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Abstract-This paper introduces Gaborface-based 
2DPCA and (2D)2PCA classification method based on 
2D Gaborface matrices rather than transformed 1D 
feature vectors. Two kinds of strategies to use the bank 
of Gaborfaces are proposed: ensemble Gaborface 
representation (EGFR) and multichannel Gaborface 
representation (MGFR). The feasibility of our method is 
proved with the experimental results on the ORL and 
Yale databases. In particular, the MGFR-based 
(2D)2PCA method achieves 100% recognition accuracy 
for ORL database, and 98.89% accuracy for Yale 
database with five training samples per class.  

I. INTRODUCTION 

As one of the computational intelligent techniques, face 
recognition has an active development in the past few 
decades due to its potential applications in automated video 
surveillance, identity authentication, access control, and law 
enforcement, etc. In 1991, Turk and Pentland presented the 
principal component analysis (PCA) based eigenface 
method [1], which has become a baseline for various 
approaches. In recent years, many methods based on Gabor 
filters have been proposed. The Gabor filters exhibit 
desirable characteristics of spatial localization and 
orientation selectivity, and the Gabor filter representations 
of face image (termed also as Gaborfaces) are robust for 
illumination and expressional variability, so are used 
extensively in face recognition [2-6]. However, the 
dimensionality of the Gabor feature space is 
overwhelmingly high, because the Gaborfaces are obtained 
by convolution of the face image with dozens of Gabor 
filters. Therefore, many sampling or compressing methods 
are proposed to reduce the space dimension to avoid dealing 
with the enormous data. In [7], each face was represented as 
convolution results of the face with 40 Gabor filters at 48 
predetermined fiducial points, which were located at face 
landmarks (e.g. the eyes, nose and mouth, etc), so that the 
dimensionality was reduced to 48×40. And in [8], a SVM 
face recognition method based on manually labeled Gabor-
featured key points was proposed, where a face was 
represented by a 87 × 40-dimensionality feature vector 
rather than the total 256 × 384× 40 feature data. One 
disadvantage of fiducial-points sampling is that manual 
annotation is required, which is inconvenience for automatic 
face recognition. Another sampling method is Fixed-grid 
sampling [9], where a grid of 64 points at regular intervals 
was used to sample Gabor-filtered handwritten numerals. 

Recently, a novel adaptive sampling algorithm was 
introduced to reduce feature vectors. It selected sample-
point sets that maximized inter-object distance [10]. Another 
method is to downsample the Gaborfaces by factor ρ  and 
concatenate its rows (or columns) to form one augmented 
feature vector [4,5].    

Unlike the aforementioned methods, in this paper we try 
to make use of the total enormous feature data for face 
recognition instead of extracting a feature vector by 
sampling. Inspired by the 2D representation idea from 
2DPCA [11], we develop 2D Gaborface representation 
method, which is based on 2D Gaborface matrices rather 
than sampled 1D feature vectors, i.e. the 2D Gaborface 
matrices are straightforward used as the feature 
representation of the image without any sampling or 
compressing. As will be shown in Section III, we have 
introduced two kinds of strategies to use the bank of 
Gaborfaces: ensemble Gaborface representation (EGFR) 
and multichannel Gaborface representation (MGFR). 
Although many researches have been done on multichannel 
filtering approaches [12-14], no work, to the author’s 
knowledge, has been done on 2D multichannel Gaborface 
representation. In [12], a multichannel subsampled filter 
bank was used for texture segmentation. And in [13], a 
multichannel texture analysis approach using localized 
spatial filters was described. The method to apply 4 
orientation Gabor channels for face recognition was 
proposed in [14]. All the methods are based on 1D sampled 
Gabor feature vectors, however, our MGFR method is based 
on 2D Gaborface matrices as mentioned above. Due to the 
2D Gaborface representation from different channels seems 
to provide complementary information [14], so we 
simultaneously apply classification algorithm on these 
channels and perform the decision level fusion. For 
measuring the recognition performance we adopt some 
commonly used fusion rules, i.e. sum rule, product rule, max 
rule, min rule, median rule and majority vote rule.     

