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ABSTRACT 

We combine binaural sound-source localization and 
separation techniques for an effective deployment in 
humanoid-like robotic hearing systems. Relying on the 
concept of binaural hearing, where the human auditory 3D 
percepts are predominantly formed on the basis of the 
sound-pressure signals at the two eardrums, our robotic 3D 
localization system uses only two microphones placed 
inside the ear canals of a robot head equipped with artificial 
ears and mounted on a torso. The proposed localization 
algorithm exploits all the binaural cues encapsulated within 
the so-called Head Related Transfer Functions (HRTFs). 
Taking advantage of the sparse representations of the ear 
input signals, the 3D positions of two concurrent sound 
sources is extracted. The location of the sources is extracted 
after identifying which HRTFs they have been filtered with 
using a well-known self-splitting competitive learning 
clustering algorithm. Once the location of the sources are 
identified, they are separated using a generic HRTF dataset. 
Simulation results demonstrated highly accurate 3D 
localization of the two concurrent sound sources, and a very 
high Signal-to-Interference Ratio (SIR) for the separated 
sound signals. 

Index Terms— sound localization, source separation, 
HRTF, self-splitting competitive learning.

1. INTRODUCTION 

Many biological organisms have evolved intelligent and 
efficient means for acoustic communication. Adaptation and 
optimization can be found in all components of the acoustic 
communication system: signal generation at the sender is 
optimized in such a way that the signal characteristics are 
tailored to the transmission channel. Receivers have 
developed sophisticated mechanisms for segregating the 
signals from different sound sources, and for analysing 
signal characteristics. The acoustics of the environment 
frequently imposes similar demands on the mechanisms for 
auditory analysis in different animal species. Thus, 

mechanisms of auditory analysis show a number of 
similarities in different animal species, ranging from insects 
to mammals. These similarities result either from 
convergent evolution of auditory systems that are selected to 
achieve a similar performance, given similar environmental 
conditions, or they are simply the consequence of the 
preservation of structures in evolutionary history [1]. 

In many everyday listening situations, humans benefit 
from having two ears, naturally evolved, to analyze 
concurrent sound sources in various listening environments. 
For more than a century, research has been conducted to 
understand which acoustic cues are resolved by the auditory 
system to localize sounds and to separate concurrent sounds. 
The term “binaural hearing” refers to the mode of 
functioning of the auditory system of humans or animals 
using two ears. These ear organs segregate acoustic cues to 
solve tasks related to auditory localization, detection, or 
recognition.  

The process the auditory system undergoes in combining 
the single cues, of the impinging sound waves at the ear 
drums, to a single, or mutliple, auditory event is not trivial. 
This holds true, in particular since many psycho-acoustical 
details are still unknown, e.g., how the single cues have to 
be weighted in general. It also remains unclear whether the 
Interaural Time Difference (ITD) and Interaural Level 
Difference (ILD) cues are combined, in the central nervous 
system, before or after they are spatially mapped. 

In humans, the term cocktail-party effect denotes the fact 
that listeners with healthy binaural hearing capabilities are 
able to concentrate on one talker in a crowd of concurrent 
talkers and discriminate the speech of this talker from the 
rest. Also, binaural hearing is able to suppress noise, 
reverberance and sound coloration to a certain extent. 

In robotics, on the other hand, efficient and accurate 
binaural 3D localization of several sound sources is quite a 
challenging task. In the recent years, a good number of 
algorithms have been proposed to tackle this problem. 
Basically, most of the detection methods used rely on 
microphone arrays, where the number of microphones is 
more or equal to the number of sound sources to be 
localized concurrently in 3D [2]. Among them, some 
approaches deal with simultaneous localization and 
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separation of sound sources [3]. However, a more 
intriguing, and naturally more demanding scenario, is 
localization of sound sources that outnumber the available 
number of microphones. Very few approaches were able to 
estimate the position of the sound sources, while only 
providing azimuth angles [4]. Humans and most mammals, 
however, are capable of detecting multiple concurrent sound 
sources with two ears by assessing monaural cues and 
binaural cues like interaural level differences (ILD), and 
interaural time/phase differences (ITD/IPD), in several 
frequency bands.  

