
OPPOSITION-BASED WINDOW MEMOIZATION FOR MORPHOLOGICAL ALGORITHMS

Farzad Khalvati 1, Hamid R. Tizhoosh 2, Mark D. Aagaard 3

1,3 Department of Electrical and Computer Engineering
2Department of System Design Engineering

University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada

ABSTRACT
In this paper we combine window memoization, a per-

formance optimization technique for image processing, with
opposition-based learning, a new learning scheme where the
opposite of data under study is also considered in solving
a problem. Window memoization combines memoization
techniques from software and hardware with the repetitive
nature of image data to reduce the number of calculations
required for an image processing algorithm. We applied
window memoization and opposition-based learning to a
morphological edge detector and found that a large portion
of the calculations performed on pixels neighborhoods can
be skipped and instead, previously calculated results can
be reused. The typical speedup for window memoization
was 1.42. Combining window memoization with opposition-
based learning yielded a typical increase of 5% in speedups.

I. INTRODUCTION

Many digital image processing algorithms are used in
real time applications. The data intensive nature of image
processing, combined with the performance requirements of
real time applications, makes it both crucial and challenging
to optimize the performance of image processing algorithms.
In this paper, we present opposition-based window memo-
ization (OB-WM), a performance optimization technique for
image processing algorithms.

Opposition-based window memoization combines two
concepts: window memoization (WM) and opposition-based
learning (OBL). The main idea behind window memoization
is to decrease the number of unnecessary calculations by
reusing the previously calculated results. Window memo-
ization uses a reuse table to store previously computed
windows and the corresponding results. Subsequent windows
are compared against the reuse table; if a matching window
is found, the previously computed result is reused and the
actual computation is skipped. Opposition-based learning,
introduced by Tizhoosh [1], is a new learning scheme where
the opposite of data under study is also considered in solving
a problem. The opposite of any quantity is de�ned with
respect to the problem at hand. For example, in a set-
theoretical context for image data, opposite of gray-levels
can be de�ned as logical complement of the gray-levels.

Michie [2] introduced the general technique of memoiza-
tion in 1968. In hardware, memoization techniques have been
proposed for microprocessors where the results of previously
executed instructions, functions, or blocks are reused [3],
[4], [5], [6], [7]. However, none of these techniques have
been implemented in a real design yet and thus, the reported
speedups (i.e. 1.15 as a typical speedup) are based on
theoretical results. Handling the dependencies between in-
structions in a program and maintaining the coherency of the
memoization table would require large content-addressable
memory arrays with four or more write ports. The complex-
ity of these memory arrays and the dif�culty of pipelining
them overshadow the theoretical gains in performance [8].

In embedded software, research in memoization has led to
typical speedups ranging from 1.2 to 1.4 [9],[10]. However,
the proposed techniques require detailed pro�ling informa-
tion about runtime behaviour and transform the program to
a new code that bene�ts from the value locality of data.

We chose morphological gradient as our case study since
gray-scale morphological algorithms are vastly used in many
applications. Optimizing the morphological algorithms is an
ongoing research and many techniques have been proposed
in this regard. For instance, for morphological algorithms
that use �at (single-value non-zero) structuring elements
(SEs), ef�cient algorithms have been presented in [11].
Moreover, researchers have been working on decomposing
arbitrary non-�at (non-uniform) SEs to 3 × 3 bases to
improve the performance [12], [13]. Regarding that several
techniques have been proposed to decompose SEs to 3 × 3
size, our goal is to improve the performance of the morpho-
logical algorithms that use 3 × 3 non-�at SEs.

The 3 × 3 non-�at SEs contain up to 9 operands (one
for each pixel used in the calculations). This large number
of operands decreases the probability of having repeating
windows, which leads to low reuse rates and makes it
dif�cult to look up a result in the reuse table quickly.

After studying the characteristics of typical images and
the behavior of morphological algorithms, we developed a
lookup technique that uses multi-thresholding to increase
the reuse rate with an insigni�cant loss of accuracy in the
resulting image. The lack of data dependencies between
morphological gradient operations guarantees that the reuse

425

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

1-4244-0707-9/07/$25.00 ©2007 IEEE

table remains coherent, which allowed us to optimize the
reuse table. The reuse table is a form of a hash table, and
so requires the computation of a hash key to look up a
result. We decreased the time required to look up a result
by updating the hash key incrementally as the convolution
mask moves across the image, rather than computing an
entirely new key for each window. We also bene�ted from
the concept of opposite window to improve the performance
further. We de�ne the opposite of each window based on
the SE used. By having a window and its response to the
mask, the mask response for the opposite window will be
known without a need for performing the mask operations.
This leads to further decrease in the number of calculations
required for the algorithm and hence, higher speedup is
gained. We evaluated the performance for 52 natural im-
ages of 512×512 pixels. In almost all cases, we achieved
signi�cant speedups while the error in the results was so
small that it could not be detected by the human eye.