In addition, we propose a scheme to yield optimized 
Gabor filter bank in terms of linear correlation criterion. The 
attempt is desirable in that optimized filter bank may reduce 
redundancy of feature sets. By analyzing the correlation 
matrices of Gabor filters with different sets of scales, an 
optimal Gabor filter bank with scales, { }5,,2 L−∈v , is 
obtained by achieving the minimal values in the correlation 
matrix. 

The feasibility of our method has been successfully tested 
with a series of experiments on ORL and Yale databases. In 

1

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Security and Defense Applications (CISDA 2007)

1-4244-0700-1/07/$20.00 ©2007 IEEE



particular, the MGFR-based (2D)2PCA method achieves 
100% recognition rate using only 6×1 feature coefficients 
on ORL database.  

 The rest of this paper is organized as follows: In Section 
II, we briefly review the Gabor filter and describe how to 
select Gabor filter bank based on linear correlation criterion. 
The proposed EGFR and MGFR methods are introduced in 
Section III. Section IV briefly reviews the 2DPCA and 
(2D)2PCA  method. Experiments and analysis are conducted 
in Section V. Finally, Section VI summarizes the main 
results of this paper and offers concluding remarks. 

II. GABOR FILTER BANK 

A. Gabor Filter 
Gabor filters are now being used extensively and 

successfully in various computer vision applications 
including face recognition and detection due to their 
biological relevance and computational properties [2-6]. 
Because the Gabor kernels can model the receptive fields of 
the orientation-selective mammalian cortical simple cells, 
the Gabor filters, which are generated from a wavelet 
expansion of the Gabor kernels, exhibit desirable 
characteristics of spatial locality and orientation selectivity, 
and are localized in the spatial and frequency domains 
optimally. The Gabor filters take the form of a complex 
plane wave modulated by a Gaussian envelope function 
[4,5]: 
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orientation and scale of the Gabor filters, 

v
maxv f/kk = and N/πµφµ = , maxk is the 

maximum frequency, and f is the spacing factor between 
kernels in the frequency domain. πσ 2= , 

2/kmax π= and 2=f . The first term in the brackets in 
(1) is the oscillatory part of the kernel and the second 
compensates for the DC value. 

B. Correlation-based method to select Gabor Filter Bank 
For extracting discriminating information of different 

orientations and scales as much as possible, a bank of Gabor 
filters with eight orientations, i.e., 8=N , and eight scales is 
chosen to extract the feature data of a facial image. Hence 
the total number of filters in our experiments is 64. In most 
cases the choice of 8 orientations )8/7,,8/,0( ππ L  is 
sufficient for differentiating the local orientation of the 
image features, so the undetermined parameters of filters are 
8 scales. As we all known, the Gabor wavelets (filters) are 
nonorthogonal wavelets. This means that a wavelet 
transform based on the Gabor wavelet is redundant [3,15,16]. 
From this point of view, we need to select the scale set v to 
obtain an optimal filter set as uncorrelated as possible to 
reduce redundancy. We adopt a scheme that is based on 
linear correlation criterion. In this scheme, the orientation 
set }70:{ ≤≤= µµU is fixed and different scale sets are 
tested from }34:{1 ≤≤−= vvV to }70:{5 ≤≤= vvV as 
illustrated in Fig.1. 

We consider the real part of the filters and the similar 
results are obtained with imaginary part. We first 

concatenate the rows (or columns) of the real part of filter, 
))(Re( , zvµψ , to construct a vector v,µφ , then the linear 

correlation between two filters )(, zvµψ and )(',' zvµψ  is 
evaluated by 
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Figure 1. Different scale sets. 

the correlation matrix of the total 64 filters is a 64×64 
symmetric matrix with all elements on the diagonal equal to 
unity. In order to get a better understanding of the 
correlation matrix, we display it in a form of visual 
representation. Since the elements of the correlation matrix 
are in the interval [-1, 1], we take the absolute value of these 
correlation coefficients and map them from [0, 1] to the 
gray-level scale [0, 255]. The correlation matrices are shown 
in Fig.2. The numbers below each correlation matrix 
represent the different scale sets, respectively.  

For explicating the correlation characteristics between the 
filters with different orientations and scales, we take two 
permutations of the 64 filters to form correlation matrices. 
In Fig.2 (a)-(e), the 64 filters are arranged in order of 
orientation and then scale, i.e., every 8 consecutive filters 
are assigned with different orientations of the same scale v , 
and then the scale is increased. On the other hand in Fig.2 
(f)-(j), the 64 Gabor filters are arranged in order of scale and 
then orientation, i.e., every 8 consecutive filters are assigned 
with different scales of the same orientation µ , and then 
the orientation is altered. 

