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Abstract— This paper outlines a solution to the multi-channel
synthetic aperture radar (SAR) moving target indication and
detection (MTI/MTD) by means of inverse systems approach. A
novel model of the problem is presented and an approximate
analytic solution to it will be given. It will be demonstrated
how a moving target indicator can benefit from a multichannel
SAR system as opposed to a traditional approach that separates
MTI and SAR systems. It will be shown that the problem of
separation of moving targets from stationary ones can be solved
completely by using multi-channel approach and in such a way
that a spatial distribution of the stationary targets does not play
a role.

I. INTRODUCTION

Extraction of moving targets from SAR imagery is of great
interest in civil and military applications. Recent methods are
based on multi-channel processing to achieve optimal and
complete separation of moving targets from the stationary
ones. The technology is currently utilized in experimental sys-
tems such as PAMIR (Germany) and MCARM (USA). Since
multiple sensors distributed in space are used to record in-
formation in time, a term space-time processing is commonly
being used for techniques processing acquired data. Space-
time processing methods mostly involve inversion of large
matrices. In order to make this inversion possible, adaptive
(that is, iterative) methods are employed. Then, one speaks of
space-time adaptive processing or STAP for short.

STAP methods for radar MTI are chiefly based on spectral
estimators [1]–[3]. Since SAR signal is non-stationary (it is
a chirp-like signal), it is necessary to use very short time
durations, where the signal can be considered stationary
(harmonic). Only then one gets sharp peaks marking the
targets. This naturally decreases resolution of such a system.
To counter that, elaborate spectral estimators – also called
super-resolution techniques – are necessary. However, these
estimators still require a formation of large matrices at one
point or another.

The goal of this paper is to describe the problem by means
of a generalized model, to formulate a solution to this model
as an inverse problem and to demonstrate its approximate
solution by means of the Fourier transform. That will be
evaluated with the help of asymptotic expansions, namely the
method of stationary phase. This approximate solution will
be used to prove that one can resolve stationary targets and
moving ones completely regardless their distribution in space
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Fig. 1. Geometry of the problem.

or reflectivity. The only criterion used is the velocity of a
target.

II. PROBLEM FORMULATION

The problem at hand is depicted in figures 1 and 2. A side-
looking phased array is placed on aircraft. It is moving along
the coordinate u, on a straight line, on an interval [−L,L]. The
radar footprint is binding a region to be imaged. The targets
are located in the x, y plane, y coordinate is parallel to the
u coordinate. Targets can be moving or stationary. Stationary
and moving targets will be denoted with i and j subscripts,
respectively. The phased array consists of N sensors that are
spaced with a distance ∆d = D/N . Each sensor takes M
measurements along the u coordinate. The standard SAR pro-
cessing uses the following process for a single-sensor image
formation. It is assumed that because radar impulses travel at
the speed of light, a radar platform will move only slightly
during acquisition of all the echos coming back as a response
to each pulse transmitted. Thus, one can imagine that radar
stops at positions um spaced ∆u = 2L/M apart, and it records
all the responses for a time interval ∆τ = ∆u/vr sampling
it at a rate of P samples per ∆τ . Variable τ is essentially
a time variable t, since τ = u/vr, where vr is the radar
velocity. τ is sampled at much slower rate than t (∆τ is
also called pulse repetition interval), τ is referred to as slow
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Fig. 2. Geometry of the problem.

time and the sampled time variable t as fast time. So, with
M sensors, N space, and P time acquisitions, one obtains a
three-dimensional array called datacube of a size MxNxP .

Solving a three-dimensional inverse problem is a tedious
task. In order to avoid this, one can reduce the problem
with the following assumptions: Let us take a slice of the
datacube at a particular range, that means we have taken a two-
dimensional array MxN for a certain p. Now, since the range
is known – it is supposed that a SAR image can be formed
beforehand and hence all ranges will be known – one can use
a model that supposes targets to be located on one range line
only, that is they will be positioned on a line x = const. in
the (x, y) plane. A case when this assumption is violated –
and when so-called range migration occurs – will be studied
numerically in section IV. Finally, since one does not need a
range resolution if the range is known, the radar signal needs
not be modulated and its bandwidth will be of zero width
located at ωc, the angular carrier frequency. This reasoning is
consistent with the theory outlined in [4, chapter 2].

