
Enhanced Shot-Based Video Adaptation using
MPEG-21 generic Bitstream Syntax Schema

Sarah De Bruyne, Davy De Schrijver, Wesley De Neve, Davy Van Deursen, Rik Van de Walle
Department of Electronics and Information Systems - Multimedia Lab - Ghent University - IBBT

Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium

Email: {sarah.debruyne, davy.deschrijver, wesley.deneve, davy.vandeursen, rik.vandewalle}@ugent.be

Abstract— Semantic video adaptation takes into account the
relevance of the different fragments of the video content in order
to create a tailored video stream based on the user’s preferences.
As a shot can be considered as the smallest semantic unit in
a video sequence, metadata can be added to each shot using
MPEG-7 descriptions. Based on these metadata and the user’s
preferences, the original bitstream can be adapted in order to
obtain the desired fragments. MPEG-21 DIA offers a tool, gBS
Schema, for exposing the high-level structure of a binary resource
as an XML description. In this paper, shot information is inserted
in these descriptions to create a link between metadata and
semantic video adaptation. Furthermore, this paper proposes
to keep the structure of these descriptions format-agnostic. As
a result, only one generic transformation style sheet has to be
implemented to support shot-based video adaptation of sequences
compliant with different video specifications. Special attention is
payed to sequences coded with the H.264/AVC standard as this
specification contains several interesting features important for
shot-based video adaptation.

I. INTRODUCTION

As multimedia has proliferated over the past years, many

new technologies have been developed to establish the delivery

and consumption of multimedia content. Users began to expect

that this content can easily be accessed according to their own

preferences. Therefore, the delivered content must be tailored

to the user’s characteristics and preferences, as well as to the

capacities of the terminals and networks.

Video adaptation [1] is an emerging field of interest that in-

cludes techniques responding to the above challenges. Several

adaptation strategies can be identified, either operating on a

semantic level (e.g., removal of violent scenes or extraction

of semantic highlights), at a structural level (e.g., key frame

extraction), or at signal-processing level (e.g., transcoding).

To adapt a video sequence, MPEG-21 Digital Item Adapta-

tion (DIA) [2] offers a tool, generic Bitstream Syntax Schema

(gBS Schema), to describe the high-level structure of the

bitstream using the Extensible Markup Language (XML). The

resulting XML document is called a generic Bitstream Syntax

Description (gBSD) which makes it possible to describe the

bitstream in a coding format-agnostic manner.

This paper concentrates on the link between metadata and

format-agnostic semantic video adaptation by making use

of gBS Schema. This way, metadata and semantic video

adaptation can be coupled in an elegant manner. Therefore,

shot information is inserted in the gBSDs indicating to which

shot each frame belongs. The selection of the desired shots

can be obtained by using MPEG-7 descriptions containing

metadata about the different shots. Once the desired shots are

indicated, a generic transformation style sheet is used to obtain

the desired adapted sequence by linking the desired shots to

the shot information available in the gBSD. Special attention

needs to be payed to the extraction of the desired fragments

as the adapted bitstream needs to remain compliant with the

corresponding specification.

Related work includes a semantic adaptation framework

for the generation of semantic metadata and the semantic

adaptation of video on a frame basis using gBS Schema [3].

Furhtermore, [4] and [5] focus on video adaptation using

gBS Schema. In particular, an example of a gBSD is given

which is used to classify fragments of a video using semantic

information.

This paper is organized as follows. The following section

introduces the main enabling technologies and concepts, while

Sect. III discusses the shot-based adaptation process. Experi-

mental results are given in Sect. IV.