Motivated by the decoding process which the human 
auditory system performs when transforming the two signals 
at the eardrums back into a 3D space representation, it has 
been suggested that robotics can benefit from the 
intelligence encapsulated within the Head Related Transfer 
Function (HRTF) to localize sound in 3D using only two 
microphones [5]. Furthermore, it has been shown that 
humanoids can separate and, at the same time, localize two 
concurrent sound signals in free space [6]. Exploiting some 
relationships between source separation and system 
identification we were able to find the right HRTFs the 
sound sources were filtered with, and hence the 
corresponding  position of the source, in terms of azimuth 
and elevation angles. While sound sources situated on two 
different hemispheres around the head of the robot were 
correctly localized, the algorithm in [5] failed to properly 
locate sound sources situated nearby each other in the same 
hemisphere. Furthermore, the algorithm was unable to 
localize more than two concurrent sound sources.  

Recent investigations on the auditory space map of the 
barn owl, a predator with an astonishing ability to localize 
sound, revealed that the ILD/ITD cues cluster around two 
positions in the auditory map when two uncorrelated sound 
sources are simultaneously present. These clusters stem 
from time-frequency instances when one source 
predominates the other, i.e. has a stronger intensity [7]. 

Using this fact, we present in this paper a new algorithm 
for the localization of two concurrent sound sources based 
on estimating appropriate HRTFs, and their corresponding 
3D locations, using sparse representations of the ear input 
signals of the KEMAR humanoid head. If the concurrent 
signals are sparse, which is naturally the case with speech 
signals, there must exist many instances when one source 
predominates the other. In such cases, the ear signals cluster 
around the actual HRTF, corresponding to the correct source 
location, in the single frequency bands. Comparing the 
estimated HRTFs to all KEMAR HRTFs [8], the new 
algorithm proved to be able to find the azimuth and 
elevation positions of the concurrent sources, situated in any 
given 3D position, using only two microphones. 

2.  TIME-FREQUENCY DOMAIN HRTF RECOVERY  

2.1. Blind System Identification Framework

Our approach to binaural sound localization is based on 
finding the HRTFs, the sound sources were filtered with, on 
their way to the robot’s microphones, which, in our case, 
play the role of to the human eardrums. Applying Short-
Time Fourier Transform (STFT), we can describe the ear 
input signals with the following equations: 
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where τ  denotes the time frame. The term M is the number 
of sound sources, and ),( τfS j  are windowed sound source 
signals in frequency-domain. It is known that speech signals 
are very sparse in time-frequency domain, more than in 
time-domain [9]. However, frequency domain Independent 
Component Analysis (ICA) introduces the inherent 
permutation problem in each frequency bin, to which we 
will later present a solution. Since a sparse signal is almost 
zero in most time-frequency instances, there are a many 
instances when only one source is active. Hence, the ear 
input signals can be rewritten as: 
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Assuming stationary source positions, the HRTFs H1J(f) and 
H2J(f) are constant for all time instances . Since they are 
related to the source positions they are different for each 
source. This means ideally, that the time-frequency samples 
of the ear input signals, ),(1 τfX  and ),(2 τfX , that  
originate from the J-th source, cluster at each frequency f
around the corresponding complex HRTFs values. 
Additionally, the Fourier transforms of the ear input signals 
are phase and amplitude normalized: 
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where 
1Xϕ is the phase corresponding to the input signal of 

the left ear microphone, which  is chosen as a reference 
sensor. Figure 1 illustrates the clustering of the normalized 
data in the feature space. 

2. Self-splitting competitive learning 

As pointed out earlier, the source separation problem needs
to be solved in each frequency bin. This means that, our 
algorithm clusters the data in all frequency bins over several 

(1)

(2)

(3)

(4)

(5)

(6)

341

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)



Sound Source Separation:
• HRTF Inversion 
• Frames Assembly 

(az1,
elev1)

)(1 tx

)(2 tx

STFT .
.
.

fmax 

Self- 
splitting 

competitive  
learning 

HRTFM

.

.

.

