
Abstract—With the rapid advances in computing and 
electronic imaging technology, there has been increasing 
interest in developing computer aided medical diagnosis 
systems to improve the medical service for the public. Images 
of ocular fundus provide crucial observable features for 
diagnosing many kinds of pathologies such as diabetes, 
hypertension, and arteriosclerosis.  A computer-aided retinal 
image analysis system can help eye specialists to screen larger 
populations and produce better evaluation of treatment and 
more effective clinical study. This paper is focused on the 
immediate needs for clinical studies on diabetic patients. Our 
system includes multiple feature extraction, robust retinal 
vessel segmentation, hierarchical change detection and 
classification. The output throughout this system will assist 
doctors to speed up screening large populations for abnormal 
cases, and facilitate evaluation of treatment for clinical study. 

I. INTRODUCTION

ITH the fast advances in computing technology and 
computer industry, multimedia data such as digital 

signal, image, document, audio, graphics, and video have 
become widely used in different areas. The aim of the 
development of automatic medical diagnosis systems for 
medical applications is to provide storage, processing, and 
communication services required by the medical community 
effectively and reliably. Reliable and accurate medical 
diagnosis requires knowledge of changes in different clinical 
symptoms due to health degeneration and disease 
deterioration. One of the main critical issues of such systems 
is the handling of multimedia medical information in a 
uniform way to analyze medical data accurately and 
diagnose different diseases reliably. Image processing 
techniques offer the means to acquire digital information, at 
different scales, quickly and efficiently. 

This paper is focused on the immediate needs for clinical 
studies on diabetic patients. To tackle key issues in image 
understanding, we propose to investigate, design, analyze, 
implement and evaluate new algorithms for feature 
extraction, segmentation, region representation and 
classification. The proposed system includes extracting 
multiple image features via wavelet transforms; segmenting 
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images based on fuzzy compactness measures; and 
hierarchical change detection using fuzzy post classification 
techniques.  The feasibility of the proposed system is 
demonstrated by mapping and analyzing changes caused by 
disease deterioration in regions of optical eye texture images.  

Images of the ocular fundus tell us about retinal, 
ophthalmic, and even systemic diseases such as diabetes, 
hypertension, and arteriosclerosis. Previous object 
extraction works have been done in [7] [18] [19] [20]. The 
useful objects to monitoring diabetic patients in retinal 
images include 1) blood vessels, 2) blobs brighter than blood 
vessels, 3) blobs darker than blood vessels, 4) the optic nerve, 
and 5) the fovea. An important feature in such diagnoses is 
the appearance of blood vessels in ocular fundus. Especially 
the vessels around optic nerve have critical information 
about diabetic patients. However, automated retinal 
segmentation is complicated by the fact that the width of 
retinal vessels can vary from very large to very small, and 
that the local contrast of vessels is unstable, especially in 
unhealthy ocular fundus. Previous vessel segmentation 
methods were either window-based [1] [2] [3] or tracking 
based [4] [5] [6]. Window-based methods explore the 
properties of a pixel’s surrounding window and emphasize 
those pixels whose surrounding window matches a given 
model. Most window-based methods implement classical 
line detection techniques on vessel fields. In [1], the cross 
section of a vessel is modeled by a Gaussian shaped curve 
and the matched filters of 12 directions are used to 
emphasize vessels. Tracking-based methods utilize a vessel 
profile model, starting from a number of initial points and 
incrementally tracing a path that best matches the profile 
model. In [4], the tracking starts from the papilla, and then is 
followed with the consideration of the continuities of 
position, curvature, diameter, and density. In [6], the 
tracking is improved using a fuzzy model of a vessel profile. 
In [7], the window-based and tracking-based techniques are 
integrated and are improved using local region-based 
threshold probing. In our system we propose a novel vessel 
segmentation method that includes a multiscale analysis 
scheme using Gabor filters and scale production. Our 
method is not only good for detecting large and small vessels 
concurrently, it is also efficient for denoising and for 
enhancing the responses of line filters, allowing the 
detection of vessels with low local contrast.  

After object extraction, change detection is performed. 
This procedure provides information for treatment 
evaluation and clinical studies. The traditional approaches to 
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change detection include statistical methods [21], image 
differencing [22], and post classification comparison 
approach [23]. Unfortunately, these methods have generally 
shown relatively poor accuracy because of the classification 
errors compound in the change detection process [24].  