II. ENABLING TECHNOLOGIES AND CONCEPTS

A. gBSD-driven Content Adaptation

MPEG-21 gBS Schema is a tool of part 7 (Digital Item

Adaptation, DIA) of the MPEG-21 specification used to

facilitate content adaptation [4], [5]. To realize this, gBS

Schema defines a framework that enables the description of

the high-level structure of a bitstream in XML, resulting in

a Bitstream Syntax Description (BSDs). This description is

not meant to describe the bitstream on a bit-per-bit basis, but

rather addresses its high-level structure. In Fig. 1, a global

architecture for a BSD-based content adaptation framework is

given. First, a BSD of the high-level structure of the bitstream

is generated. This BSD is then adapted according to the user’s

preferences by means of a transformation language. Finally,

the adapted BSD becomes input to an adaptation module

responsible for the generation the corresponding bitstream.

gBS Schema uses only one generic schema to describe the

structure of a generic BSD (gBSD), making the syntax of the

gBSD generic and codec-independent. Therefore, the regener-

ation of the adapted bitstream can be achieved without the need

of codec-specific schemas. Furthermore, this schema makes it

possible to describe the bitstream in a hierarchical fashion

and provides semantically meaningful marking of syntactical

380

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

1-4244-0707-9/07/$25.00 ©2007 IEEE

BSD generationbitstream BSD

transformation

transformed BSDbitstream generationadapted
bitstream

Fig. 1. Architecture for a BSD-based content adaptation framework

elements by the use of a “marker” handle facilitating semantic-

based adaptations.

Since the gBS Schema specification can be found in the

MPEG-21 DIA standard [2], only a brief summary of the most

important elements needed within the scope of this paper is

given. Examples of gBSDs illustrating the described concepts

are given in Sect. III.

• The gBSDUnit element represents a bitstream seg-

ment by referring to the corresponding location in the

bitstream. Each gBSDUnit can then further consist of

gBSDUnits and Parameters resulting in a hierarchical

representation of the bitstream. A gBSDUnit includes a

start and length attribute to point to the section in the

bitstream it describes. In addition, it can also contain

a syntacticalLabel attribute for including coding-format

specific information about the hierarchical structure iden-

tified via classification scheme terms while the optional

marker attribute provides semantic information used for

performing adaptations.

• The Parameter element is used to describe a syntax

element in the bitstream of which the value might be

changed during the adaptation process. Therefore, it

provides the actual value and the data type of the cor-

responding bitstream fragment. Similar to the gBSDUnit,

it can also contain a syntacticalLabel and a marker.

B. Random Access in Video Coding

In video coding, improved compression efficiency is

achieved by taking advantage of the large amount of temporal

redundancy in video content. However, temporal prediction

causes inconveniences in other aspects such as random access.

As discussed by Hannuksela et al. in [6], random access

refers to the ability of the decoder to start decoding at a point

in a video sequence other than at the beginning and to recover

an exact or approximate representation of the decoded pictures.

This random access operation is characterized by a random

access point and a recovery point, as can be seen in Fig. 2. The

random access point appears first and is a coded picture where

the decoding can be initialized. The recovery point indicates

that the content of all decoded pictures at and subsequent to

this frame is correct or approximately correct.

The random access operation is called Instantaneous De-

coding Refresh (IDR) when the random access point and the

recovery point coincide. As a consequence, the corresponding

frame will be intra coded. In case the random access point

and the recovery point do not concur, frames in between the

two points will contain artifacts and the random access process

Fig. 2. Gradual random access applied to H.264/AVC

will be gradual (Fig. 2). The latter process is called Gradual

Decoding Refresh (GDR) and refers to the ability to start

decoding at a non-IDR picture and to recover decoded pictures

that are correct after decoding a certain amount of pictures.

Depending on the application area, random access points

are mostly inserted in video sequences on a regular time basis

or based on the video contents. The first case is mostly used

in streaming applications such as broadcasting whereas the

second case is more often used in applications where high

compression ratios are preferred. Consequently, in the last

case, random access points often coincide with shot boundaries

because the content of the current frame will highly differ from

the previous frames belonging to the previous shot.

During most semantic adaptation processes, the extraction

of certain segments is desired. In case the beginning of a

segment corresponds to a random access point, the extracted

video can be decoded without any problem. However, in the

other case, special precautions need to be taken in order to

extract the desired segment as described in Sect. III.

