
Figure 1. The programmable floating-point performance of GPU 
(measured on the multiply-add instruction as 2 floating-point 
operations per MAD) has increased dramatically over the last four 
years when compared to CPUs. Figure courtesy Ian Buck, 
Stanford University [10]. 
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Abstract—Silhouette is an important research issue in the 
field of Non-Photorealistic Rendering (NPR) and it is also a 
popular drawing feature in illustrations and line-drawing 
artworks. In this paper, we present a real-time image-based 
stylized rendering system. First, we project a 3D model to 
image-space. Then we extract edges in the image-space data. 
We perform edge-detection algorithms on GPU (Graphics 
Processing Units) for speedup. GPU is good at floating-points 
calculating and processing with parallelism. Both features 
match the property of most image processing tasks. Our system 
can run at an interactive frame rate when combining our edge-
detection algorithms with graphic hardware architecture. We 
demonstrate that this system performance can reach real-time 
and render images in good NPR style. 

I. INTRODUCTION

KETCHING is important to express the preliminary 
state of a draft, concept, and idea. It describes a drawing 

that is not a final, perfect result. In contrast, common 
photorealistic renderings cannot communicate ideas, 
outlines, and proposals. These photorealistic renderings 
reduce one’s ability to rethink enhancement and 
modifications. 

Image-based processing is very popular in recent NPR 
algorithms. The advantage of image-based processing is that 
the number of data calculation is less than 3D’s. It can also 
take advantage of hardware acceleration. The cost of model 
projection is only several read/write operators. The 
performance of our image-based system solely depends on 
the size of viewport. 3D geometry complexity takes a 
negligible effect. 

In our system, we first compute the normal buffer of the 
3D scene object. Color of each pixel in the normal buffer 
represents the normal value of the vertex in the 3D model. 
Abrupt changes in normal buffer usually occur at crease 
edges. We then evaluate the depth buffer (z-buffer) of the 
3D scene object. Similarly, color of each pixel in the depth 
buffer represents the depth value of the vertex in the 3D 
model. Abrupt changes in the depth buffer often occur at 
silhouette edges. 

This paper presents a new general purpose rendering 
system to perform NPR in real-time. We integrate image 
processing technique with a new hardware platform (called 

“GPU”) and a stylized rendering. 
We use an edge-detection algorithm to find out the abrupt 

changes in both of the normal buffer and depth buffer. We 
implement the edge-detection algorithm on GPU for 
speedup. The edge-detection algorithm has a property of 
data independent, and it can calculate faster in graphic 
hardware pipeline because GPU is parallel processing. 

The performance of graphics hardware increases rapidly 
so that the computing power of GPU measured by Giga 
Floating Point Operations Per Second (GFLOPS) doubles 
almost every year, see as Figure 1. The architectures of 
modern graphics hardware allow tremendous memory 
bandwidth and provide fast computational power. For 
example, ATI X800XT can sustain over 63 GFLOPS 
(compared to 14.8 GFLOPS theoretical peak for a 3.7 GHz 
Intel Pentium4 SE unit [1]). Due to the extensive 
capabilities of the hardware, GPU programming gains lots 
of interest. Moreover, high level languages have emerged to 
support the new programmability of the vertex and pixel 
pipelines. Cg, HLSL, and OpenGL Shading Language are 
three most common GPU programming languages which 
allow programmer to write GPU programs in a more C-like 
language. Many GPU shader programs and techniques are 
also available on the Internet. Here we use OpenGL 
Shading Language to develop our application.
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II. RELATED WORKS

A. NPR 

The number of literatures on NPR drawing algorithms is 
large including issues of stroke placement and orientation 
[8], silhouette tracing [9], and simulations of particular 
media [11]. 

Point-based representation is one of the most used in 
NPR drawing algorithms. The representation is used for 
models of very high geometric complexity. With a point-
based representation, the surface of a 3D object is described 
by a set of sample points without further topological 
information such as triangle mesh connectivity. The lack of 
topological information leads to simpler and more efficient 
rendering, simplification, level-of detail control, and 
texturing for very complex models [18]. 

