM) that not only
extracts global intuition from an input pattern space but also
imjects some degree of localization into the discriminative
process, such that maximal discrimination becomes a
priority at any given resolution (or number of classes). Also,
comparing with SOTM, DSOTM algorithm not only
provides a partial supervision on cluster generation by
foreing divisions away from the query class but also makes a
gradual decision about the resemblance of the input patterns
by constantly modifying each sample’s memberships during
the learning phase of the algorithm [14].

(a) (b)

Fig. 5: Self-organizing data clustering: () performed by SOFM, nodes
converge to areas of zero data density: () performed by DSOTM. no nodes
converge to join the arcas of zero data density [15].

DSOTM 1s chosen in the current application, as the
problem in image retrieval has different characteristics than
other data classification applications: First, the training data
set required by relevance feedback learning algorithms is
very small, e.g., a few to tens of samples. Also, the feature
space is of a very high dimension consisting of a
combination of color, shape, and texture features. These
tend to form sparsely distributed data. Secondly, a problem
is caused by an unbalanced data distribution between
relevant and irrelevant samples in the training set. It is
expected that, after the first iteration of relevance feedback,
the relevant items are retrieved more than irrelevant ones,
and thus. the majority of relevant items will introduce an
unbalanced space to the resulting clusters. To solve this
problem, the DSOTM allows for a focus on maximization of
discrimination within sub-regions of the (unbalanced)
training data via competition among its hierarchically-
discovered nodes. This efficient allocation and breakdown
of «class relationships minimizes classification errors
compared to that achieved through SOFM, which unfold
across data space, often leading to distortion within sparse
interstices (see Fig. 5).

The algorithm for generating the DSOTM map is

summarized in a simplified flowchart depicted in Fig. 6.
Details associated with each of the main components are
given in the following steps:
Initialization: A root node {w i}jl is chosen from the
available set of input vectors { X, }f__l in a random manner. J
is the total number of centroids (initially set to 1) and K is
the total number of input vectors (1.e., images).

Similarity Measurement: A new data point, x, is randomly
selected and the best-matching (winning) centroid, j , is
found through the minimization of the predefined Fuclidean
distance criterion in (1):

J=12,.

W (1) =argmjin||x(r)—wj(r)", sl (1
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Updating: If le(r.)—w f"U)IISHU)‘ where H(f) 1s the

hierarchy function used to control the levels of the tree and
decays exponentially over time from its initial value,
H(t,)>o,. according to H{t+1D)=A-H(t)-expt/p).
where A is the threshold constant, 0<A<l, and
p=max(t)/log,[H(1)]. The proposed threshold function is
empirically established to decay faster than the one
emploved in the SOTM architecture [13]. As a result, the
network is given a better opportunity to generate the
required centers at its initial training phase and learn from
them at the later stages of training. Alternatively, the
preliminary training phase in the DSOTM algorithm is
prioritized with the node generation process while the later
stages are dominated with learmning about the existing
information. Then x(1) is assigned to the j” centroid, and the
synaptic vector is adjusted according to the reinforced
learning rule:

W+ D) =w (D +aln): Sz, x,0-[x(0-w (1] (2)

where a(f) is the learmning rate, which decays exponentially
over time as more neurons are  allocated,
a(l)y=a(t, ) exp|-t/max(r)], 0.0l <a()<a(t,), and a(ly)
=0.1: and f(z.x,1) is the exponential ranking function that
measures the similarity between query feature vector, z, and
input feature vector, x, at an automatic relevance feedback
iteration from the previous search operation as is indicated
in(3)[11]:

- F =L £ (x:-z:)z )
B, x,0) =Y Glxi—z)=p_exp — 3)
=] =1

i

In this equation, P is the total number of features,
ci=pmax |x, -z | is the tuning parameter, and 5 is an
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Fig. 7: The magnitude of f(z,x,r) represents the similarity between the
input vector x and the query z. where the highest similarity is attained when
X=1.

additional factor to ensure a large output for f(z,x,/). A
large value of f(z.x,r) indicates a high relevance of the
feature vector compared to the respective query feature at
time ¢ as is illustrated in Fig. 7. As a result, the synaptic
vectors are adjusted so that they learn more from statistically
similar inputs and less from statistically irrelevant ones. Flse
form a new centroid node starting with x, reset the learning
rate to its initial value (i.e., @(f,)=0.1), and increment j by
I

Cluster Adjustment and Relevance Identification: If
||x(i)—wj.(r)||£h’(n and argnu;n"z—wj.(r)", that 1s. 1f
J

the closest center to the current input data is also the closest
center to the query, then mark x(¢) as a relevant sample and
update its centroid (winning neuron) toward the query
position according to the degree of resemblance of the
sample using:

W+ =w (O +a(): Pz, x,0)-z—w ” oL @

else mark x(7) as an irrelevant sample and update its centroid
using (2). Subsequently, find and move center of relevant
class further toward the query center using (4).