C. Random Access Applied to H.264/AVC

In earlier video specifications, each intra-coded picture

corresponds to a random access point as subsequent frames are

not allowed to refer to pictures located before this intra-coded

picture. In H.264/AVC [7], this principle does no longer apply

because of the introduction of the multiple reference picture

buffer. Therefore, intra-coded pictures which correspond to a

random access point are explicitly marked as IDR pictures.

To indicate gradual random refresh, H.264/AVC provides

Recovery Point Supplemental Enhancement Information mes-

sages (RP-SEI message) as can be seen in Fig. 2. The frame

associated with an RP-SEI message corresponds to a random

access point. To signal the corresponding recovery point, this

message contains a recovery frame cnt element which

indicates the number of reference frames that need to be

decoded to arrive to the recovery point.

III. SHOT-BASED ADAPTATION USING GBS SCHEMA

The idea behind semantic video adaptation is the extraction

of the desired fragments based on the user’s preferences.

This can be done by using MPEG-7 descriptions containing

metadata about the content of the video. Based on these

metadata, it is possible to locate the desired parts. For example,

two different people would like to see an overview of a football

match. The first person is only interested in the fragments

containing goals, while the second person would like to see all

fragments of his favorite player. By inserting these keywords

381

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

random access
 point

random access
 point

random access
 point

Fig. 3. Example of the structure of a video containing multiple shots indicated
by different grey tints

in an MPEG-7 description, it should be possible to meet

everyone’s needs. As a shot is considered to be the smallest

semantic unit in a video sequence, keywords are added to

each shot in this MPEG-7 description. In case a person would

like to see all goals, the adaptation engine selects all shots

containing this keyword. By inserting shot information in the

gBSDs corresponding to the video sequences, a link can be

made between the metadata and the adaptation.

In the following sections, we will describe how this shot-

based adaptation process can be achieved using gBS Schema.

A. Structure of the gBSD

Frames belonging to the same shot are often grouped in

one gBSDUnit so that the extraction of the desired shot can

easily be achieved [5]. However, this approach causes two

problems. The first problem arises when the starting frame

of a shot in decoding order does not coincide with a random

access point. Consequently, all frames located between the

previous random access point and the starting frame need to

be added to the adapted bitstream as well, in order to make

correct decoding possible. A second problem is attributed

to the difference between display order and decoding order.

Let Pa1Ba2Pb1Bb2Pb3 be a video sequence in display order

containing two shots a and b, the corresponding decoding

order could then be Pa1Pb1Ba2Pb3Bb2. One can see that the

frames belonging to a shot do no longer succeed each other

uninterruptedly. Since a gBSD describes the structure of the

coded bitstream in decoding order, it will be impossible to

group frames belonging to the same shot together in a gBSD.

To resolve these problems, we propose a new hierarchical

structure for gBSDs in the context of shot-based adaptation.

Instead of dividing a video sequence into shots, we will group

frames belonging to the same “Random Access Unit” (RAU)

together, as can be seen in Fig. 3. This RAU contains a number

of successive frames in decode order, starting with a frame

corresponding to a random access point and ending just before

the next random access point. This RAU is represented by a

gBSDUnit and is further divided in gBSDUnits representing

the frames belonging to the RAU (Fig. 4).

As frames belonging to one shot are no longer gathered,

this information needs to be stored for every frame separately.

The marker attribute offers a good solution to store shot

information as it is intended to provide semantic information.