Each correlation matrix has two lines in parallel with the 
diagonal, which suggests that the correlations are 
particularly strong between two filters with neighboring 
scales v of the same orientation in Fig.2 (a)-(e), and two 
filters with neighboring orientations µ of the same scale in 
Fig.2 (f)-(j). And it’s obvious to see that those high 
correlation coefficients are particularly concentrated on the 
low scales }3,4{ −−=v region in Fig.2 (a) and 

3−=v region in Fig.2 (b) and the high scales 6=v region 
in Fig.2 (d) and }7,6{=v region in Fig.2 (e). On the other 
hand in Fig.2 (f)-(j), we note that the top left corner of each 
8×8 sub-block indicates the correlations between filters 
with the low scales, and the bottom right corner indicates 
the correlations between filters with the high scales. 
Similarly we find that those high correlation coefficients are 
especially concentrated on the top left corner of sub-block 
on the low scales }3,4{ −−=v region in Fig.2 (f) and 

3−=v region in Fig.2 (g) and the bottom right corner on 
the high scales 6=v region in Fig.2 (i) and 

}7,6{=v region in Fig.2 (j), which are in good agreement 
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Figure 2. The correlation matrices of 64 Gabor filters.

with the observations of Fig.2 (a)-(e). And when the scale 
set is, the total correlation coefficients arrive at minimal 
values both in Fig.2 (c) and in Fig.2 (h). Therefore we select 

}52:{3 ≤≤−= vvV  as the scale set of Gabor filter bank 
to extract feature sets as uncorrelated as possible. Fig.3 
shows the real part of the 64 Gabor filters at 8 scales and 8 
orientations and their magnitude. 

 
Figure 3. (a) The real part of the Gabor filters at eight scales and eight 

orientations (b) The magnitude of the Gabor filters at eight scales. 

III. GABORFACE REPRESENTATION 

Let ( )zI ( ),( yxz = ) be a nm×  facial image, the 
Gaborface representation is the convolution of the image 
with a filter in the bank, and is defined as follows: 

( ) ( ) ( )zzIzO vv ,, * µµ ψ=                                 (3) 

where ( )zO v,µ is the convolution result corresponding to 

the Gabor filter at orientationµ and scale v . Therefore, the 

set ( ){ }52,70|, ≤≤−≤≤= vzOS v µµ forms the 

Gaborface representations of the image ( )zI . If we 
combine the set S into a vector, the length of the vector is 

nm××64 , it is difficult to deal with such a high-
dimensional vector space. So the method to reduce the 

space dimension by downsampling each ( )zO v,µ  and 

concatenating its rows (or columns) to form a 1D feature 
vector is proposed and used extensively [4,5]. 

In this paper, 2D Gaborface representation method is 
proposed. It is based on 2D Gaborface matrices rather than 
transformed 1D feature vectors. That means the image is 
represented by 64 nm×  matrices. We combine the 2D 
Gaborface representation method with 2D feature extraction 
algorithms, i.e., 2DPCA and (2D)2PCA [11,17], thus the 
needed feature coefficients for efficient face recognition are 
reduced dramatically, which will be discussed in detail in 
Section IV. We now describe two kinds of strategies to use 
the bank of 64 Gaborfaces: ensemble Gaborface 
representation (EGFR) and multichannel Gaborface 
representation (MGFR). 
A. Ensemble Gaborface Representation Model 

 The set ( ){ }52,70|, ≤≤−≤≤= vzOS v µµ  forms 
the bank of Gaborfaces, and we define the following matrix: 

0, 2 0, 1 0,5

1, 2 1, 1 1,5

7, 2 7, 1 7,5

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

z z z
z z z

z z z

ο ο ο
ο ο ο

ο ο ο

− −

− −

− −

ℜ =

L

L

M M O M

L

               (4) 

where each ( )zO v,µ  is a 2D matrix, capturing some facial 

properties corresponding to orientation µ  and scale v , so 
the integration of the ensemble set S in the form of 
matrix ℜ , an nm 88 × matrix, encompasses the overall 
facial discriminating information of all orientations and 
scales. We shall term this representation method as 2D 
ensemble Gaborface representation (EGFR). 
B.  Multichannel Gaborface Representation Model 