The model used is an extended version of the bi-static
SAR model derived in [4, chapter 8]: Please note that a
continuous model with infinite aperture lengths L and D will
be used. Also all amplitude functions with the exception of
target reflectivity σ are suppressed, as they do not play a role
in the image formation. This approach greatly simplifies the
mathematics of the problem with the results still applicable
to a discrete case. Reference [5] provides a discussion of
sampling and finite aperture effects in great detail. Given the
assumptions made above, a signal recorded by the radar can
be written as

s(u, d) =
∑

i

σie
−kr(u,d) (1)

with r, the range given as

r(u, d) =
√

x2
i + (yi − u)2

+
√

x2
i + (yi − u+ d)2, (2)

where k = ωc/c in our case. c is the speed of light. σi is target
reflectivity. One can observe that function s(u, d) is spatially
variant. In the following text we are going to show that the
two-dimensional Fourier transform of this function is spatially
invariant. That will allow us to devise a focusing scheme that
is based on the fast convolution.

Let us proceed with writing the two-dimensional Fourier
transform of a response of a unit scatterer located at coordi-
nates (x, y):

S(ku, kd) =

∫∫

∞

−∞

e−kr(u,d)e−(kuu+kdd) du dd (3)

It will be shown in section III that this double integral has an
approximate closed-form solution:

S(ku, kd) = e
−x
(√

k2
−(ku+kd)2+

√
k2

−k2

d

)

−kuy (4)

It is one of the principal results derived in this paper. Equa-
tion 4 contains a linear phase function with respect to (x, y)
as opposed to the phase function in expression 1. This fact
can and will be used to construct focusing algorithms based
on fast convolution. It should be also observed that, unlike
in expression 1, the linear phase ψ(x, y) in equation 4 now
allows for separation of variables, in this case: ψ(x, y) =
ψ1(x)ψ2(y). This fact will be used to demonstrate separability
of moving targets from the stationary ones.

III. SOLUTION

This section provides derivations of closed-form formulas
for Fourier spectra of the radar target responses. These formu-
las will be used to show how moving targets can be separated
from the stationary ones in Fourier domain. First, a frequency
response of a multi-channel SAR system to a stationary target
given by equation 3 will be derived. Then, the model for
stationary target responses expressed by equation 1 will be
extended to moving targets and its frequency response will
be evaluated. Finally, it will be demonstrated that moving and
stationary targets can be efficiently separated in the spectral
domain.

A. Stationary targets

The solution of equation 3 can be found by means of
the method of stationary phase [6]–[8]. The idea is that the
argument of the integral in equation 3 is a rapidly oscillating
function for large k. Integrals of such functions tend to vanish
outside of so-called stationary points. Thus, it makes sense
to evaluate the argument of the integral at the stationary
points only. These points are found as maxima, minima or
saddle points of a phase function ψ which is composed of
arguments of the exponential functions in equation 3. First, a
more suitable expression of the phase function will be written.
By substitution v = u− d/2 one gets:

S(ku, kd) =

∫∫

∞

−∞

eψ(v,d) dv dd, (5)
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where

ψ(v, d) = −k
√

x2 + (y − v − d/2)2

−k
√

x2 + (y − v + d/2)2

−ku(v + d/2) − kdd (6)

If we denote values of the phase function at the stationary
points as ψl(vl, dl), then the value of the integral in equation 3
will be constant and can be calculated as follows:

S(ku, kd) =
∑

l

e−ψl(vl,dl) (7)

In our case, the phase function is hyperbolic and will have
one extremum. This means there will be only one stationary
point. Partial derivatives of the phase function will be solved
to find this point:

∂ψ

∂v
= 0,

∂ψ

∂d
= 0 (8)

This gives

ku = k sinφ1 + k sinφ2 (9)

2kd + ku = k sinφ1 − k sinφ2 (10)

With

sinφ1 =
y − v − d/2

√

x2 + (y − v − d/2)2
(11)

sinφ2 =
y − v + d/2

√

x2 + (y − v + d/2)2
(12)