Furthermore, for each RAU, a marker is appended, giving

a survey of the shot information included in the RAU. This

<dia:DIA>
<dia:DescriptionMetadata>
<dia:ClassificationSchemeAlias alias="VC" href="urn:generalVideoCoding:

syntacticalLabels"/>
</dia:DescriptionMetadata>
<dia:Description xsi:type="gBSDType" addressUnit="byte" addressMode="Absolute" bs1

:bitstreamURI="c:\video_sequence.264">
<gBSDUnit syntacticalLabel=":VC:NonVideoData" start="0" length="8" marker="

necessary"/>
<gBSDUnit syntacticalLabel=":VC:NonVideoData" start="8" length="13" marker="

necessary"/>
<gBSDUnit syntacticalLabel=":VC:RAU" start="21" marker="Shot_0">
<gBSDUnit syntacticalLabel=":VC:Frame" start="21" length="272" marker="Shot_0"/>
<gBSDUnit syntacticalLabel=":VC:Frame" start="293" length="94" marker="Shot_0"/>
<!-- successive frames belonging to this RAU -->

</gBSDUnit>
<!-- other RAUs -->
<gBSDUnit syntacticalLabel=":VC:RAU" start="740" marker="Shot_2 Shot_3">
<gBSDUnit syntacticalLabel=":VC:Frame" start="740" length="13" marker="Shot_2"/>
<gBSDUnit syntacticalLabel=":VC:Frame" start="753" length="55" marker="Shot_3"/>
<gBSDUnit syntacticalLabel=":VC:Frame" start="808" length="84" marker="Shot_2"/>
<gBSDUnit syntacticalLabel=":VC:Frame" start="892" length="92" marker="Shot_3"/>
<!-- successive frames belonging to this RAU -->

</gBSDUnit>
<!-- other RAUs -->

</dia:Description>
</dia:DIA>

Fig. 4. Fragment of a gBSD used for semantic adaptation

extra information makes it possible to speed up the adaptation

process. In order to extract a particular shot, it is no longer

necessary to take all frames into consideration. Instead, by

examining the markers of RAUs, only RAUs containing a

reference to the wanted shot need further exploration.

In contrast to marker attributes, the syntacticalLabel at-

tribute is used to include specific information about the

hierarchical structure of the bitstream. In most applications,

these names are codec-specific, thus enabling codec-aware

adaptations. However, in our application, we prefer to use a

general structure making it possible to implement a format-

independent semantic adaptation style sheet. In this case, it is

possible to employ only one transformation style sheet that is

able to semantically adapt bitstreams compliant with different

coding specifications.

Besides frames, most video specifications insert additional

information into a video bitstream. In the H.264/AVC standard,

for example, non-VCL (non-video coding layer) NAL units

are used to insert additional information, such as parameter

sets and SEI messages into the bitstream. As most video

specifications use different techniques and syntax elements to

insert non-VCL information, the insertion of a format-specific

information would lead to a format-specific gBSD. As this

is undesired, only one format-agnostic element “NonVideo-

Data” is added. To make a difference between NonVideo-

Data applicable to the whole video sequence and information

applicable to only one shot, extra information is added to

the corresponding marker in the gBSD. In Fig. 4, the first

two gBSDUnits, corresponding to certain parameter sets, are

marked as necessary because these units could be referred to

by all frames in the sequence. In Fig. 5 on the other hand,

some “NonVideoData” parameters are marked according to

the shot they belong to. More explanation about these shot-

specific parameters is given below.

B. Concealment of Undesired Fragments

In a number of applications, it is desired that fragments not

belonging to the specified shot(s) are not shown. This problem

382

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

arises when the first frame of the shot does not coincide

with the corresponding random access point. Therefore, the

undesired frames located between the random access point

and the first frame of the shot need to be conceiled.
A way to cope with this problem is by making use of

features of the MP4 file format. This container makes it

possible to create a mapping between the different frames and

their display time, making it possible to conceal undesired

frames. However, a drawback of this approach is the fact that

the video bitstream as well as the MP4 file need to be adjusted.
A number of video specifications contain special features

to overcome this problem. In H.264/AVC, it is possible to

specify an own-defined SEI message indicating the frames not

permitted to be shown. Since this message is not included

in the specification, decoders are not able to interpret this

message and will therefore discard it. A better solution is to

use messages already available in the specification.
In H.264/AVC, RP-SEI messages are used for gradual

random access. As already elaborated in Sect. II, this message

indicates the position of the random access point and the

corresponding recovery point. Frames located in between these

two positions are considered incorrect and are therefore not

displayed by a decoder. By inserting an RP-SEI message in

the beginning of a RAU, undesired fragments can be concealed

as well, although their content does not contain artifacts.
Fig. 5 gives an example of an RAU containing a

“FrameConcealment” gBSDUnit which represents an RP-SEI

message. This unit will be inserted in the adapted bitstream in

case it contains information about a desired shot, as indicated

by the marker. The FrameConcealment unit consists of two

major types of information.