We introduce a wavelet-based hierarchical scheme which 
integrates fuzzy set theory and image understanding 
techniques for knowledge discovery of the remote image 
data. The proposed approach includes algorithms for 
hierarchical change detection, region representations and 
classification. The effectiveness of the proposed algorithms 
is demonstrated throughout the completion of three tasks, 
namely hierarchical detection of change by fuzzy post 
classification comparison, localization of change by B-spline 
based region representation, and categorization of change by 
hierarchical texture classification. 

II. OBJECT EXTRACTION

A. Vessel Detection 
Traditional line detection methods proceed either by 

finding parallel edges [8] [9] or by finding ridges [10] [11] 
[12]. Parallel edge detection makes use of a bar-shaped 
model of lines. In [8], a pair of edge detectors was used to 
detect the left and right edges of a line: 

'

2l
wE x G x                 (1) 

'

2r
wE x G x                  (2), 

where w is the width of the line, 'G x  is the first 

derivative of Gaussian and  is the standard derivation. 
The responses of lE  and rE  are then nonlinearly combined 
to give the line response. 

Ridge-based detection methods usually use 
Gaussian-shaped line model. In [10], the ridges are defined 
as the points on the image where the curvature is the 
maximum. The second derivate of Gaussian ''G x  is 

often used as a line detector. 
One very important factor in line detection is the scale of 

the filter. To generate a single maximum response on the 
center of a line, the widths of the filter and the line should be 
constrained in a proper ratio. For example, the methods 
described above have to hold 

3
w

                                     (3) 

for bar-shaped line.  
In order to detect lines of arbitrary widths, it is often 

necessary to iterate the detection procedure in the scale space. 
Conventionally, all lines in an image [1] are detected using a 
single optimal value of   (big enough but not too big). 
Alternatively, the line is emphasized [8] by using the 

maximum response of all scales. Yet these methods are not 
entirely satisfactory. Figure 1 shows some examples of filter 
responses of different filter scales. The matched filter 
proposed in [1] is tested here. Figure 2 shows the filter 
responses to a bar-shaped line and a Gaussian-shaped line 
where f is the original signal and M f  is the filter response 
at scale .

First, from Figure 2, we can see that there is a clear peak in 
both (a) and (b), which means only filters with particular 
scales can produce good responses to the lines with 
particular widths. 

Second, as shown in Figure 1, because excessively wide 
filters will filter out small vessels and the vessels in retinal 
images can vary from very large to very small, it is rarely 
possible to find one single filter width value suitable for 
detecting all vessels.        

Further, if the maximum response of all scales is selected, 
both the large and the small vessels can be emphasized but so 
too is the associated noise, as shown in Figure 1. 

Figure 1 Filter responses of different scales 

(a) (b)
Figure 2 Filter response along scale space (a) responses to bar-shaped 
line (b) responses to Gaussian-shaped line 

From the analysis in last section, we can see that the 
traditional line detection methods cannot produce 
satisfactory results for vessel segmentation. We propose a 
multiscale analytical scheme for detecting all widths of 
vessels.

The idea of multiscale structure was first introduced by 
Mallat. In [13], he illustrated mathematically that signals and 
noise have different singularities and that edge structures 
present observable magnitudes along the scales, while noise 
decreases rapidly. Based on this observation, we applied this 
multiscale concept to solve problems of edge detection and 
noise by thresholding the multiscale products [14] [15]. 
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Figure 3 shows the effects of scale multiplication. f is a 
signal corrupted by Gaussian white noise; sW f  is the filter 

response at scale s; sP f  is the product at two adjacent 
scales. Scale multiplication enhances the edges and filters 
noise. 

In this paper, we further extend our multiscale approach to 
vessel detection. Our multiscale analytical scheme is 
summarized as follows.  

1) Multiscale Gabor Filtering 
We use a Gabor filter [16] here because it is capable of 

tuning in to specific frequencies and orientations. In most 
cases, only the real part of the Gabor filter is used for 
convolution with the modulation axis parallel to the 
envelope axis, which is expressed by 

Figure 3. Multiscale edge detection and scale multiplication 

'2 '2
'

2 2, exp cos 2
x y

x yg x y fx   (4) 

' cos sinx x y                        (5) 
' sin cosy x y                       (6) 

where  is the filter direction,  is standard deviation of 
Gaussian, and f is the frequency of cosine wave. (For 
convenience, the modulating Gaussians of filters are set to 
have the same direction as the complex sine grating so that 
there is only one direction parameter.) 