(azM,
elevM)

… …f = 1 fmax 

.

.

.

Database 
HRTFs

.

.

.

s1(t)

sM(t)

HRTF 
database 
lookup 

f = 1 

0 0.5 1
-1

-0.5

0

0.5

1

real(X1)

im
ag

(X
2)

-1 0 1
-1

-0.5

0

0.5

1

real(X2)

im
ag

(X
2)

P1,1

P2,1

P1,2

P2,2

time frames separately. For further data analysis we use the 
clustering algorithm proposed in [10] which is based on 
self-splitting competitive learning (SSCL). In the following, 
we will briefly describe its principle.  

The key issue in SSCL is the One-Prototype-Take-One-
Cluster paradigm (OPTOC). this means that one prototype 
represents only one cluster. At first, a single prototype 

[ ] ),(, 21211 CPPPPP T ∈= , is initialized randomly in the 
feature space. At the same time an asymptotic property 
vector (APV), [ ] ),(, 21211 CAAAAA T ∈= , is created far 
away from the prototype. Its task is to guide the learning of 
the prototype making sure that, after some iterations, the 
prototype has settled in the center of a cluster (Fig. 3). The 
APV 1A  defines a neighborhood around the prototype 1P . If 

a randomly taken pattern, [ ]TXXX 21= , obtained using (5) 
and (6) lies within this neighborhood, it contributes to 
learning 1A . It is observed that in the course of iterations, 1A

moves towards 1P . Learning stops when the Euclidean norm 

11 AP −  falls below a constant 1ε . Now, in order to classify 

other clusters that may be present in the feature space, 
further prototypes have to be initialized. Hence, the  
following split validity criterion is introduced. If 11 CP −

is larger than a constant 2ε , a new prototype and a new APV  
are created in the feature  space  which are to  lead to the 

center of another cluster (Fig. 4). The learning process starts 
anew. The term 1C  is called the Center Property Vector  
(CPV) and determines the arithmetic mean of the  input data 
points which have contributed to learning the prototype 1P .
In order to avoid unnecessary competition between the first 
and the new prototype, a distant property  vector 1R ,
adapted during the learning process,  makes sure that the 
new prototype 2P  is initialized far away from the first one. 
A detailed pseudo-code of the SSCL algorithm and update 
equations are given in [10]. A crucial key directly affecting 
the performance of the clustering algorithm is the choice of 
the two constants 1ε  and 2ε . As opposed to an adaptive 
choice, proposed in [9], that depends on the variances and 
number of elements of the clusters, we set 1ε  and 2ε  to a 
constant value, 0.01 in our case, and we confine the 
maximum number of prototypes to the number of present 
sound sources plus two. On the one hand, this has the 
disadvantage that the algorithm does not work completely 
blindly as the number of present sources has to be known 
but, on the other hand, it results in a robust classification of 
the clusters. The maximum number of clusters is chosen a 
little bit larger than the actual number of sources, since there 
are many data points, in the feature space, resulting from 
non-sparse time-frequency instances, see Fig. 1. These data 
points should not be represented by the prototypes in the 
center of the clusters, but by other prototypes. Of course, 
there has to be a criterion in order to choose the “right” 
prototypes that represent the HRTFs at a certain frequency. 

Fig. 1  Samples from the two ear microphones after STFT. The 
two subplots depict the real part of X1 and the real part of X2
versus the imaginary part of X2, respectively. The data was 
gathered from 400 time-frames at a frequency of 538 Hz and 
normalized according to (5) and (6). The clusters show that 
there are two speakers present. Furthermore, the prototypes 
determined by Self-Splitting Competitive Learning are 
depicted in the cluster centers. 

Fig. 2  The ear input signals are windowed and transformed to 
frequency domain. Afterwards, the self-splitting competitive 
learning algorithm finds the prototypes that represent the 
HRTFs in each frequency bin. By looking for the HRTFs that 
best match the estimated ones, the azimuth and elevation 
positions of the M sources are determined. With the aid of 
these HRTFs the sound sources are separated. 
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the i-th prototype represents a HRTF at a certain frequency. 
Hereby, Ni denotes the number of data points that have been 
assigned to the i-th prototype, and vi is the variance of the 
cluster. 