We take each filter )(, zvµψ  as a Gabor channel, the 64 
filters form a set of parallel and quasi-independent channels 
which are sensitive to visual signal with some specific 
scale v  and orientation µ [18-20], thus the 2D Gaborface 
representations from different channels seems to provide an 
observer with multiple cues and this in itself facilitates data 
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fusion [14]. Consequently we shall study three approaches 
to divide the 64 Gaborface representations from different 
channels into groups, and simultaneously apply 
classification algorithm on these feature groups, and then 
perform the decision level fusion to obtain the final 
classification results. The groupings are as follows:  
1. all Gaborfaces to one group and form 64 Gaborface 
channels. 
2. all Gaborfaces to 8 groups according to their respective 
orientation and each group is formed by averaging 8 
Gaborfaces with different scale of the same orientation, i.e., 

∑
−=

=
5

2
, )(

8
1)(

v
v zOz µµζ , 70 ≤≤ µ . 

3. all Gaborfaces to 8 groups according to their respective 
scale and each group is formed by averaging 8 Gaborfaces 
with different orientation of the same scale, 

i.e., ∑
=

=Ξ
7

0
, )(

8
1)(

µ
µ zOz vv , 52 ≤≤− v . 

We shall refer to these methods as 2D multichannel 
Gaborface representation (MGFR). The framework of the 
grouping 1 and 2 are illustrated in Fig.4. And we apply a 
number of common fusion rules as mentioned in [21], i.e. 
sum rule, product rule, max rule, min rule, median rule and 
majority vote rule, to evaluate the performance of the 
MGFR method with experiments in Section V. 

 
Figure 4. The frameworks of the proposed MGFR method. (a) 64 

Gaborface channels (b) 8 orientation Gaborface channels. 

IV.  GABORFACE-BASED 2DPCA AND (2D)2PCA 
CLASSIFIER  

In this section, we describe our Gaborface-based 2DPCA 
and (2D)2PCA classifier method for face recognition. We 
take the ensemble Gaborface representation method as an 
example. The ensemble Gaborface representation 
matrixℜ is an nm 88 × matrix, projectingℜ onto X by the 
linear transformation: 

XY ℜ=                                                             (5) 
In 2DPCA, the total scatter of the projected samples 

characterized by the trace of the covariance matrix was used 
to determine a good projection matrix X . That is, the 
forllowing criterion is adopted: 

XEEEX

EYYEYYEtrStrXJ
TT

T
x

][][         

)]][[()()(
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−−==             (6) 

Define the Gaborface covariance matrix 
][][ ℜ−ℜℜ−ℜ= EEEG T

n , which is an 

nn 88 × nonnegative definite matrix. Suppose that there are 
M training image samples in total, the jth image can be 
represented by an nm 88 × ensemble Gaborface matrix jℜ , 

and the average of the set },,2,1|{ Mjj L=ℜ is defined 

byℜ , then nG can be evaluated by  

∑
=
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So we can select the optimal projection axes, dXX ,,1 L , 

subject to the orthonormal eigenvectors of nG  
corresponding to the first d largest eigenvalues, and 
projectℜ onto X , yielding an dm×8  matrix XY ℜ= . 
This is the so-called 2DPCA technique [11]. 

If we transpose the matrixℜ , then (7) can be rewritten as 

∑ ∑
= =
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It is easy to verify that mG is an mm 88 ×  nonnegative 
definite matrix. In the same way, we can select the optimal 
projection axes, qZZ ,,1 L by computing the eigenvectors 

of mG  corresponding to the q largest eigenvalues. 

Now we project ℜ onto X  and Z simultaneously, 
yielding a dq× matrix XZC Tℜ= . This is the so-
called (2D)2PCA technique [17]. 

By applying the (2D)2PCA on the ensemble Gaborface 
matrix ℜ , the feature coefficients for classification are 
reduced dramatically due to mq 8<<  and nd 8<< . So 
it is tractable to make use of the total enormous Gaborface 
feature for face recognition without any sampling or 
compressing. 