Expressions that depend on v and d were obtained. However,
the phase function needs to be constant with respect to v, d.
To achieve this, ψ will be expressed as ψ(ku, kd). Using the
fact that sin2 φ = 1 − cos2 φ and with

cosφ1 =
x

√

x2 + (y − v − d/2)2
(13)

cosφ2 =
x

√

x2 + (y − v + d/2)2
(14)

equations 9 to 14 will yield:
√

x2 + (y − v − d/2)2 =
kx

√

k2 − (ku + kd)2
(15)

√

x2 + (y − v + d/2)2 =
kx

√

k2 − k2
d

(16)

and also

d = −x
(

ku + kd
√

k2 − (ku + kd)2
+

kd
√

k2 − k2
d

)

(17)

v = y − x

2

(

ku − kd
√

k2 − (ku + kd)2
− kd
√

k2 − k2
d

)

(18)

Finally, substituting previous expressions back into equation 6,
one obtains:

ψ(ku, kd) = −x
(

√

k2 − (ku + kd)2 +
√

k2 − k2
d

)

− kuy

(19)

Thus, the approximate solution of the double integral in
equation 3 is

S(ku, kd) = e
−x
(√

k2
−(ku+kd)2+

√
k2

−k2

d

)

−kuy (20)

There are two things to be observed. Firstly, unlike the phase
function in expression 6, expression 19 is a linear function
of x and y. This shows that equation 19 describes a spatially
invariant (shift invariant) system. Secondly, the x coordinate is
known because it is calculated for a p-th slice of the datacube:
x = const. Thus, the first term can be removed. What remains
is a linear phase function of y which for y = yi will give
a peak after the inverse Fourier transform at a position of
a stationary target. Therefore, the following focusing scheme
can be proposed:

f(x, y) = DFT−1
2d {DFT2d {s(u, d)} · S∗

0 (ku, kd)}

S∗

0 (ku, kd) = e
xp

(√
k2

−(ku+kd)2+
√
k2

−k2

d

)

, (21)

which is the same as

f(x, y) = DFT−1
2d

{

DFT2d {s(u, d)} · DFT2d {s0(u, d)}∗
}

,
(22)

where

s0(u, d) = e−krp(u,d) (23)

rp(u, d) =
√

x2
p + u2

+
√

x2
p + (d− u)2 (24)

DFT2d denotes the two-dimensional discrete Fourier trans-
form, and * conjugation. All the stationary targets located at
a line x = xp will again lie in a straight line x = 0 after
focusing.

Now, let us show that when applied to moving targets, the
same focusing scheme will displace them outside the line
where stationary targets are located. This will show that their
complete separation is possible.

B. Moving targets

The model of the signal from a moving target located at
coordinates (xj , yj) is given as [4, Chapter 8]:

s(u, d) =
∑

j

σje
ψ(u,d) (25)

with the phase function

ψ(u, d) =

−k
√

(xj − vxτ)2 + (yj − vyτ − vrτ)2

−k
√

(xj − vxτ)2 + (yj − vyτ − vrτ + d)2

−kuu− kdd, (26)

where vx, vy are velocities of a moving target in x and y
directions, respectively. vr is the radar velocity, and u = vrτ .
This is an extended version of the stationary target model
defined by equation 1. The aim of this subsection is to find the
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spectrum of the moving target signal. Using the same approach
as in the previous subsection, this result can be obtained:

ψ(ku, kd) ≈

−X

√

4k2 −
(

ku
α

)2

− ku
α
Y

− x

4k

(

2kvx
vr

− ku
α

− 2kd

)2

, (27)

where:

X =
(vy + vr)x − vxy
√

v2
x + (vy + vr)2

(28)

Y =
vxx+ (vy + vr)y
√

v2
x + (vy + vr)2

(29)

α =

√

v2
x + (vy + vr)2

vr
. (30)

So, the spectrum of a moving target will be given by

S(ku, kd) = eψ(ku,kd) (31)

C. Stationary and moving targets separation

In this subsection, it will be shown that a moving target
will be displaced after focusing. The focusing scheme given
by formula 21 will be applied. In order to simplify the solution,
however, an approximate version of formula 21 will be used.
Namely, we will use equation 27. The complex conjugate of
this phase function for the case of a broadside stationary target
located at coordinates (xp, 0) can be written as

ψfocus = xp
√

4k2 − k2
u −

xp
4k

(−ku − 2kd)
2 (32)

