
Figure 1. The programmable floating-point performance of GPU
(measured on the multiply-add instruction as 2 floating-point
operations per MAD) has increased dramatically over the last four
years when compared to CPUs. Figure courtesy Ian Buck,
Stanford University [10].

Real-Time Image-Based Stylistic Rendering Using
Graphics Hardware Acceleration

Chun-Chung Chiang, Yu-Hung Hsueh and Damon Shing-Min Liu
Department of Computer Science and Information Engineering

National Chung Cheng University, Chiayi, Taiwan
{ ccc93, hyh94, damon } @cs.ccu.edu.tw

Abstract—Silhouette is an important research issue in the
field of Non-Photorealistic Rendering (NPR) and it is also a
popular drawing feature in illustrations and line-drawing
artworks. In this paper, we present a real-time image-based
stylized rendering system. First, we project a 3D model to
image-space. Then we extract edges in the image-space data.
We perform edge-detection algorithms on GPU (Graphics
Processing Units) for speedup. GPU is good at floating-points
calculating and processing with parallelism. Both features
match the property of most image processing tasks. Our system
can run at an interactive frame rate when combining our edge-
detection algorithms with graphic hardware architecture. We
demonstrate that this system performance can reach real-time
and render images in good NPR style.

I. INTRODUCTION

KETCHING is important to express the preliminary
state of a draft, concept, and idea. It describes a drawing

that is not a final, perfect result. In contrast, common
photorealistic renderings cannot communicate ideas,
outlines, and proposals. These photorealistic renderings
reduce one’s ability to rethink enhancement and
modifications.

Image-based processing is very popular in recent NPR
algorithms. The advantage of image-based processing is that
the number of data calculation is less than 3D’s. It can also
take advantage of hardware acceleration. The cost of model
projection is only several read/write operators. The
performance of our image-based system solely depends on
the size of viewport. 3D geometry complexity takes a
negligible effect.

In our system, we first compute the normal buffer of the
3D scene object. Color of each pixel in the normal buffer
represents the normal value of the vertex in the 3D model.
Abrupt changes in normal buffer usually occur at crease
edges. We then evaluate the depth buffer (z-buffer) of the
3D scene object. Similarly, color of each pixel in the depth
buffer represents the depth value of the vertex in the 3D
model. Abrupt changes in the depth buffer often occur at
silhouette edges.

This paper presents a new general purpose rendering
system to perform NPR in real-time. We integrate image
processing technique with a new hardware platform (called

“GPU”) and a stylized rendering.
We use an edge-detection algorithm to find out the abrupt

changes in both of the normal buffer and depth buffer. We
implement the edge-detection algorithm on GPU for
speedup. The edge-detection algorithm has a property of
data independent, and it can calculate faster in graphic
hardware pipeline because GPU is parallel processing.

The performance of graphics hardware increases rapidly
so that the computing power of GPU measured by Giga
Floating Point Operations Per Second (GFLOPS) doubles
almost every year, see as Figure 1. The architectures of
modern graphics hardware allow tremendous memory
bandwidth and provide fast computational power. For
example, ATI X800XT can sustain over 63 GFLOPS
(compared to 14.8 GFLOPS theoretical peak for a 3.7 GHz
Intel Pentium4 SE unit [1]). Due to the extensive
capabilities of the hardware, GPU programming gains lots
of interest. Moreover, high level languages have emerged to
support the new programmability of the vertex and pixel
pipelines. Cg, HLSL, and OpenGL Shading Language are
three most common GPU programming languages which
allow programmer to write GPU programs in a more C-like
language. Many GPU shader programs and techniques are
also available on the Internet. Here we use OpenGL
Shading Language to develop our application.

S

438

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

1-4244-0707-9/07/$25.00 ©2007 IEEE

II. RELATED WORKS

A. NPR

The number of literatures on NPR drawing algorithms is
large including issues of stroke placement and orientation
[8], silhouette tracing [9], and simulations of particular
media [11].

Point-based representation is one of the most used in
NPR drawing algorithms. The representation is used for
models of very high geometric complexity. With a point-
based representation, the surface of a 3D object is described
by a set of sample points without further topological
information such as triangle mesh connectivity. The lack of
topological information leads to simpler and more efficient
rendering, simplification, level-of detail control, and
texturing for very complex models [18].