The outline for the rest of the paper is as follows: In
section II, we propose a detailedness algorithm. Section III
presents an overview of morphological gradient. In section
IV, we present window memoization. In section V, we
discuss how we extend window memoization to exploit
opposition-based learning scheme. Finally, we present the
conclusion and future work in section VI.

II. IMAGE “DETAILEDNESS”

To analyze the speedups achieved for different images, we
classify images based on their complexity. The classi�cation
will give us an estimation of performance gain for an image,
before applying the performance improvement technique
on the image. In addition, it may help us customize the
performance improvement technique for individual classes
of images. We present an algorithm that calculates how
complicated (or detailed) an image is. For a given image, the
algorithm generates n×n seed pixels spread across the im-
age, which are in equal distances (horizontally and vertically)
far from each other. Four derivatives are calculated on 3×3
neighborhoods around each seed pixel and the percentage of
the instances that the maximum value of the four derivatives
is larger than a threshold, ε, is calculated. The �nal result of
the algorithm for an image is a number between 0 (the least
detailed) and 100 (the most detailed) indicating the level
of complexity of the image (η). We have experimentally
determined n and ε to be 102 and 15, respectively. Table
I shows the detailedness algorithm.

Figure 1 shows the results generated by applying the
algorithm to extreme cases. As it is seen from the �gure, the
algorithm generated η = 1% and η = 90% as the indicator
of image detailedness for the very simple and complicated
images, respectively. We veri�ed that the detailedness algo-
rithm produces intuitively reliable results by applying the
algorithm on different natural images and demonstrating the
results to 5 observers. The proposed detailedness algorithm

Table I. Algorithm for calculation of detailedness

1. input an image ’I’
2. initialize counter k
3. generate n × n seed pixels, which are σ pixels
(horizontally and vertically) far from each other
4. for each seed pixel at (i,j) calculate:

Δ1 = abs(I(i − 1, j) − I(i + 1, j))
Δ2 = abs(I(i, j − 1) − I(i, j + 1))
Δ3 = abs(I(i − 1, j − 1) − I(i + 1, j + 1))
Δ4 = abs(I(i − 1, j + 1) − I(i + 1, j − 1))

5. Δmax = max(Δ1, Δ2, Δ3, Δ4)
6. if Δmax > ε, then increment k
7. calculate detailedness η: η = k

n2 × 100%

has been designed for natural images. It is possible to achieve
counter-intuitive detailedness rates by applying the algorithm
to some synthetic images with speci�c patterns aimed to
defeat the algorithm. An example would be an image that
contains alternating black and white lines, which would have
a detailedness of roughly 100%, but could be viewed as
having very little complexity or detail.

Fig. 1. Detailedness algorithm results for extreme cases: a.
A simple image: η = 1% b. A complicated image: η = 90%

Using the detailedness algorithm, we are able to classify
the images based on the level of variation of the gray levels.
We will use this classi�cation in analyzing our proposed
performance improvement techniques in upcoming sections.

As input images for our simulations, we have randomly
chosen 52 different images of 512×512 pixels and run
the detailedness algorithm. The results for detailedness are
between 1.38% and 77.65%. Figure 2 shows the distribution
of the images over detailedness.

Table II. Detailedness classes of low, medium and high for
52 images

Class range of η Average η images
Low η < 17% 9% 11

Medium 17% ≤ η < 55% 38% 34
High η ≥ 55% 66% 7

To categorize the images, we calculated the average de-
tailedness minus/plus the standard deviation as two boundary
points, which gave us 17% and 55%, respectively. As a
result, all the images with detailedness below 17% were
categorized as class Low. Class Medium contains the images

426

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

Detailedness (%)

D
is

tr
ib

u
ti

o
n

HighMediumLow

avg

avg − stdv

avg + stdv

Fig. 2. Images distribution over detailedness

Fig. 3. Left to right: low, medium and high detailedness

with detailedness between 17% and 55% and �nally, class
High includes the images that have detailedness higher than
55%. Table II shows the range of detailedness, average
detailedness and number of images in each class of de-
tailedness. Figure 3 shows typical images for each class of
detailedness.