Continuation: The Similarity Matching step is repeated until
the maximum number of iterations 1s reached, the maximum
number of clusters is generated, and/or no noticeable
changes in the feature map are observed.

The Cluster Adjustment and Relevance Identification step
in the DSOTM algorithm imposes some constraints on
cluster generation near the query position and, thus, avoids
unnecessary boundaries to be formed around it. As a result,
a better sense of relevance measurements can be achieved as
the tree structure develops. Moreover, the growth of the
DSOTM is biased via the ranking function to learn more
from input vectors deemed to be similar to the query itself,
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Fig. 9: Semi-automatic CBIR system [10].

and less from 1mages far from the query. This promotes the
generation of multiple irrelevant classes, while maintaining
necessary plasticity in the relevant class [11, 14].

1V, SEMI-AUTOMATIC APPROACH IN CBIR

The architecture of the proposed Semi-automatic CBIR
engine is depicted in Fig. 9. The retrieval process in this
scheme starts by an automatic search through the database
(path (a)). The retrieval result is next displayed back to the
user, when the user continues the search interactively
through path (b). The interactive process continues until a
satisfactory result is achieved [10]. The description of each
path is given in previous sections. During this process, the
DSOTM objectively decides on relevance of individual
images and guides adaptations of an RBF-based relevance
feedback network while the user coordinates the search
subjectively by continuously highlighting and feeding
relevant images to the retrieval system. As a result, the
system requires minimum user interactions to achieve a
more accurate performance.

V. EXPERIMENTAL RESULTS

A number of experiments were conducted to compare the
behaviors of Rank-Based. Interactive, Automatic. and Semi-
automatic CBIR engines.

The simulations were carried out using a subset of the
Corel image database consisting of nearly 12000 JPEG color
images, covering a wide range of real-life photos, from 120
different categories [15]. Each category consisted of 100
visually associated objects to simplify the measurements of
the retrieval accuracy during the experiments. 120 query
images were randomly drawn from the database such that no
two 1mages were from the same class. Retrieval results were
statistically calculated from top 16 most relevant images
with respect to each query.

In this work, Color Histograms and Color Moments
accompanied with Hu's seven moment invariants (HSMI)
and Gabor Descriptors were used to construct feature vector
for each image in the database [14].

Experimental results are illustrated in Table 1. Interactive
approach clearly outperforms both Rank-Based and
Automatic search, while Semi-automatic approach surpasses

90 4
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o
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1 2 3 4 S 6 s
Human-Computer Interactions

Fig. 10: A comparison of retrieval performance at convergence, between the
Interactive and Semi-automatic methods.

TABLEI
Experimental Results in terms of RR
CBU{ Rank-Based Interactive Automatic Semi-automatic
Engine
Ave. 43.4% 61.6% 56.4% 67.3%

the Interactive search. These are expected results since the
human-computer interaction method is directly steered by
the users, while the Automatic search utilizes machine
learning algorithm (DSOTM) to decide on relevance of
mput samples. Fig. 10 provides a vivid illustration of
system’s performance with respect to a sample query for
each input of a user. Even though the Semi-automatic
process still requires significant human supervision, the
amount of required human-computer interactions for the
system to converge is less than would be required for typical
relevance feedback type CBIR systems. On the other hand,
according to our experiments, the Semi-automatic CBIR
approach requires, on average, 2.1 iterations while the
Interactive approach requires 4.3 iterations out of 7
designated interactions to converge. By investigating the
above results, it is evident that utilizing a Semi-automatic
CBIR approach can successfully reduce required human
interactions - therefore, human errors - and increase
system’s performance in terms of retrieval rate.

VI. CONCLUSION

This paper presents various architectures used in the
current CBIR technology and compares their performance
with regards to one another. It was mentioned that the
simple architecture of the Rank-based CBIR engine is
unable to incorporate semantic meaning to the retrieval
process due to inadequateness of high-level concepts
representation through statistically descriptive features. To
incorporate semantics, Interactive CBIR architecture was
introduced. Although such architecture integrates semantics
in the CBIR, it suffers from high degree of human
mvolvements. To tackle this problem, an automatic RT
CBIR engine was introduced in this paper. In such a
framework, DSOTM is incorporated with CBIR technology
in order to perform the required decision making about the
relevance of individual images and classify input patterns
while preserving the integrity of the image clusters, mainly
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the query class. Thus, a great degree of reduction in users’
interaction can be achieved. A Semi-automatic CBIR engine
was also discussed in this paper. Experimental results
illustrate feasibility of adapting such architecture to reduce
human interactions and increase systems’ performance.
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