• The first type is marked as necessary and is present

in all RP-SEI messages. This information includes for

example the starting bytes, the NAL unit type, and the

SEI message type of the NAL unit.

• The second type is different for each shot and contains

information like the offset of the recovery point. The

marker indicates to which shot this information belongs.

In the example, the RAU contains frames belonging to two

shots, i.e., shot 0 and shot 1. In case the adaptation engine

decides to extract shot 1, we expect that the frames located

before the first frame of shot 1 are not displayed. Therefore,

the FrameConcealment unit will be inserted in the adapted

gBSD as its marker contains a reference to shot 1. However,

not the whole FrameConcealment unit will be included, but

only those parts marked as necessary for shot 1. As a result,

the adapted bitstream will contain an RP-SEI message indicat-

ing that the frames located before the recovery point (which

coincides with the first frame of a shot) need to be decoded

but are not allowed to be displayed.
A restriction that needs to be kept in mind is the

fact that the element indicating the recovery point, i.e.,

recovery frame cnt, needs to be in the range of 0 to

MaxFrameNum-1. As the offset of the first frame of a shot

can be higher than this limit, a solution needs to be found. A

first possible solution is to weaken this constraint by extending

<gBSDUnit syntacticalLabel=":VC:RAU" start="62476" length="16945" marker="Shot_0
Shot_1">

<gBSDUnit syntacticalLabel=":VC:FrameConcealment" start="0" marker="Shot_0 Shot_1
">

<gBSDUnit syntacticalLabel=":VC:NonVideoData" start="0" marker="necessary">
<!-- information like start of the NAL unit, NAL unit type, SEI type, ...-->

</gBSDUnit>
<gBSDUnit syntacticalLabel=":VC:NonVideoData" start="0" marker="necessary">
<Parameter name=":VC:NonVideoData" length="2" marker="Shot_0">

<Value xsi:type="xsd:hexBinary">396</Value>
</Parameter>
<Parameter name=":VC:NonVideoData" length="3" marker="Shot_1">

<Value xsi:type="xsd:hexBinary">135728</Value>
</Parameter>

</gBSDUnit>
<Parameter name=":VC:NonVideoData" length="1" marker="necessary">
<Value xsi:type="xsd:hexBinary">128</Value>

</Parameter>
</gBSDUnit>
<gBSDUnit syntacticalLabel=":VC:Frame" start="476" length="152" marker="Shot_0"/>
<!-- successive frames belonging to this RAU -->
<gBSDUnit syntacticalLabel=":VC:Frame" start="843" length="133" marker="Shot_1"/>
<!-- successive frames belonging to this RAU -->

</gBSDUnit>

Fig. 5. Fragment of a FrameConcealment gBSDUnit

its range, but this is undesired as the adapted bitstream will

no longer be compliant with the H.264/AVC specification.

Another possibility is to modify the element responsible for

MaxFrameNum. However, this would influence all frames in

the sequence, which makes this approach unfeasible. The

best solution is to insert additional RP-SEI messages just

before the previous recovery point until the starting frame is

reached. Even though this approach leads to some overhead,

we consider it to be the most elegant as the adapted bitstream

remains compliant with the H.264/AVC specification and the

amount of changes made to the bitstream is minimal.

The same approach can be applied for other video specifi-

cations in case they contain features for frame concealment.

Otherwise, the undesired fragments will still be displayed.