For multiscale analysis, a scale parameter is added to 
equation (4) to control the filter size. 

'2 '2
'

, 2 2, exp cos 2s
x y

x yg x y fx
s s

        (7) 

To produce a single peak response on the center of a line 
of width w using Gabor filters rotated in n directions, Liu [17] 
has proved that the parameters can be set as follows 

f w                               (8) 

x
n w

                              (9) 

y x                              (10) 

where 1,1.5 , 0.5,1 , 2 ln 2 , and 

0.85 .
Adapting these to multiscale analysis, we modified 

equation (7) to 
'2 '2

'
, 22, exp cos 2s

x yg x y fx
s s

   (1

1)
And

nf
s

                          (12) 

Then, multiscale Gabor filtering can be applied in 
different directions with the optimal selection of s.

Figure 4 (a) shows a family of the Gabor filters defined 
above. The spatial frequency responses are illustrated in 
Figure 4 (b).

(a) (b)
Figure 4 A family of the Gabor filters with the spatial 
frequency responses 

The response of Gabor filter can be expressed by 

,, , ,g sR x y g x y f x y                    (13) 

where ,f x y  is the image and  is convolution. 

2) Scale Selection 
The scale multiplication is defined as the product of Gabor 

filter responses at two adjacent scales 
1, , ,j j js s s

g gP x y R x y R x y                 (14). 

The selection of parameter s is very important. In [15], the 
production of two adjacent scales produced good edge 
detection (illustrated in Figure 4). However, for line 
detection, the situation is different. Figure 6 shows some 
examples of scale multiplication for line detection where 

,i jP f  is the production of scales i and j.

Figure 6. Multiscale line detection and scale multiplication 
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The following highlights some advantages of scale 
multiplication for line detection and the relevant illustration 
is shown in Figure 6.  

The filter responses to line are enhanced ( 2,4P f , 4,8P f );
The noises are reduced ( 2,4P f , 4,8P f );
The width of the line is enlarged by large scale filters, 
but this distortion can be corrected to the width at a 
smaller scale by multiply the responses at the large scale 
to the responses at a smaller scale ( 4,8P f ).

It should be pointed out that there are also some 
limitations of this approach as illustrated in Figure 6, which 
can be summarized as below: 

In the production of two small scale, there are nearly no 
responses to the large Gaussian-shaped line and vice 
versa ( 2,4P f , 8,16P f )
In the difference between two scales is very large, the 
responses of the production to both large and small 
Gaussian-shaped line are so weak that they are 
overwhelmed in the noises 1,16P f .

In order to make the scale multiplication applicable to line 
detection, the scale parameter should be carefully selected. 
The scales selected for multiplication must contain the 
information of lines with different widths.  

In our case of retinal images, the widths of vessels vary 
from 3 to 16 pixels (most of the vessels). By plotting the 
filter peak responses to Gaussian-shaped lines with width 3 
and 16, we find that there is a cross section, which can be 
used to guide the selection of scales. As shown in Figure 7, 
the most appropriate  is around 0.8 to 2.2. The responses 
at other scales are too weak to work.

Figure 7. Filter peak responses along scale space 

B. Extraction of Blobs, Optic Nerve, and Fovea 
In this part, we use similar scheme with [20]. The Bright 

blobs are found in the image whose intensity is between 1.2 
times the mean blood vessel intensity and 255, and dark 
blobs are extracted from images scaled between zero and 1.2 
time’s blood vessel intensity. The optic nerve is extracted as 
a fuzzy conversancy of blood vessels. The fovea is located 
4.5mm temporal to the optic nerve a shown as a dark dot in the 
blue plane image. 

III. CHANGE DETECTION

1) Fuzzy Post Classification Comparison (FPCC) 
Our approach to Fuzzy Post Classification (FPCC) as a 

change detection method involves the independent fuzzy 
classification of digital images from different time intervala, 
then posing logical queries over those classified images.  A 
fuzzy classifier has been implemented by an adaptation of 
the unsupervised fuzzy c-means clustering algorithm [25] in 
which the fuzzy class memberships are calculated using 
means and covariances determined from supervised training 
classes.  This approach (using the reciprocal of the squared 
Mahalanobis distance) is favorably compared with posterior 
probability based approaches. 