2.3. Solving the permutation problem 

As mentioned earlier, we have to tackle the permutation 
problem introduced by the frequency-domain ICA. Once the 
clusters in the feature space in all frequency bins have been 
classified, one has to determine which of the clusters in the 
frequency bins belong to the same HRTF. Our approach is 
based on the assumption that the position of a cluster does 
not move a lot between adjacent frequency bins. The 
prototypes that remain, after applying the above-mentioned 
criterion in the frequency bin f, can be arranged in a matrix 

[ ] Pr
Pr

2
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N CfPfPfPf ∈=H , Where NPr

denotes the number of remaining prototypes that represent 
the HRTFs. Let { }!21 ,....,, M=℘  be a group of 
permutation matrices of dimension M x M. Then, the correct 
Where 2Cij ∈d  denotes the difference between the j-th 
prototype of the previous frequency bin and a prototype in 
the current bin. The permutation problem is thus solved 
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permutation can be described by the following equations: 
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starting with low frequencies and ending up at high 
frequencies. The term ˆ  assigns the prototypes of the 
current frequency bin to their corresponding HRTF values in 
the previous bin, such that the distance between them stays 
minimum. 

3. HRTF DATABASE LOOKUP 

In order to determine the correct position of the sound 
sources in azimuth and elevation angle, we have to find the 
HRTFs for the left and right ears, from the KEMAR CIPIC 
database, which correspond to our estimated HRTFs. Then, 
we can calculate, for each sound source, the interaural 
HRTF )( fAest  by dividing our estimated HRTF of the right 
ear by the HRTF of the left ear. The ILD and IPD are 
calculated using the expressions )(log20)( fAfL estest =Δ
and )()( fAfb estest ∠= , respectively. The interaural HRTF, 

of the KEMAR database, denoted by )(ˆ fACIPIC , that best 
matches )( fAest , is determined as follows: 

Fig. 3  Learning process of the first prototype. Step 1 shows 
the initialization of the second component of 1P  and the APV 

1A . Step 2 shows their positions after 100 iterations. In step 3 

the distance between 1P  and 1A  has fallen to 0.01 and 
learning stops. 

Fig. 4  Learning process of the second prototype 2P  created 
when the first prototype has settled in the center of the topmost 
cluster. It is initialized together with an APV 2A  at a certain 
distance from the first prototype (step 1), and is led to the 
center of the cluster at the bottom after some hundred iterations 
(step 2). 

(7)
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Equation (9) is evaluated for frequencies within the range 
200 Hz to 11 kHz, since in this region binaural cues are very 
distinct. Having found the correct interaural HRTFs from 
the database, one can determine the azimuth and elevation 
angles of the sound sources since each HRTF is unique and 
corresponds to a unique position in the 3D space.  

4. SOURCE SEPARATION 

Using matrix-vector notation, we can express the windowed 
and Fourier-transformed ear signals in Eqs (3) and (4) in the 
case of two concurrent sound sources as follows: 
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Obviously, this system is mathematically determined, as the 
number of equations equals the number of unknowns, which 
are in this case ),(1 τfS  and ),(2 τfS . The HRTFs in the 
matrix are found using the lookup strategy described in the 
previous section. Consequently, in order to retrieve the 
source signals in the time-frequency domain, the matrix in 
(10) simply has to be inverted, whereby we assume that it 
has full has full rank due to distinct positions of the two 
sources within the 3D space. Thus, the sound sources are 
extracted: 
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This inversion is done for each frequency f, this yields the 
Fourier spectrum of a complete time frame for the separated 
speech signals. Afterwards, applying inverse Fourier 
transform and assembling all time frames with the overlap-
add method, we reconstruct the separated sources in time-
domain. Figure 2 shows a block diagram that illustrates our 
localization and separation algorithm. 

