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Abstract— Acute respiratory distress syndrome (ARDS) can
occur in people with or without previous lung disease. Analysis
of aeration in artificial ventilation for ARDS is one of the
major applications of Computed Tomography (CT) lung density
examination. A movie of an affected rabbit lung over the
respiratory cycle was produced by dynamic CT with a cine
loop technique. This technique can produce thousands of CT
images for analysis with a single experiment. A fully automated
algorithm based on the capability of wavelet transformation to
detect edges in the image is proposed. This method accurately
and consistently segments the lung in pulmonary CT images. The
speed and accuracy of this technique allows it to outperform other
methods when dealing with the large number of images created
by dynamic Computed Tomography.

I. INTRODUCTION

Computed tomography (CT), originally known as computed
axial tomography (CAT or CT scan) uses X-rays to make
detailed pictures of structures inside of the body. CT is one
of the best tools for studying the chest and lungs. Dynamic
CT involves repeatedly imaging the organ of interest over
time. This technique can generate thousands of CT images
for analysis with a single experiment. Manual segmentation
of each study image is very time consuming. Fast automatic
segmentation of the lung and subsequent evaluation of its
respective density is a prerequisite for any clinical application
of this technique. Several studies have examined dynamic CT
images of thoracic organs such as the heart [1], [2], [3] and
solitary pulmonary nodules [4].

Although CT of the chest is a well established diagnostic
method for lung disease, its use in quantification is more
recent. In quantitative CT, maps are created of the normalized
x-ray attenuation (Hounsfield Units (HU)) of all the pixels in
the CT image. The Hounsfield Unit of a given region of lung
is proportional to its aeration, for example -500 HU means
that the region is composed of 50% lung tissue and 50% air
whereas -950 HU means that the lung region is composed
of 5% lung tissue and 95% air. By convention, lung aeration
can be quantified into 4 categories: 1) normal aeration (-900
to -500 HU), 2) overinflation (less than -900), 3) reduced
aeration (-500 to -100 HU) and 4) nonaeration (greater than -
100 HU) [5], [6]. It is possible to calculate the volumes of lung

in each category by summating the number of pixels within
each range multiplied by the area of the pixel and by the CT
slice thickness. This is termed lung density analysis or CT
densitometry.

Current clinical applications of CT lung density analysis
include the assessment of emphysema and the analysis of
aeration in artificial ventilation for Acute Respiratory Distress
Syndrome (ARDS). Several methods have been proposed to
segment the lung in thoracic CT images such as watershed
transformation and region growing. However, these methods
have drawbacks when it comes to segmenting lung affected
with ARDS due to the existence of collapsed regions within
the lung. These collapsed regions often have similar density to
surrounding soft tissue and maybe erroneously segmented out.
Developing a fast and accurate segmentation method is vital
for lung density analysis of dynamic pulmonary CT images.

Acute Respiratory Distress Syndrome is a form of acute
lung injury of multiple etiologies including pneumonia, sepsis,
severe trauma and blood transfusions. Pathologically it is
characterized by diffuse alveolar damage with epithelial and
endothelial damage, pulmonary edema, inflammatory exu-
dates and cellular proliferation. The typical CT appearance
of ARDS is of bilateral ground-glass opacification with a
gravity-dependent gradient and atelectasis/consolidation most
commonly in the middle and basal parts of the lungs. Artificial
ventilation is the mainstay of treatment for ARDS. Many
different methods of ventilation have been used to try and
optimize oxygenation whilst minimizing lung injury. Quanti-
tative CT has been shown to be a useful method for comparing
different types of artificial ventilation to show the effect on
lung aeration. Ideally ventilation methods reduce the amount
of underinflated (atelectatic) and the amount of overinflated
lung with a corresponding increase in the amount of normally
aerated lung. Such redistribution of lung aeration has been
shown to produce corresponding improvements in oxygenation
[7], [8]. As an example normal lung and lung affected with
ARDS are illustrated in figure 1.