As shown before, stationary targets will be focused and
located on a line x = 0, moving targets should be off that
line. Suppose a moving target at a coordinate (xp, yj) with
reflectivity σj = 1. Let its phase function be

ψmov = −X
√

4k2 − k2
u − kuY

+
xp
4k

(

2kvx
vr

− ku − 2kd

)2

(33)

It is also assumed that for slow speeds, one can have α ≈ 1.
This assumption will further simplify the derivation. It makes
sense to investigate slowly moving targets, as they are expected
to be closest to the line x = 0. The resulting phase function
of the moving target’s spectrum after the focusing will take
the form:

ψmov + ψfocus =

(xp −X)
√

4k2 − k2
u − kuY

+
xpvx
vr

(

kvx
vr

− ku − 2kd

)

(34)

Further, we can set vy = 0. For slow targets vr � vx and so

X ≈ xp −
vx
vr
yj, Y ≈ vx

vr
xp + yj ,

because vy only causes de-focusing [5]. Actually, it also
changes the slope on which a moving target signature appears

for various vx, but it does not change the fact that moving
targets will be displaced. If we also assume a broadside
moving target, i.e. yj = 0, then a reduced expression appears:

ψmov + ψfocus = kxp
v2
x

v2
r

− 2xpvx
vr

(ku + kd) (35)

The first term in this equation is a constant phase shift. The
second term is a linear phase function of ku and kd.This term
will cause the shift of a moving target signature in x and y
direction, therefore away from the line x = 0.

The proposed scheme for moving targets extraction is
obvious: form the datacube, take one range slice after another,
perform focusing, separate stationary and moving targets. Al-
ternatively, stationary or moving targets can be removed, data
inverted back to the time domain, and additional processing
performed. The advantage of using Fourier imaging is is also
clear: it is the possibility to use the fast Fourier transform
(FFT).

There is also another attractive possibility to perform the
moving-stationary targets separation offered by this approach.
Since it is supposed there are enough data to form N SAR im-
ages, one may ask if it is possible to reuse a SAR processor
somewhere in the algorithm. Indeed, this is the case. We
call this method an interferometric approximation, since it
resembles radar interferometry. Recall formula 26. It can be
shown, that for or stationary targets, the phase function will
take this form:

ψ(u, d) ≈

−2k

√

x2 +

(

y − u+
d

2

)2

− kd2

4x

−kuu− kdd (36)

In a single-channel SAR system, only one-dimensional Fourier
transform in the u domain is calculated to perform focusing
in the spectral domain. The same approach will be taken
here. An approximate solution for the Fourier integral of a
complex function exp(jψ) in u domain, where ψ is given
by equation 36, will be shown. The aim is to see whether
the result contains the focusing phase function used in con-
ventional SAR processing. Before the start, yet again some
manipulations to ease the calculations. Substitute v = u−d/2:

ψ(v, d) ≈

−2k

√

x2 + (y − v)2 − kd2

4x

−ku
(

v +
d

2

)

− kdd (37)

We wish to evaluate the following integral

S(ku, d) =

∫

∞

−∞

eψ(v,d) dv (38)

As before, the method of stationary phase will be used. Partial
derivative ∂ψ/∂v = 0 produces

ku =
2k(y − v)

√

x2 + (y − v)2
(39)
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By the same way as before, the following phase function is
found

ϕ(ku, d) = −x
√

4k2 − k2
u − ku(y + d/2)

−kdd−
kd2

4x
(40)

Not only the first term is known and can be removed, it
is also used for SAR image formation via spherical wave
decomposition and spatial Doppler phenomenon [5]. The first
two terms represent the model used for bi-static SAR in [4,
chapter 8].

After deduction of phase terms related to SAR processing:

ϕ(ku, d) = −kuy − kdd−
kd2

4x
(41)

The integral

S(ku, kd) =

∫

∞

−∞

eϕ(ku,d) dd (42)

will again be solved by calculating

∂ϕ

∂d
= 0

That will give

d =
−2xkd
k

(43)

Substituting d back into 41 yields:

ϕ(ku, kd) = −kuy +
k2
dx

k
(44)

Removing the second term in this expression, one again
obtains a linear phase function dependent on ku only.

