
Experience Based Surface Discernment by a
Quadruped Robot

Lars Holmstrom∗†, Andrew Toland∗‡, and George Lendaris∗§
∗NW Computational Intelligence Laboratory, Portland State University Portland, OR 97201

†larsh@pdx.edu ‡aht@pdx.edu §lendaris@sysc.pdx.edu

Abstract— The task of autonomous surface discernment by
an AIBO robotic dog is addressed. Different surface textures
(plywood board, thin foam, short carpet, shag carpet) as well
as different inclines (0 and 10 degrees) are considered. Using a
genetic algorithm, gaits are designed which allow the robot to
traverse each of these surfaces in an (approximately) optimal
fashion. Frequency domain analysis of actuator readings from
individual leg joints is performed for data collected using each
gait on each surface type. It is found that the spectral content of
these signals is significantly dependent on the characteristics of
both the gait in use and the surface being walked upon. Using
tap-delay Adaline neural networks to integrate actuator readings
from 15 independent joints into a set of models of different
gait/surface experiences, an algorithm is designed which uses
these experiences to yield high classification rates across surface
transitions and with low latency.1

I. INTRODUCTION

Biped and quadruped locomotion is a feat that has proven
difficult to reproduce in a robotic medium. Even a seemingly
simple task such as designing a four-legged robot that can
walk efficiently across a flat, smooth surface is a daunting
engineering challenge. At a first glance, this task may seem
simple because we humans are so adept at it. Not only can we
walk across a smooth surface, but we can run, skip, hop, or
jump. We can modify each of these gaits to optimize certain
qualities such as speed, energy expenditure, smoothness, or
stability. Furthermore, we can do all of this in real-time
on a surface that has continually changing qualities such as
penetrability, friction, incline, and even obstacles.

When framing the task of robotic gait selection as a
constrained optimization problem, one can consider both in-
ternal and external constraints. Internal constraints include
the robot’s mechanics, the range of available controls, and
locomotion optimality criteria. External constraints include
surface qualities and obstacles that must be accounted for in
the optimization procedure. Together, these constraints define
the problem context. Sometimes, certain aspects of the context
must be discerned as part of the decision/control process. This
is true of gait selection, where discernment of surface qualities
is a key requirement for an autonomous robot intending to
operate efficiently over a range of external environments.

From an engineering perspective, context discernment can
be framed as a system identification problem, where the goal
is to estimate selected model parameters that are relevant to
the design or selection of a control policy for the system.

1This work was partially supported by NSF Grant ECS-0301022

The Kalman Filter has famously been applied to the context
discernment problem for systems whose dynamics can be
described with a linear or linearizable state based model
[1][2]. We propose, however, that context discernment can
be addressed/enhanced by the accumulation of an intelli-
gent agent’s experience with its environment. Adaptive Critic
Reinforcement Learning methods [3] have previously been
applied to explore experience based context discernment in
toy problems [4][5][6]. While this paper does not explore the
learning phase of the autonomous accumulation of experience,
it does show how experience can be leveraged in a real world
robotic application for the task of context discernment.

This paper describes a surface discernment process for a
quadruped robot. The range of surfaces considered includes
four flat (zero inclination) surface types: plywood board, thin
foam, short carpet, and shag carpet. In addition, a discernment
task between a flat plywood board and inclined plywood
board (inclined 10 degrees) is considered. A genetic algorithm
(GA) was used to generate gaits (one per surface type and
inclination) that allow the robot to traverse these surfaces in an
(approximately) optimal fashion, as defined by our optimality
criteria.

The robot used is a Sony AIBO ERS-7. This robotic
platform was chosen primarily due to its ubiquity within the
scientific community and the availability of open-source devel-
opment tools. Due to the relatively small size of this robot, the
performance of any individual gait differs substantially over
the range of surface types considered in the experiments. In
order to navigate across these surfaces in an (approximately)
optimal fashion, it is necessary to reconfigure the walking
behavior as new surfaces are encountered. Because of this,
surface discernment by the AIBO is critical if it is to achieve
(reasonably) optimal performance as it transitions from one
surface type to another.