Traditionally ARDS has been assessed with breath-hold
images taken in suspended inspiration or expiration. However,
there are several disadvantages of this technique. Firstly,
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(a) (b)

Fig. 1. (a) Healthy lung (b) affected lung by ARDS.

images taken in suspended respiration do not reflect aeration
over the complete respiratory cycle. In addition the act of
suspending respiration may alter the aeration of the lung for
example by opening up (recruiting) alveoli in inspiration or
collapsing (derecruiting) alveoli in expiration. Dynamic CT
with a cine loop technique can generate multiple scans of
the same area over a defined time period of 100 to 200
milliseconds. This produces a movie of the lung over the
respiratory cycle and enables a non-invasive and physiological
study of ventilation without the need for breath-holding. It is
then possible to examine changes in the volume of atelectatic
and ventilated lung as they vary with time and to see how
they inter-relate. Such temporal changes can also be used to
compare different types of artificial ventilation [9].

II. LUNG SEGMENTATION

The first step is the segmentation of an individual organ
of interest in a series of images. Several methods have been
developed to segment the lung in pulmonary CT images
including thresholding [10], watershed transformation [11],
active contours [12], and region growing. Each has its own
drawbacks. Thresholding is the most popular lung segmenta-
tion method because it is one of the simplest in methodology
and computation. In this methodology, each CT voxel1 can
be divided into 2 major types, 1) voxels within the body
soft tissues including the chest wall structures (the body
voxels) and 2) low-density voxels in the lungs or in the air
surrounding the body of the subject (the nonbody voxels).
CT lung density is influenced by factors such as subject
tissue volume, air volume, image acquisition protocol, physical
material properties of the lung parenchyma, and degree of
inspiration. These factors make the selection of a single gray-
level segmentation threshold difficult, as different thresholds
are likely required for different subjects. Although some meth-
ods have been proposed based on finding an adaptive threshold
value, these methods still have some misregistrations in their
segmentation results including missing boundaries between
2 different anatomic regions when there is not a significant
discontinuity between them. Most importantly, thresholding
schemes may not perform well in ARDS cases since some air
sacs fill with fluid and others collapse. Fluid and collapsed
air sacs have HU values close to vessels, while threshold
schemes pick a value close to air (-1000HU) as lung region.

1A voxel is a unit of graphic information that defines a point in three-
dimensional space.

Consequently, collapsed areas would be considered as body
voxels rather than collapsed lung.

Snake is an active contour which starts from an initial
position and shape and fits itself to the shape of the de-
sired object(s). Region growing schemes are well-known for
providing a good estimation of object shape and boundary.
Snake and Region Growing models utilize a closed contour
to approach the object boundary by iteratively minimizing an
energy function. One of the drawbacks of traditional contour
schemes is that they often require human interaction and the
segmentation results are heavily sensitive to initial seed points
or region(s). A challenging issue in these CAD systems is
choosing robust seed points or regions without user interaction.
Several studies propose pre-processing algorithms such as
evaluating threshold value(s) [12] or Gradient Vector Flow [13]
to obtain proper seeds inside the lung.

The watershed algorithm is a powerful region-based method
to segment images without the seed for initial contours or user
interaction. This method is based on the phenomenon observed
in geography that when water floods an area with hills and
valleys, the water fills the lowest valleys first. Watershed meth-
ods tend to have relatively low computational cost. However,
over-segmentation is a well-known drawback of watershed
transformation. Therefore utilizing marker-based watershed
transformation is suggested to overcome over-segmentation in
the processing of medical images. However, collapsed lung
would not be included with the lung voxels by the watershed
transformation since these voxels have relatively high intensity,
close to that of soft tissue.

Points of sharp variation are often among the most important
features for analyzing the properties of transient signals or
images. They are generally located at the boundaries of impor-
tant image structures. Conventional edge detection algorithms
are typically based on differential operators, such as the
Sobel, Prewitt, and Roberts operators. Traditional differential
operators work well with edge detection of noiseless images,
however in the presence of noise may miss the edges or
detect false edges due to their high level of sensitivity to noise
and the existence of tiny intensity discontinuities in medical
images. We have chosen to use wavelet transformation for the
segmentation. Wavelet expansion in higher scales suppress the
effect of noise on the edge detection process. It detects signal
discontinuities if the basis function is chosen as a derivative
of a proper smoothing function. Sharp transitions are depicted
extremely well in wavelet expansions. Wavelet theory proves
that discontinuities can be determined from the evolution
across scales of the wavelet transform modulus maxima [14];
even the smoothness of an edge can be estimated from the
decay of the wavelet transform maxima across scales.