C. gBSD Generation

As the gBS Schema is generic, it is not possible to auto-

matically generate gBSDs using this schema. A possibility is

to use a format-specific schema to generate BSDs, which can

subsequently be transformed into the corresponding gBSDs.

[5]. However, as our adaptation process is shot-based, the

shot boundaries need to be detected as well. Since the entire

structure has to be analyzed during the shot detection [8], we

prefer to generate the gBSDs during this analysis process.

D. Shot-Based Adaptation of the gBSD

To adapt the video to the user’s preferences, only the

desired fragments need to be extracted. As the high-level

structure of the video is described in XML, the extraction

process can be done by using Extensible Stylesheet Language

Transformations (XSLT). Fig. 6 depicts the data flow described

by the XSLT style sheet responsible for our shot-based adap-

tation process. To indicate which fragments are desired, the

parameter wanted shots, containing a list of the desired

shots, is passed to the style sheet. Afterwards, this style sheet

transforms the gBSD by making use of templates working on

Units, corresponding to gBSDUnits as well as Parameters.

For each Unit present in the top level of the description, i.e.,

RAUs and NonVideoData (Fig. 3), the template Process Unit
is called. NonVideoData Units will be added to the bitstream in

383

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

parameter:
wanted_shots

Process Unit:
resolve name and

marker of current unit

Unit name?

FrameRAU FrameConcealment NonVideoData

Call:
Process Unit

for all children

yes

Unit has
children?

yes

yes

Call:
Process Unit

for all children that
are FRAMES

do nothing

no no

no

do nothing

no

yes

output current Unit

Call:
Process previous Unit

for previous sibling

yes

no

Process previous Unit:
resolve name and marker of

current Unit

no previous Units available

do nothing

NonVideoData Frame

wanted_shot
marker?

yes

no

Call:
Process previous Unit

for previous sibling

output current Unit

no

Unit has
children?

yes

no

Call:
Process Unit

for all children

yes

Unit name?

wanted_shot
 marker?

wanted_shot
marker?

(wanted_shot
OR

necessary)
marker?

wanted_shot
 marker?

(wanted_shot
OR

necessary)
marker?

Fig. 6. Data flow described by the XSLT style sheet responsible for our shot-based adaptation process

case the unit is marked as necessary or when a shot, contained

in wanted shots, corresponds to an element of the marker.

As some NonVideoData Units further contain NonVideoData

Units, their children will be processed on their turn as well.

The RAUs are further processed only in case a shot

contained in wanted shots corresponds to an element of the

marker; otherwise, the RAU is discarded and the algorithm

directly proceeds with the next Unit. In the former case, the

RAU will contain frames belonging to a desired fragment, and

therefore, certain frames present in the RAU will need to be

added to the adapted bitstream. As a result, all frames present

in the RAU need to be processed by calling Process Unit.
Since it is necessary to start a video sequence at a random

access point, Units located before the frames belonging to

the desired shot need to be added to the adapted gBSD as

well. As XSLT has no such construct as a “while” construct,

recursion is needed. Consequently, Process previous Unit is

called for each frame belonging to a desired shot This unit

will then be checked to see whether it needs to be added to

the transformed gBSD or not. If so, the recursion is repeated

until the adapted bitstream can be decoded. The recursion

terminates when the beginning of the RAU is reached or when

the processed unit is already added to the bitstream. To conceal

certain frames, FrameConceilment Units are added in case

their marker contains one of the desired shots.

As no codec-specific information is used to transform the

gBSD, this transformation can be executed on gBSDs corre-

sponding to sequences compliant with different specifications.

E. Bitstream Reconstruction

The gBSDtoBin process is normatively specified in the

MPEG-21 DIA specification. The gBSDtoBin parser generates

a bitstream by using the information available in the trans-

formed gBSD. To reconstruct the bitstream, segments referred

to by gBSDUnits are copied to the resulting bitstream while

the values of Parameters are inserted in the bitstream, hereby

taking into account the corresponding data type.