Recent research in the field of real-time NPR exploits
current graphics hardware. Praun et al. [19] implemented a
technique for real-time hatching of 3D shapes. Freudenberg
et al. [3] developed a similar technique for real-time
halftoning. They made extensive use of the programmable
rendering pipeline and texture blending capabilities of
current graphics hardware. Nvidia presented an image-space
technique to render edges of 3D shapes onto a screen-
aligned quad [2]. It samples adjacent texture values to
process encoded normals and detects discontinuities in the
normal-buffer. ATI extended this approach by detecting
discontinuities in the normal-buffer, z-buffer, and Id-buffer
[15]. This way, edges of 3D shapes, regions in shadow, and
texture boundaries can be outlined [16].

The last decade has seen a blossoming of work on NPR
algorithms in a variety of styles [4]. Much of this work
addresses the production of still images, while some systems
for rendering 3D scenes have addressed the challenge of
providing temporal coherence for animations [17].

Most work in NPR has focused on algorithms that are
controlled by parameter setting or scripting the designer has
no direct control over where marks are made. An inspiration
for our work is the technique for direct WYSIWYG (what
you see is what you get) painting on 3D surfaces proposed
by Hanrahan and Haeberli [6], which is now available in
various commercial modeling systems. These tools let the
designer paint texture maps directly onto 3D models by
projecting screen-space paint strokes onto the 3D surface
and then into texture space, where they are composed with
other strokes. Strokes then remain fixed on the surface and
do not adapt to changes in lighting or viewpoint. In contrast,
strokes in our system are automatically added, removed, or
modified in response to changes in lighting or viewing
conditions [21].

B. GPU-based applications

Recently, programmable GPU has been explored to
enhance the performance. Harris et al. presented a
physically-based, visually-realistic interactive cloud
simulation using GPU [7]. The clouds were modeled using
partial differential equations describing fluid motion,
thermodynamic processes, buoyant forces, and water phase
transitions. Kruger and Westermann introduced a
framework for the implementation of linear algebra
operators on GPU, thus providing the building blocks for
the design of more complex numerical algorithms [13].
Purcell et al. implemented a modified photon mapping
technique which uses breadth-first photon tracing to
distribute photons using the GPU [20].

In the field of particle system, Kipfer et al. presented a
method for simulating particle systems on GPU and
implemented inter-particle collision by quickly sorting the
particles on GPU to determine potential colliding pairs.
Kolb et al. constructed a GPU particle system simulator that
supports accurate collisions of particles with scene
geometry. In it, depth maps were used to detect the
penetrations or collisions by the computation with GPU.
Kruger created a particle system for interactive visualization
of steady 3D flow fields on uniform grids [12]. The entire
process, from vector field interpolation, integration to curl
computation, and finally geometry generation and rendering
of the stream ribbons, is performed by GPU. Work more
related to our system is cloth simulation. Green [5]
implemented a simple cloth simulation that executes on
GPU using fragment programs and float point buffer. Zeller
[22] presented a robust method to simulate cloth on GPU
that includes mesh-cutting techniques. A more complete
survey on a set of GPU-assisted algorithms and systems is
given by Owens [10].

III. METHOD

Our system consists of the following steps.
1. Tracing silhouette edges using depth map.
2. Tracing crease edges using normal map.
3. Using GPU to speedup edge-detection algorithm.
We can consider edges into two kinds.
Silhouette edges: edges adjacent to a polygon which

faces towards the camera and another polygon which faces
backward the camera.

Crease edges: edges between two front-facing or back-
facing polygons whose dihedral angle is above a threshold.
The threshold value defines the number of crease edges.

439

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

A. Tracing silhouette edges using depth map

There are many ways to find out edges. We can roughly
divide them into two kinds: 3D based and 2D (image) based.
Aiming to achieve real-time performance, we conduct both
silhouette and crease edges tracing using image based
approach.

In computer graphics, silhouette edges in image plane is
the collection of points whose outward surface normal are
perpendicular to the view vector. A silhouette edge is also
an edge which separates a front facing face from a back
facing face.

Therefore, traditional method to find out silhouette edges
is to trace all edges in a model to find out edges which
separate a front facing face from a back facing face and that
edges are exactly silhouette edges. This algorithm is not
suitable for real-time system because this algorithm uses
much time to trace each edge in 3D scene and to compare
them. Instead, we capture z-values of the 3D scene into a
high precision depth texture which is called a depth map. In
OpenGL, for example, the depth map can be extracted by
calling glReadPixels() with the
GL_DEPTH_COMPONENT argument. Different gray
values in the depth map represent positions of different
depth. The depth value of background is highest, so that we
can distinguish silhouette edges using abrupt changes in the
depth map.