5. SIMULATION RESULTS 

We tested our new sound localization algorithm by 
performing 100 simulation runs with two concurrent sound 
sources located in free space. In 40 simulations we 
positioned the sources in the horizontal plane (zero-
elevation plane). In half of all the tests, both sounds were 
situated near each other in the same hemisphere around the 
KEMAR head. The concurrent sound sources were speech 
signals of two male speakers sampled at a rate of 44.1 kHz 
and 16 bit. For binaural synthesis these mono signals were 
convolved with the different HRTFs of the KEMAR 
database, simulating thus different locations in space. The 
ear input signals were windowed with a Hamming window 
of 1024 samples and an overlap of 50 % used for properly 
calculating the STFTs. For clustering, 400 time-frames of 
the ear input signals were acquired by the algorithm. This 
resulted in a signal length of approximately 4.7 seconds. 
Figure 5 shows the results of the 100 simulation runs. The 
subplots depict the estimated azimuth (above) and elevation 
(below) angles versus the actual ones for the first speaker 
(left) and the second speaker (right). Notably, the observed 
localization rate was 100 %. For all the simulation runs, 
both concurrent sound sources were located exactly at their 
target azimuth and elevation angles. The algorithm showed 
the same 100% localization performance in the case of both 
sound sources located close to each other in the same 
hemisphere around the KEMAR head.  

In further 50 simulation runs a stationary noise source 
(computer fan) was introduced. This noise source was 
constantly located at 0° azimuth and 0° elevation. The mean 
SNR, i.e. the ratio of the mean power of the speech signals 
to the noise power was chosen to be 20 dB. Under these 
conditions, the localization percentage fell to 90 %. For 25 
dB SNR, the algorithm is quite robust to the stationary noise 
since the localization accuracy rises to 97 %. Finally, we 
investigated the performance of source separation in the 
noise-free case. As proposed in [11], we computed the 
global signal-to-interference ratio (SIR) as follows: 

2

2

10log10
i

t

e

s
SIR =

(9)

(10)

(11)

Fig. 5  Estimated azimuth (top) and elevation (bottom) angles 
obtained from 100 simulation runs with randomly chosen 
speaker positions in the whole 3D space. 

(12)
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Equation (12) represents the ratio between the power of the 
desired separated signal st, to the power of the interfering 
signal ei, in the j-th output channel. The term ⋅⋅,  denotes 
the inner product of two signals. The median SIR value 
obtained after running 50 simulations, is 37.2 dB. In 
statistical terms, 50 % of the SIR values lay between 36.5 
dB and 37.9 dB. Compared to other blind source separation 
methods, e.g. [7], trying to solve the same determined 
problem, our separation algorithm yields an average SIR that 
is more than 10 dB higher. 

5. CONCLUSION AND FUTURE WORK 

In this paper, we presented a new algorithm for binaural 
localization of two concurrent sound sources in both 
azimuth and elevation positions. By exploiting the ILD and 
IPD binaural cues that are encapsulated within the HRTFs, 
binaural 3D concurrent sound localization was made 
possible using only two microphones placed inside the 
artificial ears of the KEMAR head. Compared to existing 
techniques using microphone arrays for the same purpose, 
our algorithm is less complex and very accurate. It was 
shown, that two concurrent sound sources could be perfectly 
localized at their intended 3D locations even in the anti-
causal case where both sources share the same hemisphere 
around the humanoid’s head. This is, e.g. a remarkable 
improvement compared to the initially proposed algorithm 
in [6], where we attained a localization accuracy of 74 %. 

The self-splitting competitive learning technique, mainly 
deployed in image processing, turned out to be very reliable 
for acoustical signal processing. It proved to be an 
intelligent tool to retrieve the exact cluster centers inside the 
feature space of the impinging sound signals, and 
consequently, to extract the 3D locations of the concurrent 
sound sources. After localization, the proposed sound source 
separation algorithm proved to be outperforming compared 
to other blind source separation methods solving the same 
determined problem under the same conditions. 

Based on our new method, tow venues of future work are 
to be considered. One important venue is the localization of 
three or more concurrent sound sources, using only two 
microphones inserted in a humanoid ear canals. A second 
very challenging task is to determine the number of the 
concurrently active sound sources, in this manner, the 
proposed clustering algorithm is expected to work in a 
completely blind fashion. 
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