Researchers have explored various forms of surface clas-
sification for mobile robots. For example, in the case of an
autonomous wheeled vehicle, stereo visual imaging and single-
axis ladar imaging has been used for long and short distance
obstacle detection (respectively) and terrain classification [7].
For legged robots, the legs themselves have been used as
probes for sensing material properties like penetrability, fric-
tion, and surface roughness while walking; these attributes
have been measured using specialized sensors in a robotic
leg-ankle-foot system [8]. Surface classification for the Sony
AIBO has been addressed by statistical classification of read-
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ings gathered from the AIBO’s internal accelerometers [9]
and through the use of acoustic cues [10]. In one of Sony’s
bipedal robots, the QRIO, surface conditions and slope are
determined using four pressure sensors in the sole of each foot
to gather data on the amount of force being received from the
walking surface. This allows the QRIO to adjust to disparities
in elevation up to 1 cm, and slopes up to 10 degrees.

It is compelling to pursue the idea put forth in [8] that
information about surface characteristics can be gathered by
the very legs providing the locomotion. While visual and other
contextual information (weather, time of year, past experi-
ences) may provide valuable data for the classification task,
physical contact with the surface itself provides the final word.
In general, it would not be desirable to require a special gait
for the purpose of probing the surface; it would be significantly
better if the necessary information could be gathered through
the normal walking behavior of the robot (gaits optimized for
locomotion, not for surface discernment). This complicates
the classification task, since surface discernment becomes
dependent on the current gait in use. The approach used for
the QRIO is not possible with the AIBO because the AIBO
has only one pressure sensor on each foot and this sensor only
records binary data (on/off). On the other hand, for the AIBO,
continuous readings can be gathered from the 15 joint sensors
within the dog (3 for each leg and 3 for the head).

Through spectral analysis of measurements from these
sensors, it is shown that there is statistically significant in-
formation buried within these signals relevant to the surface
discernment task. Because of non-stationarities in these signals
due to surface irregularities (carpet pile directions, seams, etc.)
and the dynamics of locomotion (swaying, jerking, etc.), it is
necessary to incorporate considerable periodogram smoothing
and lengthy periods of data collection (∼60s) to perform the
surface discernment task using features derived from spectral
estimation alone. Since the goal is to be able to quickly
(∼3-5s) identify new surfaces as they are encountered, this
approach is unacceptable.

To overcome this complication, tap-delay Adaline neural
networks were used to model the dynamic experience of
each joint for each gait/surface combination, resulting in
an integrated model of the gait/surface experience. Surface
classification is then performed by seeing which gait/surface
model provides the best fit. With this novel approach, high
classification rates (92-100%) are possible in a much shorter
period of time (∼1-4s).

II. METHODOLOGY

A. The Development Environment

The interface to the AIBO was implemented using the
Tekkotsu framework; an open-source AIBO software develop-
ment platform designed at Carnegie Melon University [11].
The default Tekkotsu gait has the AIBO walking on its
forearms with its hind legs fully extended. This gait is popular
because it is stable, relatively fast, and works on different
surface types. Furthermore, the showcase for autonomous
AIBO development is the Robocup, where teams of AIBOs

compete in a soccer-like game. This gait is tailored to this
competition, where being low to the ground is useful for
trapping the ball. This gait was used as a starting point in
the experiments reported here for developing more optimal (as
defined through our criterion function) surface-specific gaits.
Tekkotsu provides a set of Java classes which allow wireless
communication with the AIBO from a remote computer.
Additional Java classes and Matlab scripts were written to
initiate the desired gait, collect the joint sensor readings, and
perform the surface discernment task.