Our implementation is briefly described as follows: 
The Mahalanobis distance is computed of each pixel 
from the centroid for each class: 

12 T
ik k i k ii

d x m x m

where 2
ikd  represents the Mahalanobis distance between 

pixel kx  and the mean im of the ith class, superscript T

denotes (vector) transpose and   
1

i
 is the inverse of the 

covariance matrix of the ith  class. 

The fuzzy class membership of each pixel in the 
image in each class is computed: 

2

2
1

1
, 1

1

m

ik
ik mc

ikj

d
k N

d

where ik  is the fuzzy class membership of pixel kx  in the 
class i, c is the number of classes, N is the total number of 
pixels in the image and m is a parameter used to control the 
degree of fuzziness of the class membership --- the 
theoretical properties of this parameter value are a key issue 
in the soft computing literature. Determining fuzzy class 
membership in this way ensures the unity sum 

condition
1

1c
iki

 for all pixels k.

2) Hierarchical Change Detection 
To reduce the computational complexity for change 

detection, we propose to perform feature pixel comparison in 
a hierarchical structure based on wavelet transform, starting 
from the coarse level (with few feature points) to a fine level 
(with more points).  To avoid a blind pixel-wise comparison 
in the original images, our guided comparison algorithm 
applies Fuzzy Post Classification Comparison (FPCC) first 
at the low level, coarse grained feature images, to mark the 
possible regions of change. Those detected regions are then 
investigated at the higher level of the feature images for a 
final, and more accurate, output. 
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3) Categorization of Change 
To identify the type of change as the indicative measure in 

medical diagnosis, we will combine fuzzy compactness and 
principal component analysis to reduce the redundant 
features for classification. Principal component analysis 
(PCA) is a technique that is often used to reduce redundancy 
and dimensionality of data. The principle of PCA is to find a 
set of m orthogonal vectors in the n-dimensional (n-D) data 
space that can account for as much as possible of the data's 
variance. Therefore, most of the intrinsic information in the 
data will be retained despite of a dimensionality reduction by 
projecting the data vectors from their original n-D space to 
the m-D space represented by the principal component 
vectors.

The most important information will be generated is the 
stage of diabite. Figure 8 shows the examples of diabetes in 
different stages. 

Figure 8 Diabetes from stage 1 to 6 

IV. EXPERIMENTAL RESULTS

Our experiments are conducted firstly on the STARE 
database [7] to compare to vessel detection performance.  

The advantages of our approach for multiscale vessel 
segmentation over the performance of conventional methods 
as reported in STARE project [7] are demonstrated in Figure 
9. The first row is the original retinal images in STARE 
database; the second row is the hand-labeled images as 
ground truth; the third row is the segmentation results by [7]; 
the last row is the segmentation results of our method. We 
can see that a number of small vessels missed by STARE are 

detected by our method. Note also that some vessels 
recorded as broken by [7] are connected when our method is 
used.

Figure 9 Vessel detection 

The performance comparison is further illustrated by 
ROC curve in Figure 10. Our technique achieves better 
performance in both normal and abnormal retinal images. 

Figure 11 gives some examples of Neovascularization 
detected by our system, which is an important sign for 
Proliferative Diabetic Retinopathy. 

To test the change detection performance of our system, 
we established a retinal image database. Our database has 7 
patients, each of them has 3~12 sets images which are taken 
at different times and each set has 4 images. We use the same 
setting as [7], the images were digitized at 700x605 pixels, 8 
bits per color channel. Based on this database, we achieve 
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the diabetic stage reorganization rate at 73.6 % 

Figure10 Performance evaluation using ROC curve 

Figure11 Neovascularization detected 

V. CONCLUSION

We conclude that our system for object extraction and 
change detection in retinal images is effective to help eye 
specialists to evaluate treatments and implement better 
clinical studies. Due to the limited resources, we can not 
achieve high diabetic stage recognition rate. However, due to 
the high quality of extraction of some objects in retinal 
images, the change detection can still provide useful 
information 
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