IV. PERFORMANCE RESULTS

To evaluate the performance of our shot-based adaptation

process, several experiments have been performed on a video

sequence coded several time using different parameter settings.

Time measurements of the different adaptation steps were

carried out and the sizes of the gBSDs and the corresponding

bitstreams were compared.

A. Methodology

Experiments have been carried out on the trailer of “Friends

with money” containing 2353 frames and 49 shots. This

sequence was coded several times with variable as well as

with fixed (IB(PB)*) GOP structures. For the fixed GOP

structures, IDR frames were inserted every 10, 100 and 200

reference frames respectively. For the variable GOP structure,

the location of the random access point depends on the content

of the video. These bitstreams were coded multiple times

with different values for maxFrameNum. For all values of

maxFrameNum higher than the size of a GOP, maximum one

RP-SEI message needed to be inserted in an RAU. Therefore,

the results of only one bitstream with maxFrameNum higher

than the size of a GOP are presented. As the encoder chooses

the optimal value for maxFrameNum when using variable GOP

structures, only one result for this GOP structure is presented.

B. Discussion of the Results

The performance results of the different steps are shown

in Tables I and II. The first step in the adaptation process

is the creation of the gBSDs. Since this step is performed

during shot boundary detection, time measurements are not

provided as they are not representative. The sizes of the created

descriptions, compared to the sizes of the corresponding

bitstream, are shown in Table I. As the size of a bitstream

hardly increases when a higher MaxFrameNum is adopted,

only the size of one original bitstream is presented, i.e., the

bitstream corresponding to the gBSD size marked in italic.

The experiments show that the size of the gBSD decreases

when maxFrameNum increases. This can be attributed to the

fact that less RP-SEI messages need to be inserted in one

384

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

TABLE II

AVERAGE EXECUTION TIME (MS) FOR THE XSLT TRANSFORMATION T AND THE GENERATION G OF THE ADAPTED BITSTREAM REPRESENTING ONE

SHOT. THE AVERAGE SIZE S (KB) OF AN ADAPTED BITSTREAM IS GIVEN AS WELL

GOP original gBSD without RP-SEI gBSD with RP-SEI based on MaxFrameNum
structure bitstream T G S transformation (ms) generation (ms) size (KB)

size (KB) (ms) (ms) (KB) 16 32 64 128 512 16 32 64 128 512 16 32 64 128 512

variable 4702 674 71 111.3 674 72 111.3
IDR 10 4747 661 75 122.7 700 82 122.7
IDR 100 3876 699 92 246.7 726 717 708 707 96 99 100 93 226.0 245.9 238.7 246.8
IDR 200 3839 746 107 357.1 777 765 756 753 106 113 108 107 331.7 357.2 356.7 347.0

TABLE I

SIZE OF THE GBSDS COMPARED TO THE ORIGINAL BITSTREAM (KB)

GOP original gBSD gBSD with RP-SEI
structure bitstream without MaxFrameNum

size RP-SEI 16 32 64 128 256 512

variable 4702 226 261
IDR 10 4747 227 340
IDR 100 3876 216 309 271 247 234
IDR 200 3839 215 328 274 251 236

RAU. The differences in size of the gBSDs containing RP-

SEI messages for the various GOP structures is less obvious.

gBSDs corresponding to bitstreams with large GOP structures

will consist of less RAUs, but will contain more shots and

therefore contain more and larger RP-SEI messages. On the

other hand, bitstreams coded using small GOPs will contain

more RAUs consisting of smaller RP-SEI messages. By com-

pressing the gBSDs, the overhead caused by the descriptions

is negligible.

The gBSD transformation is the next step in the adaptation

process. The execution times in Table II represent the average

of the times needed to generate an transformed gBSD for each

shot in the video sequence. As video sequences coded using

large GOPs consist of larger RAUs, more shots are grouped

together in one RAU. This leads to a longer execution time

since more frames need to be processed. Video sequences

coded with a variable GOP structure will outperform video

sequences coded with fixed GOPs as the division of the RAUs

is connected with the content of the video (i.e., the shots).