III. GRAY-SCALE MORPHOLOGY

In this section, we brie�y review the two basic mathe-
matical operators of gray-scale morphology: Dilation (grows
image regions) and Erosion (shrinks image regions). These
two operators are fundamental building blocks for gray-
scale morphology, based on which many morphological
algorithms have been developed. Let f(x, y) and k(x, y) be
input image function and SE function, respectively where
f : Z2 → Z and k : Z2 → Z. Gray-scale dilation, denoted
by f ⊕ k is de�ned as [14]:

(f ⊕ k)(x, y) = max{f(x − s, y − t) + k(s, t)
|(x − s), (y − t) ∈ Df ; (s, t) ∈ Dk} (1)

Gray-scale erosion, denoted by f � k is de�ned as [14]:

(f � k)(x, y) = min{f(x + s, y + t) − k(s, t)
|(x + s), (y + t) ∈ Df ; (s, t) ∈ Dk} (2)

where Df and Dk are the domains of f and k, respec-
tively. The morphological gradient is computed as:

g(x, y) = (f ⊕ k)(x, y) − (f � k)(x, y). (3)

In this paper, we consider non-�at 3 × 3 SEs.

IV. WINDOW MEMOIZATION TECHNIQUE

In this section, we present window memoization technique
without considering opposite windows. The main idea be-
hind window memoization is that if a calculation has been
performed on a pixel neighborhood (window) then when
we encounter an identical window in the future, we can
reuse the previously computed result. The goal is to increase
performance by reducing the total number of calculations
that are performed on an image. To maximize the perfor-
mance improvement, we want to maximize the percentage of
windows that are able to reuse previously computed results
(reuse rate) and minimize the cost of reusing a result.

As with memoization techniques in software or hardware,
window memoization uses a memory array (reuse table (RT))
to store the neighborhoods and their results after performing
the calculations. As shown in Figure 4, pixels of each new
window are compared to the pixels stored in the reuse table.
If the new window matches a window stored in the reuse
table (hit), the result is looked up from the reuse table and
the calculations for the new window are skipped. Otherwise
(miss), the calculations are performed on the new window
and the reuse table is updated with the produced result.

Read image

Create window

Look up
result from
reuse table

Hits=Yes

Perform
calculations

Hits=No

Update
reuse table

Output

Check
 reuse
 table

Fig. 4. Flowchart of window memoization

Each reuse table element contains three �elds: valid bit,
full-key and result. The valid bit indicates whether the data
stored in this address is valid. The full-key represents the
stored neighborhood. Finally, the outcome of applying the
mask operations to the window is stored in the result �eld.
To make full-key unique for each window of size n × n in
the image, we shift and OR the pixels in the window such
that they build a 8 × n × n bit number (8 bits per pixel).
Table III shows the window memoization algorithm.

RT-size is the size of reuse table, ‘� n’ represents an
operator that shifts the operand n-bits to the left, and ’OR’
is a logical or. To gain better performance for window
memoization, it is crucial to speed up the lookup operations.
To generate the full-key for each window faster, we bene�t
from the overlap between the neighboring windows to build
the full-key incrementally as the convolution mask moves

427

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

Table III. Algorithm for Window Memoization

1. input an image ’I’
2. initialize full-key
3. create n × n window, W
4. update full-key:

for each pixel W(i,j) in the window calculate:
full-key = (full-key � 8) OR W(i,j)

5. calculate the hash-key:
hash-key = mod (full-key, RT-size)

6. if RT[hash-key].valid = 0; go to 9
7. if RT[hash-key].full-key �= full-key; go to 9
8. look up the result:

result = RT[hash-key].result; go to 3
9. apply mask operation on W
10 update reuse table:

RT[hash-key].result = result
RT[hash-key].full-key = full-key
go to 3

across the image.
For every window, another key (hash-key) is produced by

the hash-key generator by calculating the remainder of the
full-key divided by the size of the reuse table. The hash-
key is used as an address to the reuse table. Whenever a
new neighborhood is available, the full-key is compared
to the related �eld of the reuse table where the hash-key
points to. If they match, the result is looked up from the
table. Otherwise, the mask calculations are performed on
the original window (i.e. with 256 gray levels) and the
corresponding location in the hash table is updated with the
new full-key and result.