B. Gait Generation

The primary focus of this paper is surface discernment using
a range of gaits optimized for locomotion on specific surfaces
- not the generation of the gaits themselves. In brief, the
goal was to generate one gait for each surface type which is
(approximately) optimal with respect to locomotion (the crite-
ria function considered both gait speed and smoothness). We
used a genetic algorithm (GA) to search the highly non-linear
and multi-dimensional space defined by the gait parameters
available in the Tekkotsu framework [12][13]. The process
involved 30 individuals per generation and 6 generations,
with Generation 0 representing the AIBO default walking
parameters plus a normally distributed random number. This
method found gait parameter values for each surface resulting
in a significant improvement over the performance of the
default Tekkotsu gait.

C. The Data

Sensor data was gathered from each of the 15 joint sensors
on the AIBO (3 for each leg and 3 for the head) while
traversing each surface using each gait. Four surface types
were chosen for the experiment: plywood board, thin foam,
short carpet, and shag carpet. Four gaits (the ones generated
through the GA) were also considered. Due to physical space
constraints, each data collection run could span only 15
seconds. In order to balance the need for data and the cost
(time) of collection, 10 data realizations were collected for
each gait/surface combination.

The maximum sample rate for sensor data collection using
Tekkotsu is 31.25 Hz (the actual sample rate for the AIBO
is 125 Hz). To complicate our task at hand, it was found that
there is a significant amount of jitter present in this sample rate
(up to 1/5 the inter-sample interval). Furthermore, due to limi-
tations in the wireless communication between the workstation
and the AIBO, samples are occasionally dropped. Because of
these irregularities in the data stream, each sample received
from the dog is time stamped before it is sent. Piecewise cubic
Hermite interpolation was performed to resample the signal at
a constant 31.25 Hz. The mean was then removed from each
signal for further processing.

D. Spectral Analysis

A periodogram of the joint actuator signal was calculated for
each realization of each gait/surface/joint combination. Each
periodogram was calculated using a Hamming window (note:
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the use of a non-rectangular window technically makes this a
modified periodogram).

The Welch method for periodogram smoothing was applied
to the joint actuator signal for each gait/surface/joint combina-
tion of each of the N data realizations recorded. In the Welch
method, each realization is divided into K segments of length
L and overlap M . The segment overlap was fixed to be L/2.
The Welch-Bartlett method was then applied by averaging the
N Welch smoothed periodograms.

The upper and lower estimated confidence intervals for the
Welch-Bartlett method are given by

[
R̂

(WB)
x D

χ2
D(1− α/2)

,
R̂

(WB)
x D

χ2
D(α/2)

]
(1)

where R̂
(WB)
x is the Welch-Bartlett smoothed periodogram and

D is the degrees of freedom of a χ2 distribution [14]. For
the Welch-Bartlett method, D is given by 2KN , where N
is the number of realizations, K is the number of segments
per realization used for the calculation of the smoothed Welch
periodograms, and the product KN is simply the total number
of segments whose modified periodograms are being averaged.

The segment length L used for the periodogram calculation
was adjusted with the goal of maximizing the confidence
in these estimates. Because of this, more smoothing was
performed than if the goal had been to minimize, for example,
the mean squared error of the spectral estimation.

E. Actuator Signal Modeling

To model the signal generated by a joint actuator for a
particular gait/surface/joint combination, a tap-delay Adaline
neural network was used resulting in a linear forward predic-
tion model:

x̂(n) =
M∑

k=1

a(k)x(n− k) (2)

where x̂(n) is single step-ahead prediction, [x(n− 1), x(n−
2), ..., x(n − M)] are past values of the signal, a is the
weighting sequence for the model, and M is the length of
the weighting sequence (the model order or number of tap
delays). This simple, linear model was chosen to model the
actuator signals because there is a unique analytical solution
which minimizes the mean squared error (MSE) of the model
over the training set, where MSE is defined as

MSE =
1
N

∑

N

(x(n)− x̂(n))2 (3)

The a which minimizes the MSE is given by the solution to
the normal equations

Ra = d (4)

In the case of the forward linear predictor, R and d are found
in the following manner:

1) Remove the estimated mean of the signal.
2) Extract each M + 1 length sequence out of the length l

signal being modeled and collect them in a (l −M) ×
(M + 1) matrix, P .