Access time of a depth map depends on size of viewport.
Smaller size of viewport accesses faster, although larger
size of viewport gets better presentation of the scene. We
choose a 512 * 512 viewport in the experiments.

B. Tracing crease edges using normal map

A problem with using the depth map is that it does not
detect the crease edge. To remedy this shortage, we can use
another method that is similar to the finding of silhouette
edges using depth map. The method uses surface normals to
construct a normal map, which is an image that represents
the surface normal at each point on an object. The values in

each R, G, and B color components of a point on the normal
map correspond to the X, Y, and Z surface normal at that
point.

We first initialize the object color to white, and the
material property to diffuse reflection. We then place a red
light on the X axis, a green light on the Y axis, and a blue
light on the Z axis, all facing the object. Additionally, we
put lights with negative intensity on the opposite side of
each axis. We subsequently render the scene to produce the
normal map. As a result, each light will illuminate a point
on the object with intensity proportional to the dot product
of the surface normal and the light’s axis. An example is
shown in Figure 4.

We can therefore detect edges in the normal map. These
edges are obtained by detecting changes in surface
orientation, and can be combined with the edges from the
depth map method to produce a reasonably good silhouette
image.

C. Using GPU to speedup edge-detection algorithm

We present the edge-detection algorithm in our system as
follows, and describe how to perform this edge-detection
algorithm on GPU.

1) Edge-detection algorithm

Suppose we have two 2D textures, depth map and normal
map.

We use Sobel filter to find the edges in the normal map.
The Sobel kernels are:

Figure 4. An example of normal map.

Figure 2. Silhouette edges and crease edges in a model. All of the two
edges consist of contour.

Figure 3. An example of depth map. Right is the original model
(Moai of Easter Island). Left is the depth map of Moai.

440

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−

=

101

202

101

xS

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −−−

=

121

000

121

yS

Let I(x, y) be the image of normal map or depth map.
Vertical and horizontal edge images of I are both computed
using discrete 2D convolution:

Finally, we use the Sobel filter to find out the edges using
a threshold T:

Let),(),(),(yxIyxIyxI mageyx =+ ,

⎭
⎬
⎫

⎩
⎨
⎧

<

≥
=

TyxI

TyxI
yxEdge

mage

mage

),(if ;0

),(if ;1
),(

We exploit both normal map and depth map to find
crease edges and silhouette edges. Combining the two kinds
of edges yields a final edge map.

Although we can get a complete edge map, we observe
that there are too many line segments existing in edge map.
User becomes more difficult to concentrate on the contour
of the scene due to those small fragments. Besides, we
notice that all these redundant edges are mostly crease
edges, since they often occur in arc surfaces. Face normals
in arc surface usually change abruptly; making our system
detects many crease edges there. We therefore add an extra
filter to remove these redundant lines after getting Edge(x,
y).The objective of filtering is that we want to remove the
edges which are crease edges with depth values close to
their neighbors. This filtering traces the depth map in a way
that if a pixel is considered a component of an edge, filter
calculates the difference of the depth value between this
pixel and its neighbors. If the difference is below a
threshold Tz, we remove this pixel from edge map, which
implies this pixel is no longer a component of the edges.

Entries in extra filter are:

1z 2z 3z

4z 0z 5z

6z 7z 8z

1z - 8z are neighboring pixels of 0z (0z is the same as

),(yxIz
).

04030201 22(),(ZZZZZZZZyxI z −+−+−+−=

)22 08070605 ZZZZZZZZ −+−+−+−+

⎭
⎬
⎫

⎩
⎨
⎧

<

≥
=

Zz

Zz

TyxI

TyxI
yxEdge

),(if ;0

),(if ;1
),(

The results are shown in Figure 5. We can see there are
many redundant lines in Figure 5(right). The result in Figure
5(left) is cleaner. Therefore, users can focus on the
important contours using the extra filtering.