Recent research in the field of real-time NPR exploits 
current graphics hardware. Praun et al. [19] implemented a 
technique for real-time hatching of 3D shapes. Freudenberg 
et al. [3] developed a similar technique for real-time 
halftoning. They made extensive use of the programmable 
rendering pipeline and texture blending capabilities of 
current graphics hardware. Nvidia presented an image-space 
technique to render edges of 3D shapes onto a screen-
aligned quad [2]. It samples adjacent texture values to 
process encoded normals and detects discontinuities in the 
normal-buffer. ATI extended this approach by detecting 
discontinuities in the normal-buffer, z-buffer, and Id-buffer 
[15]. This way, edges of 3D shapes, regions in shadow, and 
texture boundaries can be outlined [16]. 

The last decade has seen a blossoming of work on NPR 
algorithms in a variety of styles [4]. Much of this work 
addresses the production of still images, while some systems 
for rendering 3D scenes have addressed the challenge of 
providing temporal coherence for animations [17]. 

Most work in NPR has focused on algorithms that are 
controlled by parameter setting or scripting the designer has 
no direct control over where marks are made. An inspiration 
for our work is the technique for direct WYSIWYG (what 
you see is what you get) painting on 3D surfaces proposed 
by Hanrahan and Haeberli [6], which is now available in 
various commercial modeling systems. These tools let the 
designer paint texture maps directly onto 3D models by 
projecting screen-space paint strokes onto the 3D surface 
and then into texture space, where they are composed with 
other strokes. Strokes then remain fixed on the surface and 
do not adapt to changes in lighting or viewpoint. In contrast, 
strokes in our system are automatically added, removed, or 
modified in response to changes in lighting or viewing 
conditions [21].

B. GPU-based applications 

Recently, programmable GPU has been explored to 
enhance the performance. Harris et al. presented a 
physically-based, visually-realistic interactive cloud 
simulation using GPU [7]. The clouds were modeled using 
partial differential equations describing fluid motion, 
thermodynamic processes, buoyant forces, and water phase 
transitions. Kruger and Westermann introduced a 
framework for the implementation of linear algebra 
operators on GPU, thus providing the building blocks for 
the design of more complex numerical algorithms [13]. 
Purcell et al. implemented a modified photon mapping 
technique which uses breadth-first photon tracing to 
distribute photons using the GPU [20]. 

In the field of particle system, Kipfer et al. presented a 
method for simulating particle systems on GPU and 
implemented inter-particle collision by quickly sorting the 
particles on GPU to determine potential colliding pairs. 
Kolb et al. constructed a GPU particle system simulator that 
supports accurate collisions of particles with scene 
geometry. In it, depth maps were used to detect the 
penetrations or collisions by the computation with GPU. 
Kruger created a particle system for interactive visualization 
of steady 3D flow fields on uniform grids [12]. The entire 
process, from vector field interpolation, integration to curl 
computation, and finally geometry generation and rendering 
of the stream ribbons, is performed by GPU. Work more 
related to our system is cloth simulation. Green [5] 
implemented a simple cloth simulation that executes on 
GPU using fragment programs and float point buffer. Zeller 
[22] presented a robust method to simulate cloth on GPU 
that includes mesh-cutting techniques. A more complete 
survey on a set of GPU-assisted algorithms and systems is 
given by Owens [10].

III. METHOD

Our system consists of the following steps. 
1. Tracing silhouette edges using depth map. 
2. Tracing crease edges using normal map. 
3. Using GPU to speedup edge-detection algorithm. 
We can consider edges into two kinds. 
Silhouette edges: edges adjacent to a polygon which 

faces towards the camera and another polygon which faces 
backward the camera. 

Crease edges: edges between two front-facing or back-
facing polygons whose dihedral angle is above a threshold. 
The threshold value defines the number of crease edges.
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A. Tracing silhouette edges using depth map 

There are many ways to find out edges. We can roughly 
divide them into two kinds: 3D based and 2D (image) based. 
Aiming to achieve real-time performance, we conduct both 
silhouette and crease edges tracing using image based 
approach. 

In computer graphics, silhouette edges in image plane is 
the collection of points whose outward surface normal are 
perpendicular to the view vector. A silhouette edge is also 
an edge which separates a front facing face from a back 
facing face. 