A. wavelet transformation

Wavelet transformation represents a signal/image in multi-
scale details by applying a basis function to the signal. The
wavelet transform is capable of providing the spatial and
frequency information simultaneously. Wavelets are families
of functions Λs,t(x) generated from a single base wavelet,
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called the mother wavelet, Λ(x) by dilations and translations

Λs,t(x) =
1√
|s|Λ(

x− t

s
), (1)

where s is the dilation (scale) parameter, and t is the translation
parameter. Wavelets must have a mean of zero, and the
useful ones have localized support in both spatial and Fourier
domains.

We use the term 2D smoothing function to describe any
function θ(x, y) whose integral over x and y is equal to 1 and
converges to 0 at infinity. In the particular case where θ(x, y) is
a Gaussian, the zero-crossing detection is equivalent to a Marr-
Hildreth [15] edge detection, whereas the extrema detection
corresponds to a Canny [16] edge detection. The image f(x, y)
is smoothed at different scales ’s’ by a convolution with
θ(x, y). When the scale ’s’ is large, the convolution with
θs(x, y) removes small signal fluctuations; therefore only the
sharp variations of large structures will be detected. Edges
are defined as points (x0, y0) where the modulus of the
gradient vector is maximum in the direction towards which
the gradient vector points in the image plane. In other words,
edge points are inflection points of the surface ∇(f ∗θs)(x, y).
The direction of the gradient vector, ∇(f ∗ θs)(x, y), at a
point (x0, y0) indicates the direction in the image plane (x, y)
along which the directional derivative of f(x, y) has the largest
absolute value. Two wavelet functions Λ1

s(x, y) and Λ2
s(x, y)

were defined such that

Λ1
s(x, y) =

∂θs(x, y)
∂x

Λ2
s(x, y) =

∂θs(x, y)
∂y

(2)

The wavelet transform of f(x, y) at scale ‘s’ has two compo-
nents, W 1

s f and W 2
s f , defined by

W 1
s f(x, y) = f ∗ Λ1

s(x, y)
W 2

s f(x, y) = f ∗ Λ2
s(x, y) (3)

Usually, the wavelet model is not required to keep a continuous
scale parameter ’s’. To allow fast numerical implementations,
Mallat and Zhong, [14], imposed that the scale only varies
along the dyadic sequence (2j)j∈Z . A nonorthogonal wavelet
is designed to satisfy the required characteristic for detecting
lung edges and suppressing noise in the CT images. The
mother wavelets are calculated from first and second deriv-
atives of the smoothing function, θ(x, y), which is basically a
low pass filter in the Fourier domain.

Noise filtration in the wavelet domain is performed based on
the fact that sharp edges have large amplitude over the dyadic
scales (2j , j = 0, 1, 2, ...), and noise dies out swiftly while ’s’
increases. The wavelet transform content at several adjacent
scales was used to accurately detect the location of edges and
some other fine details. If the first derivative of a smoothing
function is chosen as the mother wavelet, the edges will be
distinguished as local maxima points. Therefore, by increasing
the scale, only significant maxima, which represent the edge
pixels, will remain over the wavelet transformation and noise

(a) (b)

(c) (d)

Fig. 2. (a) An original CT thorax image. (b) 2D wavelet transformation;
multiplication of third and fourth scales (c) obtained mask (d) Extracted lung.

will be suppressed on these scales. In the case of choosing
the second derivative of a smoothing function as the mother
wavelet, the zero crossing will be considered as the location
of the edges through the scales. However, considering the zero
crossing will produce false edges since every singularity in the
image leads to a zero crossing. Therefore other information
should be combined with the zero crossings in order to dis-
tinguish between significant discontinuities and insignificant
ones.

B. image processing

An inflection point of an image can either be a maximum
or a minimum of the absolute value of its first derivative. The
maxima of the absolute value of the first derivative are sharp
variation points of image, whereas the lower values correspond
to slower variations. The proposed method employed deriva-
tive of a smoothing function as its mother wavelet. Therefore
maxima of the wavelet transformation magnitude were consid-
ered as candidates of edge points. In CT images, air-filled lung
will appear with low intensities while the chest wall, blood,
and bone will be higher. Therefore the border between the lung
and adjacent tissues is represented as significant discontinuity
in the image. Before transforming the image, voxels with HU
value higher than the average body value were trimmed to
avoid the detection of discontinuities between the bones and
their adjacent soft body tissues. Each image was transformed
into its dyadic scales. We found that considering dyadic scales
between third and fifth provides necessary information for the
edge points detection. Figure 2 (a) and (b) show an original
image and multiplication of its transformation at third and
fourth scales. Each scale is normalized and combined with
other scales to extract the sharp variation points. Combination
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Fig. 3. The same thoracic level over a single respiratory cycle along with extracted lung consist of a series of 8 scans separated temporally by 0.4Sec.