2) GPU application

GPU is different from the traditional CPU sequential
programming model. The graphics pipeline can be
illustrated as in Figure 6. The programmable components of
graphics hardware are vertex and fragment processor. In
GPU, We use the Frame Buffer Object (FBO), which is an
OpenGL extension that allows rendering results to a special
frame buffer which can be directly read in as texture. Since
we want to use fragment processor to compute the physical
simulation data, the results need to be sent to frame buffer
after fragment program terminates. Using FBO, we can
store the computational result to FBO and later retrieve it
back as fetching textures. Since the input data and
computational result retain in FBO, it achieves a better
performance because it avoids extra data copying from
frame buffer to texture by calling glCopyTexSubImage2D
OpenGL function. Furthermore, less memory is required
because there is only one instance of the image [14].

Figure 6. Graphics pipeline

xx SyxIyxI ⊗=),(),(

yy SyxIyxI ⊗=),(),(

Figure 5. Right is the result without extra filtering. Left is the result with
extra filtering.

441

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

IV. RESULT

Our system is implemented using OpenGL with C++ on
PC with AMD Athlon64 3000+ CPU and 512MB RAM and
ATI X1600Pro graphics acceleration chip. Besides using
GPU, we built another system which is running on CPU
only for comparison as in Table I.

We performed simulations on four different sizes of
models. The “Moai” model run on CPU achieved a frame
rate of 10 FPS (frame rates per second), and this same
model run on GPU obtained 114 FPS. The speedup factor is
over 11 times. The largest size Dragon model run on CPU
achieved 8 FPS. Same model run on GPU achieved up to 64
FPS. The speedup factor is 8 times. We therefore consider
our system can run at real-time frame rates because human
eyes can recognize well at approximately 20 FPS.

Assume we define the real-time frame rate as 30 FPS.
Our system thus must spend less than 0.03 second to render
a scene. In CPU, our system spent almost 0.1sec to render
the smallest size model “Moai”, the rendering time is too
much to achieve real-time interactivity. In GPU, the
speedup ratio is amazing. Speed-up with ten times enables
our system easy to achieve real-time interactive frame rates.

The performance of our system heavily depends on the
size of viewport. Consequently, even the number of
triangles of the model “Dragon” is more than that of model
“Moai”, the rendering time is still the same. As shown in
Table I, a more complex model, like “Dragon”, takes more

time to render due to its preprocessing steps, like loading
model.

Several resulting images are shown in Figure 7. Our
system renders scenes with a pen-and-ink style. The images
are actually like human-drawing.

V. CONCLUSION

How to speed up NPR is a topic of research challenge.
Many researchers have been addressing this issue. Some
may focus on NPR algorithm, hardware, reduced model, etc.
If we aim at the performance, we have to reluctantly
degrade the NPR quality. In contrast, if we aim at the NPR
quality, we have to sacrifice the system performance. Our
main contribution in this work is that our system can
accomplish real-time interactive frame rates. Reallocating a
great part of computing to GPU accounts for achieving such
speed-up.

Another technical contribution is that we provide robust
edge detector. Users simply need to select a 3D model, our
system can provide its sketchy rendering. Users can move,
shift, rotate, and resize the model at will and the system can
render the varying scene. Besides, the contour of the model
is accurate and concisely depicted.

VI. FUTURE WORK

Our system may improve in three different aspects.
First is we can transfer much calculation to GPU for

faster rendering. We may place more independent data on
the powerful GPU because GPU can be executed in
parallelism.

Second is we can explore better methods to find
silhouette and crease edges. Recent researchers brought up
many good new edge-detection algorithms. Although our
edge detector perform well, it still can be better.

Another possible enhancement is to add more stylistic
strokes in our system to make it even more like human
drawing, such as pen-and-ink, watercolor, oil painting, etc.
NPR is a very popularly addressed issue in computer

Model
Triangle
Number

CPU
(sec/frame)

GPU
(sec/frame)

Speedup
ratio

Moai 8956 0.098117 0.008739 11.22

Bull 12398 0.099837 0.009015 11.07

Pitbull 25,030 0.105496 0.010680 9.87

Dragon 57532 0.114573 0.014172 8.08

Table I

Compare the performance for run on CPU and on GPU.

Figure 7. Resulting images. From left to right is “Moai”, “Bull”, “Pitbull”, “Dragon”.

442

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

graphics. Our research effort is to integrate it with
contemporary GPUs to improve the overall performance of
NPR.

VII. REFERENCES

[1] I. Buck, “GPGPU: General-purpose computation on
graphics hardware—GPU computation strategies &
tricks.” ACM SIGGRAPH Course Notes, 2004.

[2] S. Dominé, A. Rege, and C. Cebenoyan, “Real-time
hatching”, Game Developers Conference 2002.