This analysis suggests the following approach: Focus a
SAR image recorded by each sensor, shift it d/2 relatively
to the transmitter, take the Fourier transform with respect to
d for each range slice, multiply with the reference function
exp(−k2

dxp/k), and take the inverse Fourier transform with
respect to d. This will again produce focused stationary targets
located at one line x = 0 and moving target signatures located
off that line. Accuracy of this approximation is treated by
means of numerical experiments in section IV.

IV. SIMULATIONS

Simulations were performed to test some of the findings
from section III. The parameters of all simulations, unless
stated otherwise, were as follows: ωc = 2π109 rad/s, L =
30 m, xp = 1000 m, D = 120 m, M = 256, N = 256, vr =
100 m/s, vx = −1 m/s, vy = 5 m/s The size of an imaged
area was 50x50 meters. High numbers of samples and large
apertures were chosen to comfortably demonstrate all prop-
erties of the solutions. Stationary and moving target models
from equations 1 and 25 were used in all simulations. Figures
labeled ’interferometric approximation’ were created using the
interferometric approximation presented in subsection III-C.
To create the rest of the figures, focusing scheme expressed
by equation 21 was applied.
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Fig. 3. Point spread function.

−25 −20 −15 −10 −5 0 5 10 15 20 25
−25

−20

−15

−10

−5

0

5

10

15

20

25

X axis [meters]

Y
 a

xi
s 

[m
et

er
s]

Fig. 4. Point spread function, interferometric approximation.

A. Point spread functions

Figures 3 and 4 show point spread functions of a single
stationary target located in the center of the imaged area
(broadside). The range migration effect as described in sec-
tion II, occurs when signal of a target located in a range cell p
leaks into the neighboring range cell p−1. To test the influence
of range migration, it was supposed that a target was located
100 m further than its actual position. Please note that given
other parameters of the simulation, this could be considered
an extremely large and unrealistic value. It was chosen in
order to demonstrate the effect visibly. One can see that range
migration has a negative impact on the point spread function
shape which is now wider with higher level of sidelobes.
The result is in figure 5. Figure 6 shows what happens when
aperture D is halved. As expected, one observes a signature
that is more spread in x direction. Since this direction indicates
targets with nonzero velocities, the velocity resolution is now
coarser.

B. Focused images

In figure 7, a case of ten stationary and one moving target is
depicted. As predicted, stationary targets appear on a vertical
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Fig. 5. Point spread function with range migration 10%.
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Fig. 6. Point spread function with reduced aperture D = 60 m, interfero-
metric approximation.

line in the center of images x = 0. The moving target is shifted
due to its cross-track velocity vx and slightly de-focused due
to its along-track velocity vy .

V. CONCLUSIONS

An approximate analytic solution to the multi-
channel SAR MTI/MTD problem was presented. It was
demonstrated that a combination of a SAR and MTI processing
techniques is possible. Thus, one can reuse existing software
and hardware used in SAR imagery. Hence, it is advantageous
to design one multichannel SAR system, rather than two
separate MTI and SAR systems or a system operating in
multiple modes.

It follows from the approach taken that the separation
scheme does not depend on a spatial or power distribution
of the targets, but merely on their velocity. This means that
under conditions defined here, moving targets can always be
extracted and their detection depends only on the resolution
of a system, given by its point spread function, and additional
noise in the system, such as thermal noise. This is one of the

major advantages of the Fourier approach in this case, for it
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Fig. 7. Focused image, stationary and moving targets.

clearly demonstrates capabilities of a multichannel SAR sys-
tem to perform optimal separation without using advanced
stochastic approaches.

Thanks to Fourier approach to the solution of this problem,
it is also evident that the larger the aperture, the better the
resolution, as clearly demonstrated by the simulations. High
resolution Fourier focusing is possible in the u domain because
synthetic aperture L can be made sufficiently long. Actually,
it was one of the goals to take the advantage of this fact.
The problem is in the d domain. The aperture of a phased
array D is physically limited and one indeed needs to use
some high resolution spectral estimators, rather than power
spectrum obtained by FFT.

However, the use of a larger aperture L reduces the problem
into having to perform a high-resolution Fourier transform
in one dimension only. Such approach is called post-Doppler
processing in STAP literature [1], [3]. The processing power
reduction is tremendous when using this approach; a size of
a covariance matrix featured in most high-resolution spectral
estimators reduces from MxNxMxN to MxN .
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