3) Calculate R, the (M + 1) × (M + 1) time averaged
correlation matrix of P :

R =
1

l −M
PT P (5)

4) Let R equal the matrix formed by collecting the first
M columns of R. This is the correlation matrix for the
model inputs. Let d equal the (M + 1)th column of R.
This is the correlation vector between the model inputs
and the model outputs.

5) Solve for a in (4), where a = R−1d.
Where r multiple data realizations of length lr are used for
the calculation, the Pr matrices formed from each realization
in step 1) above are stacked on top of each other, resulting in
a composite P matrix with

∑r
i=1(li −M) rows and M + 1

columns. Steps 2-4 are then applied to P to solve for a.

F. Surface Classification

As the AIBO walks on one of the four specified sur-
faces using one of the four specified gaits, we can calculate
the normalized mean squared error (NMSE) of each of the
gait/surface/joint models for each sample period using

NMSEg,s,j(n) =
1

σ2
Xg,s,j

(xg,s,j(n)− x̂g,s,j(n))2

=
1

σ2
Xg,s,j

(xg,s,j(n)−
M∑

k=1

ag,s,j(k)x̃g,s,j(n− k))2

where g is the gait index, s is the surface index, j is the
joint index, ag,s,j are the model coefficients for the {a, j, k}th

model, M is the order of the models, σ2
Xg,s,j

is the variance
of the jth actuator signal using gait g on surface s, and

x̃g,s,j = xg,s,j − xg,s,j (6)

where xg,s,j is the mean of xg,s,j estimated over the model
training data.

By finding the average NMSE over all of the actuator mod-
els for each gait/surface combination, we can get a measure
of the instantaneous NMSE for each gait/surface model using

NMSEg,s(n) =
1
J

J∑

j=1

NMSEg,s,j(n) (7)

where J is the total number of joint actuator signals being
modeled.

To smooth the instantaneous NMSEg,s(n) signals, a moving
average was performed in the temporal domain using

NMSEg,s(n) =
1
N

N−1∑

k=0

NMSEg,s(n− k) (8)

For this experiment, NMSEg,s(n) forms a set of 16 signals
(one for each gait/surface combination). Since this set of
signals indicate levels of fit between the current actuator
recordings of the AIBO and models of actuator recordings for
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the 16 gait/surface combinations, we call this set of signals
the kinesthetic experience, K̂(n), of the AIBO:

K̂(n) ≡ NMSEg,s(n) (9)

The hypothesis driving the classification task is that, for
each given point in time, the gait/surface signal out of the
kinesthetic experience which has the smallest magnitude (the
best fit between current experience and all modeled expe-
riences) will correspond to the gait/surface currently being
experienced. To simplify the classification task further, the
current gait being performed is known, meaning that we only
need to consider the signals from K̂(n) for the gait currently
being employed. The surface classification signal, ŝ(n), is
discretely valued, with possible values corresponding to each
of the surfaces used in the experiment.

G. Model Calibration

In order to generate the kinesthetic experience K̂(n) result-
ing from a stream of actuator data collected from the AIBO,
the values of two meta-parameters had to be determined. These
parameters are the number of delay taps M given in (2), and
the number of samples N used in (8) to smooth NMSEg,s(n).

Values for these parameters were found empirically using
a holdout cross-validation technique. For each gait/surface
combination, 8 of the 10 data realizations were used in the
calculation of the model parameters. These models were then
used to calculate K̂(n) for the remaining 2 data realizations.
From K̂(n), the time dependent surface classification, ŝ(n),
was calculated. ŝ(n) was then compared to s(n), the actual
surface signal, in order to calculate the classification rate.
Since the classification algorithm requires M +N +1 samples
of the joint actuator data to make a decision, a data realization
of length l from the dog will result in l −M −N individual
classifications.

For the model parameter search, values of M ranged from
1 to 40, in steps of 1, and values of N ranged from 5 to
300 in steps of 5. A balance was sought which had a high
classification rate (our primary performance criteria) yet small
values of M and N , since not as many consecutive samples
are required for each sample of ŝ(n), which would provide
for faster classification during surface transitions.