Therefore, traditional method to find out silhouette edges 
is to trace all edges in a model to find out edges which 
separate a front facing face from a back facing face and that 
edges are exactly silhouette edges. This algorithm is not 
suitable for real-time system because this algorithm uses 
much time to trace each edge in 3D scene and to compare 
them. Instead, we capture z-values of the 3D scene into a 
high precision depth texture which is called a depth map. In 
OpenGL, for example, the depth map can be extracted by 
calling glReadPixels() with the 
GL_DEPTH_COMPONENT argument. Different gray 
values in the depth map represent positions of different 
depth. The depth value of background is highest, so that we 
can distinguish silhouette edges using abrupt changes in the 
depth map. 

Access time of a depth map depends on size of viewport. 
Smaller size of viewport accesses faster, although larger 
size of viewport gets better presentation of the scene. We 
choose a 512 * 512 viewport in the experiments. 

B. Tracing crease edges using normal map 

A problem with using the depth map is that it does not 
detect the crease edge. To remedy this shortage, we can use 
another method that is similar to the finding of silhouette 
edges using depth map. The method uses surface normals to 
construct a normal map, which is an image that represents 
the surface normal at each point on an object. The values in 

each R, G, and B color components of a point on the normal 
map correspond to the X, Y, and Z surface normal at that 
point.  

We first initialize the object color to white, and the 
material property to diffuse reflection. We then place a red 
light on the X axis, a green light on the Y axis, and a blue 
light on the Z axis, all facing the object. Additionally, we 
put lights with negative intensity on the opposite side of 
each axis. We subsequently render the scene to produce the 
normal map. As a result, each light will illuminate a point 
on the object with intensity proportional to the dot product 
of the surface normal and the light’s axis. An example is 
shown in Figure 4. 

We can therefore detect edges in the normal map. These 
edges are obtained by detecting changes in surface 
orientation, and can be combined with the edges from the 
depth map method to produce a reasonably good silhouette 
image. 

C. Using GPU to speedup edge-detection algorithm 

We present the edge-detection algorithm in our system as 
follows, and describe how to perform this edge-detection 
algorithm on GPU. 

1) Edge-detection algorithm 

Suppose we have two 2D textures, depth map and normal 
map. 

We use Sobel filter to find the edges in the normal map. 
The Sobel kernels are: 

Figure 4. An example of normal map. 

Figure 2. Silhouette edges and crease edges in a model. All of the two 
edges consist of contour.

Figure 3. An example of depth map. Right is the original model 
(Moai of Easter Island). Left is the depth map of Moai.
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Let I(x, y) be the image of normal map or depth map. 
Vertical and horizontal edge images of I are both computed 
using discrete 2D convolution: 

Finally, we use the Sobel filter to find out the edges using 
a threshold T: 
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We exploit both normal map and depth map to find 
crease edges and silhouette edges. Combining the two kinds 
of edges yields a final edge map. 

Although we can get a complete edge map, we observe
that there are too many line segments existing in edge map. 
User becomes more difficult to concentrate on the contour 
of the scene due to those small fragments. Besides, we 
notice that all these redundant edges are mostly crease 
edges, since they often occur in arc surfaces. Face normals 
in arc surface usually change abruptly; making our system 
detects many crease edges there. We therefore add an extra 
filter to remove these redundant lines after getting Edge(x, 
y).The objective of filtering is that we want to remove the 
edges which are crease edges with depth values close to 
their neighbors. This filtering traces the depth map in a way 
that if a pixel is considered a component of an edge, filter 
calculates the difference of the depth value between this 
pixel and its neighbors. If the difference is below a 
threshold Tz, we remove this pixel from edge map, which 
implies this pixel is no longer a component of the edges. 

Entries in extra filter are:
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The results are shown in Figure 5. We can see there are 
many redundant lines in Figure 5(right). The result in Figure 
5(left) is cleaner. Therefore, users can focus on the 
important contours using the extra filtering. 
  

2) GPU application 

GPU is different from the traditional CPU sequential 
programming model. The graphics pipeline can be 
illustrated as in Figure 6. The programmable components of 
graphics hardware are vertex and fragment processor. In 
GPU, We use the Frame Buffer Object (FBO), which is an 
OpenGL extension that allows rendering results to a special 
frame buffer which can be directly read in as texture. Since 
we want to use fragment processor to compute the physical 
simulation data, the results need to be sent to frame buffer 
after fragment program terminates. Using FBO, we can 
store the computational result to FBO and later retrieve it 
back as fetching textures. Since the input data and 
computational result retain in FBO, it achieves a better 
performance because it avoids extra data copying from 
frame buffer to texture by calling glCopyTexSubImage2D 
OpenGL function. Furthermore, less memory is required 
because there is only one instance of the image [14]. 