With a naive matching algorithm, the reuse rate will be
low, since it is unlikely that a window of pixels will exactly
match a previously encountered window. We increase the
reuse rate through multi-thresholding: rather than require that
the pixels match exactly, we reduce the number of gray levels
of the windows when doing the comparison. Decreasing
the precision of the match (using fewer gray levels when
comparing pixels) increases the reuse rate and thereby the
performance but at the potential cost of producing incorrect
results. The fewer the gray levels used in testing for a match,
the greater the probability that the matching result found in
the reuse table will differ from the actual result that would be
calculated for the window. To minimize the loss of accuracy,
we reduce the number of gray levels only for matching the
windows; the actual calculations are done with a full range
of 256 gray levels. To apply multi-thresholding to window
memoization, step 4 of the above mentioned algorithms is
modi�ed as shown in Table VI where 2p is the number
of gray levels used for matching and ‘� n’ represents an
operator that shifts the operand n-bits to the right.

To �nd the optimal values for the number of gray levels
for matching and the reuse table size for our technique,
we evaluated the performance and the results accuracy with
respect to different numbers of gray levels for matching (2 to

Table IV. Step 4 of Window Memoization Algorithm (Table
III), modi�ed for multi-thresholding

4. update full-key:
for each pixel W(i,j) in the window calculate:
W ′(i, j) = W (i, j) � 8 − p
full-key = (full-key � p) OR W ′(i, j)

256) and hash table sizes (4 entry up to 64k entry). We found
that using 16 gray levels for comparing the windows leads to
high reuse rates (and thus high speedups) while preserving
the accuracy of the results. Although lower gray levels for
matching results in very high speedups but it increases the
error in the results. Also, our experiments with different
sizes of reuse tables showed that 4K entries is an optimal
size. Smaller reuse tables decrease the reuse rate and thus
the speedup. Although using larger reuse tables increases
the reuse rate, it decreases the actual speedups (larger reuse
tables tend to be located in larger cache memories, which
belong to the lower levels of the cache hierarchy).

We measure the accuracy of window memoization for
an algorithm (e.g. morphological gradient) by comparing
the output image against a reference image calculated by
a conventional implementation of the algorithm (e.g. mor-
phological gradient without memoization). To measure the
difference between two images, we use the misclassi�cation
error (ME , Equation 4). The misclassi�cation error calcu-
lates the percentage of the background pixels that have been
assigned to foreground incorrectly and vice versa [15].

ME = 1 − |BRef ∩ BTest | + |FRef ∩ FTest |
|BRef | + |FRef | . (4)

In Equation 4, BRef and FRef are the reference edge map
background and foreground, respectively; and BTest and
FTest are the background and foreground of the result
produced by window memoization, respectively. For our
simulations, we implemented a morphological gradient based
on an arbitrary non-�at 3×3 SE and we ran the simulations
on a 2GHz Pentium 4 server. The average reuse rates,
accuracy and the corresponding speedups are given in Table
V. In the table, the average elapsed time in millisecond for
morphological gradient without and with window memoiza-
tion technique are shown as T1 and T2, respectively.

Table V. Results for WM for different classes of 512×512
images

Class T1 T2 Speedup Reuse Rate(%) Accuracy(%)
Low 40 17 2.50 92.76 99.90

Medium 46 34 1.42 57.76 99.86
High 49 46 1.17 32.58 99.70

Figure 5 shows the result of morphological edge detec-
tor without memoization (conventional algorithm) and with

428

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

memoization (our algorithm) for sample images.

Fig. 5. Edge maps of sample images generated by conven-
tional algorithm (top) and algorithm with WM (bottom)

V. OPPOSITE WINDOWS

Opposition-Based learning (OBL) scheme was introduced
by Tizhoosh [1] to enhance the learning algorithms by
considering the opposite estimation, opposite weight and
counter-action for the problem under study. For example,
in reinforcement learning, OBL requires that whenever an
agent takes an action, it should take into account the opposite
action and/or opposite state. This shortens the state-space
traversal and accelerates the converge [16]. OBL is de�ned
as follows:
Opposition-based learning: Let f(x) be the function under
study and g(.) be an evaluation function. If x ∈ [a, b] is
an initial guess and x̆ is its opposite value, then in every
iteration both f(x) and f(x̆) are calculated. If g(f(x)) ≥
g(f(x̆)) the learning continues with x, otherwise with x̆. As
an example, the opposite of a number is de�ned as [1]:
Definition: Let x ∈ R be a real number de�ned on a certain
interval: x ∈ [a, b]. The opposite number x̆ is de�ned as:
x̆ = a + b − x.