III. RESULTS

A. Spectral Analysis of Joint Actuator Data

Fig. 1 shows the results of the spectral analysis of the left
hip joint actuator data while walking on the four flat surface
types considered in this experiment. Only the gait optimized
for use on the thin foam surface was considered for this
figure. The top panel shows the periodogram estimates along
with their 95% confidence intervals after 6 seconds of data
collection. As can be seen, there is substantial overlap of the
confidence intervals over the full frequency range considered.
The bottom panel shows the same calculation after 60 seconds
of data collection. In this case, there is little or no overlap of
the 95% confidence intervals at the third harmonic peak (at
∼4.5 Hz). This gait/joint combination was chosen because the

Fig. 1. Welch-Bartlett smoothed periodogram of the left hip joint actuator
while walking on each of the four surface types. Note:∼60 seconds of actuator
data is required to reduce the 95% confidence intervals of the estimations to
the point of little or no overlap.

spectral analysis indicated the least amount of overlap of the
calculated confidence intervals, indicating that it may provide
useful information for surface classification.

B. Flat Surface Classification

The first classification task is to discern which of the 4 flat
surface types is being traversed when using any of the 4 gaits
designed for these surfaces. Classification rates of 100% on
the holdout set are possible for appropriate choices of M and
N , but this level of performance requires at least 10 seconds
of data collection. A combination where M = 21 and N =
100 was chosen which resulted in a 92% classification rate
on the holdout set and required just under 4 seconds of data
collection.

Using the M = 21, N = 104 configuration, Fig. 2 shows
K̂(n) using the gait designed for the thin foam surface while
traversing across each of the four surface types. Similar plots
can be generated for each of the other gaits. The error signal
corresponding to the thin foam gait and the particular surface
being traversed is indicated by the weighted black line. In
each of these cases, this error signal is also the minimum at
each time step, indicating perfect classification. The data used
in this example belonged to the holdout set (was not used in
training the models used in the calculation of K̂(n)).

K̂(n) was also calculated for experiments where the AIBO
traversed across surface type transitions while remaining in
a fixed gait. Fig. 3 shows the results of a typical test where
the gait designed for the short carpet was used as the AIBO
transitioned from the short carpet to the shag carpet. The
top pane of the figure shows K̂(n), comprised of the NMSE
signals generated by models of each gait/surface combination.
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Fig. 2. bK(n) while traversing across each of the four surface types using the
gait designed for the thin foam surface. Note: the error signal corresponding
to the actual gait being used and surface being traversed is the minimum in
each of these cases, indicating perfect classification.

The middle pane shows a rescaled version of the same data to
make it easier to see the details of the two signals of interest
(one corresponding to the initial gait/surface combination
and one corresponding to the gait/surface combination after
the surface transition). The lower pane of the figure shows
ŝ(n), the surface classification signal. As can be seen, correct
classification of the transition occurs within 2 seconds of the
time of transition. Here, the time of transition is the point at
which all 4 legs of the AIBO are in contact with the second
surface type.

C. Incline Surface Classification

The second classification task is to discern whether the
AIBO is traversing across a flat or inclined surface, while using
either the flat surface or inclined surface gait. A combination
where M = 2 and N = 30 was chosen which resulted in a
99% classification rate on the holdout set and required just 1
second of data collection.

Using the M = 2, N = 30 configuration, Fig. 4 shows
K̂(n) for the AIBO using each of the two gaits (flat and
incline) on each of the two surfaces. The error signal cor-
responding to the particular gait being used and surface being
traversed is indicated by the weighted black line. In each of
these cases, this error signal is also the minimum at each time
step, indicating perfect classification. The data used in this
example belonged to the holdout set.