[3] B. Freudenberg, M. Masuch, and T. Strothotte, “Real-
time halftoning: a primitive for non-photorealistic
shading.” 13th Eurographics Workshop on Rendering.
Pisa, Italy, June 2002, pp. 1–4.

[4] B. Gooch, P.-P. J. Sloan, A. Gooch, P. Shirley, and R.
Riesenfeld, “Interactive technical illustration.” 1999
ACM Symposium on Interactive 3D Graphics, 1999, pp.
31–38.

[5] S. Green, NVIDIA particle system sample.
http://developer.nvidia.com/object/demo_cloth_simulat
ion.html, 2004.

[6] P. Hanrahan, P. Haeberli, “Direct WYSIWYG painting
and texturing on 3D shapes.” Proc. of SIGGRAPH 90,
1990, pp. 215–223.

[7] M. Harris, W. Baxter, T. Scheuermann, and A. Lastra,
“Simulation of cloud dynamics on graphics hardware.”
Proceedings ACM SIGGRAPH / Eurographics
Workshop on Graphics Hardware 2003, pp. 92–101.

[8] A. Hertzmann, “Painterly rendering with curved brush
strokes of multiple sizes”, Computer Graphics
Proceedings, Annual Conference Series, ACM
SIGGRAPH, Orlando, Florida, 1998, pp. 453–460.

[9] T. Isenberg, N. Halper, and T. Strothotte, “Stylizing
silhouettes at interactive rates: From silhouette edges to
silhouette strokes.” Computer Graphics Forum 21, 3
Sept., 2002.

[10] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J.
Krüger, A. E. Lefohn and T. J. Purcell, “A survey of
general-purpose computation on graphics hardware”,
Eurographics 2005, State of the Art Reports, pp. 21–51.

[11] J.P. Lewis, N. Fong, X. X. Xiang, S.H. Soon, and T.
Feng, “More optimal strokes for NPR sketching”,
Proceedings of the 3rd international conference on
Computer graphics and interactive techniques, 2005, p.
47.

[12] J. Kruger, P. Kipfer, P. Kondratieva, and R.
Westermann, “A particle system for interactive
visualization of 3D flows.” IEEE Transactions on
Visualization and Computer Graphics, 2005.

[13] J. Kruger, and R. Westermann, “Linear algebra
operators for GPU implementation of numerical
algorithms.” ACM Transactions on Graphics 22, 2003,
pp. 908–916.

[14] L.F. Chang and D.S.M. Liu, “Real-time deformable
object simulation using the GPU”, Proceedings of the
2005 Computer Graphics Workshop, 2005, p. 29.

[15] J. L. Mitchell, C. Brennan, and D. Card, “Real-time
image-space outlining for non-photorealistic
rendering.” SIGGRAPH 2002 Sketch, San Antonio,
July 2002.

[16] M. Nienhaus and J. Doellner, “Edge-enhancement – an
algorithm for real-time non-photorealistic rendering”,
Journal of WSCG, 2003, pp. 346–353.

[17] M. Nienhaus, and J. Döllner, “Sketchy drawings”,
Proceedings of the 3rd international conference on
Computer graphics, 2004, pp. 73-81.

[18] N. Zakaria and H. Seidel, "Interactive stylized
silhouette for point-sampled geometry", Proceedings of
the 2nd international conference on Computer
graphics and interactive techniques, 2004, pp. 242–
249.

[19] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein
“Real-Time Hatching.” In Computer Graphics
(Proceedings of SIGGRAPH’01), 2001, pp.579–584.

[20] T. Purcell, C. Donner, M. Camarano, H. Jensen, and P.
Hanrahan, “Photon mapping on programmable graphics
hardware.” In Proceedings ACM SIGGRAPH /
Eurographics Workshop on Graphics Hardware 2003,
pp. 41–50.

[21] R. D. Kalnins, L. Markosian, B. J. Meier, M. A.
Kowalski, J. C. Lee, P. L. Davidson, M. Webb, J. F.
Hughes, A. Finkelstein, “WYSIWYG NPR: drawing
strokes directly on 3D models”, Proceedings of the
29th annual conference on Computer graphics and
interactive techniques, 2002, pp. 755- 762.

[22] C. Zeller, “Cloth simulation on the GPU.” In ACM
SIGGRAPH 2005 Conference Abstracts and
Applications, 2005.

443

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