Figure 6. Graphics pipeline

xx SyxIyxI ⊗= ),(),(

yy SyxIyxI ⊗= ),(),(

Figure 5. Right is the result without extra filtering. Left is the result with 
extra filtering.
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IV. RESULT

Our system is implemented using OpenGL with C++ on 
PC with AMD Athlon64 3000+ CPU and 512MB RAM and 
ATI X1600Pro graphics acceleration chip. Besides using 
GPU, we built another system which is running on CPU 
only for comparison as in Table I. 

We performed simulations on four different sizes of 
models. The “Moai” model run on CPU achieved a frame 
rate of 10 FPS (frame rates per second), and this same 
model run on GPU obtained 114 FPS. The speedup factor is 
over 11 times. The largest size Dragon model run on CPU 
achieved 8 FPS. Same model run on GPU achieved up to 64 
FPS. The speedup factor is 8 times. We therefore consider 
our system can run at real-time frame rates because human 
eyes can recognize well at approximately 20 FPS. 

Assume we define the real-time frame rate as 30 FPS. 
Our system thus must spend less than 0.03 second to render 
a scene. In CPU, our system spent almost 0.1sec to render 
the smallest size model “Moai”, the rendering time is too 
much to achieve real-time interactivity. In GPU, the 
speedup ratio is amazing. Speed-up with ten times enables 
our system easy to achieve real-time interactive frame rates. 

The performance of our system heavily depends on the 
size of viewport. Consequently, even the number of 
triangles of the model “Dragon” is more than that of model 
“Moai”, the rendering time is still the same. As shown in 
Table I, a more complex model, like “Dragon”, takes more 

time to render due to its preprocessing steps, like loading 
model. 

Several resulting images are shown in Figure 7. Our 
system renders scenes with a pen-and-ink style. The images 
are actually like human-drawing. 

V. CONCLUSION

How to speed up NPR is a topic of research challenge. 
Many researchers have been addressing this issue. Some 
may focus on NPR algorithm, hardware, reduced model, etc. 
If we aim at the performance, we have to reluctantly 
degrade the NPR quality. In contrast, if we aim at the NPR 
quality, we have to sacrifice the system performance. Our 
main contribution in this work is that our system can 
accomplish real-time interactive frame rates. Reallocating a 
great part of computing to GPU accounts for achieving such 
speed-up. 

Another technical contribution is that we provide robust 
edge detector. Users simply need to select a 3D model, our 
system can provide its sketchy rendering. Users can move, 
shift, rotate, and resize the model at will and the system can 
render the varying scene. Besides, the contour of the model 
is accurate and concisely depicted.

VI. FUTURE WORK

Our system may improve in three different aspects. 
First is we can transfer much calculation to GPU for 

faster rendering. We may place more independent data on 
the powerful GPU because GPU can be executed in 
parallelism. 

Second is we can explore better methods to find 
silhouette and crease edges. Recent researchers brought up 
many good new edge-detection algorithms. Although our 
edge detector perform well, it still can be better.

Another possible enhancement is to add more stylistic 
strokes in our system to make it even more like human 
drawing, such as pen-and-ink, watercolor, oil painting, etc. 
NPR is a very popularly addressed issue in computer 

Model 
Triangle
Number

CPU 
(sec/frame)

GPU 
(sec/frame)

Speedup 
ratio 

Moai 8956 0.098117 0.008739 11.22 

Bull 12398 0.099837 0.009015 11.07 

Pitbull 25,030 0.105496 0.010680 9.87 

Dragon 57532 0.114573 0.014172 8.08 

Table I 

Compare the performance for run on CPU and on GPU. 

Figure 7. Resulting images. From left to right is “Moai”, “Bull”, “Pitbull”, “Dragon”. 
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graphics. Our research effort is to integrate it with 
contemporary GPUs to improve the overall performance of 
NPR. 
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