We would like to extend the window memoization tech-
nique in such a way that it bene�ts from OBL. The goal is
to increase the reuse rate, by considering opposite windows,
whenever the lookup is performed. To improve the speedups
achieved by opposition-based window memoization, it is
necessary to minimize the cost required to calculate the
mask response for the opposite of the window in focus. We
de�ne the opposite of a window from spatial perspective,
which means the opposite of a given window has the same
pixels as the given neighborhood, with different assigned
locations. The idea is that if we know the response of a
mask on a window, we would like to know the response
of the mask on the opposite window without applying the
mask on the opposite window. This will lead to less number
of calculations required by window memoization technique.

The opposite relations is de�ned based on the nature of
the algorithm under study. Opposition can be understood in a

set-theoretical context (opposite gray-levels≡logical comple-
ment), as a directional category (opposite window≡window
with opposite gradient), or in any other meaningful way
(e.g. a homogenous window is the opposite of a noisy/edgy
window). For our case study, which is morphological gra-
dient with non-�at SE, we consider special cases of the
SE function, where the function is symmetric, diagonally,
horizontally and vertically. In each case, we de�ne opposite
window accordingly. For a 3 × 3 SE that is vertically
symmetric, we have: k(s, t) = k(−s, t) where −1 ≤ s, t ≤ 1
and k(s, t) is the corresponding SE function. In this case the
simplest way to de�ne opposite window is such that both the
original window and its opposite gives the same response to
the SE function. This leads to the following de�nition:
Opposite window for vertically symmetric windows: Assum-
ing that W (x, y) is a vertically symmetric window from an
image f(x, y), the opposite window, W̆ (x, y), is de�ned as:

∀i, j (i = x or i = −x) & (j = y) ⇒ W̆ (i, j) = W (x, y)
This means that if we swap either of pixels in top row

with the ones in bottom row along the same column, we
get an opposite window of the original neighborhood. Based
on this de�nition, for each window there are 8 different
opposite windows (3 pixels to exchange: 23). Thus far, we
have de�ned opposite window (W̆ (x, y)) such that for a SE
function, k(s, t) we have:

(W ⊕ k)(x, y) − (W � k)(x, y) =
(W̆ ⊕ k)(x, y) − (W̆ � k)(x, y) (5)

In other words, the morphological gradient gives the same
result to both window and its opposite window. From win-
dow memoization point of view, this means that a hit occurs
when either a window matches the one previously stored in
the reuse table or an opposite window matches the original
window previously stored in the reuse. In other words, for
a given window W and its opposite W̆ , identical full-keys
must be generated, resulting in accessing the same location
in the reuse table for both W and W̆ . Theoretically, this will
increase the reuse rate in comparison to WM without OBL,
and hence the speedup will increase as well. To consider
opposite windows in window memoization, step 4 of the
algorithm in table III is modi�ed as shown in Table VI. In
the table, 2p is the number of gray levels used for matching.

Table VI. Step 4 of Window Memoization Algorithm (Table
III), modi�ed for opposite windows

4. update full-key:
sort each pairs of pixels in top row and bottom row,
W(i,j) and W(-i,j) in the window:

for each pixel W(i,j), in the window calculate:
W ′(i, j) = W (i, j) � 8 − p
full-key = (full-key � p) OR W ′(i, j)

Using this full-key generator, we applied window mem-
oization to morphological gradient, which uses a vertically

429

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

symmetric non-�at SE. We ran the simulations for the same
set of images on the same workstation as for our �rst
simulations. The average reuse rates, the accuracy and the
corresponding speedups are given in Table VII. In the table,
the average elapsed time in millisecond for morphological
gradient without and with OB-WM are shown as T1 and T2,
respectively.

Table VII. Results for OB-WM for different classes of
512×512 images

Class T1 T2 Speedup Reuse Rate (%) Accuracy(%)
Low 40 15 2.80 93.32 99.86

Medium 46 34 1.47 61.36 99.80
High 49 47 1.18 36.61 99.59

As it can be seen from tables V and VII, considering
opposite windows in window memoization has increased
the reuse rate by 0.56%, 3.61% and 4.03% for class low,
medium and high, respectively. The corresponding increase
rates for speedups are: class low: 30%, medium: 5% and
high: 1%. We implemented the OB-WM based on diagonally
and horizontally symmetric SEs. Although we achieved up
to 10% increase in reuse rate, due to implementation cost,
speedups did not improve.