of wavelet transformation in third and fourth scales is shown in
figure 2 (b). The chest wall can be eliminated easily from the
edge map since it has strong edges and is the closest continued
object to the image border. After elimination of chest wall and
all the surrounding objects, the remaining object with strong
continued edges is lung. Maxima of the transformations and
their directions (argument(W 1

s f +iW 2
s f)) was considered to

evaluate the final edge map. Consequently the edge detection
confined by constrain on continuity of the edge points. Figure
2 (c) and (d) illustrates the segmentation mask and extracted
lung.

Dynamic CT with a cine loop technique was performed
on a rabbit model with ARDS induced by repeated saline
lavage. Dynamic CT was performed on an 8 detector multislice
CT scanner (GE Lightspeed, GE Medical Systems, Milwau-
kee,WI). Imaging consisted of simultaneous acquisition of 4
slices (one volume) every 0.2 seconds. Images were acquired
for just under 10 seconds producing 192 images per scan. The
tube voltage was 120 kV and the tube current was 120 mA.
A 512 × 512 matrix was used and the slice thickness was
5mm. The display field of view was 16cm. The voxel size
was 0.3125 × 0.3125 × 5mm with an average slice volume
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Fig. 4. (a) The same thoracic level over a single respiratory cycle consist of a series of 15 scans separated temporally by 0.2Sec. (b) Thoracic image at peak
inspiration (time=0Sec) (c) Thoracic image at peak expiration (time=1.5Sec). (d) Lung volume vs. time over a single respiratory cycle.

of 128cm2. Use of between 4 and 6 volumes of 4 slices
each enabled imaging of the whole chest throughout the
respiratory cycle. Therefore each animal generated a dataset

of between 768 (192×4) and 1152 (192×6) images. Images
were reconstructed using a bone detail algorithm for lung
visualization. In this study the rabbit lung segmented over
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each respiratory cycle (Figure 3) and density occupied by
substances with different HU values were calculated (Figure
4(a)). Automated segmented images compared with manually
segmented images by an experienced radiologist to verify
accuracy of the proposed method. A close correlation was
found between the segmentation results. The volume between
these segmentation calculated as system error. The average
segmentation error calculated as 1mm3 in a respiration cycle.

III. DISCUSSION

Dynamic CT with a cine loop technique generates multiple
scans of the same area of lung over a defined time period
with 100 to 200 milliseconds between scans. This produces
a movie of the lung over the respiratory cycle and enables
a non-invasive and physiological study of ventilation without
the need for breath-holding. However this technique produces
a very large number of images for analysis with a single
experiment generating several thousand images. An automated
platform was developed which is capable of measuring the
density occupied by substances with different HU values.
Calculated volumes over a respiratory cycle are illustrated in
figure 4. A program was developed in a MATLAB platform
based on the proposed methodology to evaluate the CT images.
The program processed each image in size of 512×512 within
2sec on a computer with 1.73GHz processor and 512MB RAM
compared with several minutes for currently available manual
segmentation software. Furthermore, the segmentation result
is user adjustable as needed. Traditionally the volumes were
measured by human interaction. This previous method lacked
accuracy and consistency due to human error. Our newly
developed method has brought speed and robustness to lung
segmentation and lung density analysis.

Dynamic CT has many potential applications. As we have
already described it may be used to assess changes in lung
attenuation with time which occur in ARDS and to assess the
effect of different therapeutic interventions in this condition.
Changes in lung attenuation may also be used to assess
diseases in which air trapping is an important feature such
as emphysema and asthma [17]. Similarly, in foreign body
aspiration it may be used to infer the location of the foreign
body by identifying a region of lung which does not change
in volume with respiration. Dynamic CT can also be used to
look at patterns of contrast enhancement with time. This may
be useful in the characterization of solitary pulmonary nodules
(benign vs malignant) [18] and has also been shown to enable
the characterization of different types of pulmonary edema
[19]. A further potential application of dynamic CT is the as-
sessment of diaphragmatic movement which may be abnormal
in both neurological disorders and respiratory disease. Finally,
dynamic ventilation imaging with four-dimensional pulmonary
CT has recently been proposed as a way of examining regional
ventilation as an aid to radiotherapy planning for lung cancer
[20].
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