Fig. 5 shows the results of a typical test where the gait
designed for the flat surface was used as the AIBO transitioned
from the flat to the inclined surface. The top pane of the figure
shows K̂(n), comprised of the NMSE signals generated by
models of each gait/surface combination. The lower pane of
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Fig. 3. Top Pane: bK(n) for the transition from short carpet to shag carpet
using the gait designed for the short carpet. Middle Pane: magnified view
of bK(n) to make visible the crossover of the two signals used to make the
classification. Bottom Pane: the classification signal, bs(n). Note: the new
surface is correctly classified about 2 seconds after the transition.

the figure shows ŝ(n), the surface classification signal. As can
be seen, correct classification of the transition occurs within 1
second of the time of transition Again, the time of transition
is the point at which all 4 legs of the AIBO are in contact
with the second surface type.

IV. DISCUSSION

Several things were learned from the spectral analysis phase
of this experiment. First, as exemplified in Fig. 1, there is
statistically significant information present in the estimated
spectrum of the joint sensors relevant to the task of surface
discernment. A number of approaches were attempted which
made use of the peak estimated power spectral densities
(PSDs) of these signals directly. The most promising and
successful attempts were based on clustering algorithms, such
as Learning Vector Quantization (LVQ). Using LVQ and
spectral estimates of the harmonic peaks from all 15 joints,
it was possible to achieve classification rates approaching
80% on the holdout data. These classification rates were only
achievable after 20 or more seconds of data collection - an
unacceptable period of time for the classification task.

Some of this can be blamed on hardware and software
constraints. The slow on-robot sampling speed (31.25 Hz) was
exacerbated by the presence of significant jitter (deviations
from a constant sampling rate) in the joint sensor readings and
occasional missed samples. These obstacles may have been
surmountable if not for the presence of non-stationarities in
these signals due to surface irregularities (carpet pile direc-
tions, seams, etc.) and the dynamics of locomotion (swaying,
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Fig. 4. bK(n) calculated for each of the two gaits (flat/incline) on each of the
two surfaces (flat/incline). Note: the error signal corresponding to the actual
gait being used and surface being traversed is the minimum in each of these
cases, indicating perfect classification.
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Fig. 5. Top Pane: bK(n) for the transition from a flat surface to an
inclined surface using the gait designed for the flat surface. Bottom Pane:
the classification signal, bs(n). Note: the new surface is correctly classified
within 1 second of the transition.

jerking, etc.). This created a large amount of variance in
the PSD estimates (bad for clustering algorithms) that only
excessive periodogram smoothing could address (requiring
long periods of data measurement). Similar problems were
encountered when using parametric approaches for spectral
estimation (e.g. using a Kalman filter to estimate time varying
parameters of an autoregressive signal model).

To overcome the problems inherent in parametric or non-
parametric estimation, we opted to avoid the on-line estimation
task completely, and instead chose to leverage the past experi-
ences of the AIBO. Tap-delay Adaline neural networks were
used to model the dynamic experience of each joint for each

gait/surface combination, resulting in an integrated model of
the gait/surface experience. With this approach, given a short
history of signal data, we don’t need to estimate the spectrum
of the signal or estimate the signal model parameters. Instead,
we determine which modeled experience is the best fit, on
(moving) average. This has the benefit that when unpredictable
“events” occur, such as stepping on a seam in the shag carpet,
nearly all of the gait/surface models are affected similarly.
For example, the middle pane of Fig. 3 shows such an event
at ∼17 seconds. Even though the prediction errors for all of
the models changed drastically at this point, the classification
(shown in the bottom pane) was steady throughout. Using this
approach, classification rates higher than 92% (for the 4 gait
/ 4 surface task) were achievable in as little as 4 seconds.

This paper suggests an obvious research direction - to
explore the real-time selection of optimal gaits as new surfaces
are encountered and discerned by the robot. Initial experi-
ments have been performed using the discrete gait/surface
combinations outlined in this paper with promising results.
Furthermore, we are exploring extensions to the methods used
here to enable our robot to classify previously un-encountered
surfaces and to generate an (approximately) optimal gait for
this new surface by generalizing among previous gait/surface
experiences and dynamically adding to the experience repos-
itory. We believe that efficient accumulation and exploitation
of experience is central to these efforts.
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