Implementation Issues - We implemented the WM and
OB-WM techniques in C++ to measure the relative perfor-
mance of morphological edge detection with and without the
proposed techniques. We performed inline expansions of the
functions, and maximized the compiler optimization settings.
We observed that reuse rates do not necessarily indicate
the actual speedups obtained in software implementation of
the window memoization technique. The reason is that any
implementation of the technique will require a memoization
mechanism that performs searching, storing and retrieving
the results, which consumes time.

For our results, it is seen that for reuse rates less than
about 15%, the speedup becomes less than 1. To overcome
the performance overhead caused by WM or OB-WM, the
memoization mechanism must be very ef�cient and fast.
Otherwise, the time that it takes to reuse a result will be
longer than the original calculations. Our current version of
memoization mechanism is ef�cient for both WM (for any
non-�at SE) and OB-WM for vertically symmetric SEs.

VI. CONCLUSION

The window memoization technique reveals the fact that
image data locality can be exploited to improve the overall
performance of gray-scale morphological algorithms that use
non-�at SEs signi�cantly with negligible penalty in accuracy.
Using 16 gray levels for matching with 4k entry reuse table,
we obtained speedups of up to 2.84 for 512×512 images.
We also applied OBL, a new learning scheme to window
memoization, which led to speedups of up to 3.38. Window
memoization can be applied to any convolution algorithm

in the spatial domain where identical input pixels produce
the same outputs. However, depending on the complexity
of the algorithms and the results type (e.g. binary or non-
binary), the performance gain and the result accuracy might
not be identical for different algorithms. In future work,
we will probe different hashing functions to improve the
memoization mechanism for both WM and OB-WM. We
will apply the technique to other class of spatial domain
algorithms (e.g. �lters) to investigate the result reuse rate and
accuracy for algorithms that produce non-binary results.

VII. REFERENCES
[1] H. R. Tizhoosh, “Opposite-based learning: A new

scheme for machine intelligence,” in International
Conference on Computational Intelligence for Mod-
elling Control and Automation - CIMCA-2005, 2005,
vol. I, pp. 695–701.

[2] D. Michie, “Memo functions and machine learning,”
Nature, vol. 218, pp. 19–22, 1968.

[3] S. Richardson, “Exploiting trivial and redundant com-
putation,” in 11th Symposium on Computer Arithmetics,
1993, pp. 220–227.

[4] A. Sodani and G. S. Sohi, “Dynamic instruction reuse,”
in ISCA-97, 1997, pp. 194–205.

[5] D. Citron, D. Feitelson, and L. Rudolph, “Accelerating
multi-media processing by implementing memoing in
multiplication and division units,” in ASPLOS-VIII,
1998, pp. 252–261.

[6] J. Huang and D. J. Lilja, “Extending value reuse to
basic blocks with compiler support,” IEEE Trans. on
Computers, vol. 49, pp. 331–347, 2000.

[7] K. M. Kavi and P. Chen, “Dynamic function result
reuse,” in ADCOM-03, 2003.

[8] J. P. Shen and M. H. Lipasti, Modern Processor Design,
McGraw-Hill, 2004.

[9] W. Wang, A. Raghunathan, and N. K. Jha, “Pro�l-
ing driven computation reuse: An embedded software
synthesis technique for energy and performance opti-
mization,” in VLSID-04 Design, 2004, p. 267.

[10] Y. Ding and Z. Li, “Operation reuse on handheld
devices,” in LCPC-03. 2003, vol. 2958 / 2004, pp.
273–287, Springer-Verlag GmbH.

[11] J. Y. Gil and R. Kimmel, “Ef�cient dilation, erosion,
opening, and closing algorithms,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 24-
12, pp. 1606–1617, 2002.

[12] H. Park and R. T. Chin, “Decomposition of arbitrary
shaped morphological structuring elements,” IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 17-1, 1995.

[13] O. I. Camps and T. Kanungo, “Gray-scale structuring
element deomposition,” IEEE Transactions on Image
Processing, vol. 5-1, pp. 111–120, 1996.

[14] R. C. Gonzalez and R. E. Woods, Digital Image
Processing, Prentice Hall, 2002.

[15] M. Sezgin and B. Sankur, “Survery over image
thresholding techniques and quantitiative performance
evaluation,” Electronic Imaging, vol. 13(1), pp. 146,
2004.

[16] H. R. Tizhoosh, “Opposition-based reinforcement
learning,” in Journal of Advanced Computational
Intelligence and Intelligent, 2006, vol. 10, no. 4, pp.
578–585.

430

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