Finally, the MPEG-21 gBSDtoBin reference software was

used to create the adapted bitstream containing the desired

shot. From Table II, one can conclude that the generation of the

adapted bitstream can be done in real time. Furthermore, Table

II also represents the average size of an adapted bitstream

corresponding to one shot. Video sequences coded with a

variable GOP structure turn out to be the most appropriate

for shot-based adaptation as the size of their gBSDs and the

corresponding bitstreams is small and the execution times

outperform those of the other sequences. For video sequences

coded with a fixed GOP structure, sequences consisting of

small GOP structures will outperform those with large GOP

structures because less concealed frames need to be added. On

the other hand, more random access points need to be inserted

resulting in a decrease of the compression efficiency.

For other sequences, similar results are obtained.

V. CONCLUSION

This paper introduced an enhanced shot-based adaptation

framework bridging the gap between format-agnostic semantic

video adaptation and metadata by making use of gBS Schema.

As the proposed hierarchical structure of the gBSDs is format-

agnostic, only one generic transformation style sheet is needed.

By inserting shot information into the descriptions, the adap-

tation process can be steered in order to extract the desired

fragments. During the extraction, special attention is payed to

random access so that the bitstream remains compliant with

the corresponding specification. Experiments show that the

adaptation and regeneration can be done in real time and that

video sequences coded with variable GOP structures are more

suited for shot-based adaptations than fixed GOP structures.

ACKNOWLEDGMENT

The research activities as described in this paper were

funded by Ghent University, the Interdisciplinary Institute for

Broadband Technology (IBBT), the Institute for the Promotion

of Innovation by Science and Technology in Flanders (IWT),

the Fund for Scientific Research-Flanders (FWO-Flanders),

the Belgian Federal Science Policy Office (BFSPO), and the

European Union.

REFERENCES

[1] S.-F. Chang and A. Vetro, “Video adaptation: Concepts, technologies and
open issues,” Proceedings of the IEEE, vol. 93, no. 1, pp. 148–158,
January 2005.

[2] ISO/IEC JTC 1, “Information Technology – Multimedia Framework
(MPEG-21) – Part 7: Digital Item Adaptation,” ISO/IEC 21000-7:2004,
October 2004.

[3] M. Zufferey and H. Kosch, “Semantic adaptation of multimedia content,”
Proc. of WIAMIS 05, April 2005.

[4] C. Timmerer, G. Panis, H. Kosch, J. Heuer, H. Hellwagner, and A. Hutter,
“Coding format independent multimedia content adaptation using XML,”
Proc. of SPIE International symposium (ITCOM 03), vol. 5242, no. 3,
pp. 92–103, September 2003.

[5] G. Panis, A. Hutter, J. Heuer, H. Hellwagner, H. Kosch, C. Timmerer,
S. Devillers, and M. Amielh, “Bitstream syntax description: a tool for
multimedia resource adaptation within MPEG-21,” Signal Processing:
Image Communication, vol. 18, no. 8, pp. 721–747, September 2003.

[6] M. M. Hannuksela, Y.-K. Wang, and M. Gabbouj, “Isolated regions in
video coding,” IEEE Transactions on Multimedia, vol. 6, no. 2, pp. 259–
267, April 2004.

[7] ITU-T and ISO/IEC JTC 1, “ISO/IEC 14496-10:2004 Information tech-
nology – Coding of audio-visual objects – Part 10: Advanced Video
Coding,” 2004.

[8] S. De Bruyne, W. De Neve, K. De Wolf, D. De Schrijver, P. Verhoeve,
and R. Van de Walle, “Temporal video segmentation on H.264/AVC
compressed bitstreams,” Lecture Notes in Computer Science - Advances
in Multimedia Modeling - MMM 2007, Part I, vol. 4351, pp. 1–12, 2007.

385

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