V. EXPERIMENTS RESULTS AND ANALYSIS  

We test the EGFR-based and MGFR-based 2DPCA and 
(2D)2PCA method against conventional 2DPCA and 
(2D)2PCA method for face recognition. Frobenius distance 
is used for similarity measure. Here, the distance between 
two feature matrices, dqjiaA ×= )( , and dqjibB ×= )( , , is 

defined by 2/1

1 1

2
,, ))((),( ∑∑

= =

−=
q

i

d

j
jijiF baBAd . Two 

publicly available face databases: the ORL face database 
and the Yale database are used.  
A. Experimental  results on ORL face database 

The ORL database consists of 400 frontal faces: the size 
of each image is 112×92 pixels, and each face image is 
rescaled to 32×32 using a bicubic interpolation to facilitate 
the Gaborface representation and reduce the computational 
complexity. The first 5 images of each subject are used for 
training, the rest are left for testing. Hence there are 200 

4

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Security and Defense Applications (CISDA 2007)



training images and 200 testing images and no overlap 
between them. 

Fig.5 shows the experiment results of EGFR-based 2DPCA 
and (2D)2PCA method against conventional 2DPCA and 
(2D)2PCA method. Without any optimized algorithm, the 
recognition performance is improved by a margin. In addition, 
we compared the results with the Gabor-based PCA method 
and conventional PCA. Table 1 presents the comparisons of six 
methods on top recognition rate, dimension of feature vector 
and running time. From Table 1, we can see that the Gabor-
based PCA, EGFR-based 2DPCA and (2D)2PCA method 
achieves the same improvements in accuracy (98%), while 
the latter needs much reduced dimension of feature vector 
and less running time than the former two. 

 
Figure 5. Face Recognition Rate Curve. 

 
Table 1 Comparison of fix methods on ORL database 

Method Recognition Rate(%) Dimension Time(s)
PCA 91.0 89 5.58 

2DPCA 92.5 10×32 2.64 
(2D)2PCA 92.5 5×10 2.48 

Gabor+PCA 98.0 137 180.70 
EGFR + 2DPCA 98.0 4×256 149.84 

EGFR + (2D)2PCA 98.0 12×6 137.19 
The Time is CPU Time for the total process including train and test based 
on a 2.99 GHz Intel Pentium 4 computer with 1.99GB RAM. 

 
We apply six classifiers combination rules and six groups 

of channels to evaluate the performance of the MGFR-
based (2D)2PCA method, and the results obtained are 
shown in Table 2. Besides the three groups of channels 
discussed in Section III, we introduce another three groups 
by appending the intensity images to the three original 
groups to form channels with odd numbers (65, 9, 9), which 
are better choices for majority vote rule. 

 
Table 2 Recognition rate (%) for different combination rules and 

different groups of channels 
Groups of Channels 

Rule 
64  64＋1 8O 8O＋1 8S 8S+1 

Sum 100(1) 100(1) 99(2) 99(2) 97(2) 97(2) 
Product 99.5(1) 99.5(1) 99(2) 99(2) 97(2) 97(2) 

Min 85.5(6) 85.5(6) 92.5(6) 92.5(6) 86.5(4) 86.5(4)
Max 88.5(8) 88.5(8) 94(4) 94.5(9) 93.5(2) 94(2) 

Median 99.5(1) 99.5(3) 97(2) 97.5(2) 98(2) 98(2) 

Majority 
Vote 99(3) 99(3) 97(5) 98.5(6) 95(4) 96(4) 

The values in parentheses denote the dimension d for the best recognition 
rate, while the dimension q is fixed as 6. The six groups are 64 Gabor 
channels (64), 64 Gabor channels plus the intensity images (64+1), 8 
channels with different orientation (8O), 8 channels with different 

orientation plus the intensity images (8O+1), 8 channels with different 
scale (8S) and 8 channels with different scale plus the intensity images 
(8S+1). 
 

The experimental results lead to the following findings: 1) 
the MGFR-based (2D)2PCA method achieves 100% correct 
recognition accuracy when using only 6 × 1 feature 
coefficients with 64 and 64+1 channels in sum rule and 2) 
the average results of the three groups by appending the 
intensity images are a little better than the three original 
groups and 3) the dimension d for the best recognition rate 
are less than 10, i.e., the method has good performance in 
low-dimension condition and 4) the average results in 8O 
and 8O+1 channels are better than the ones in 8S and 8S+1 
channels, i.e., the orientation channels contain more 
discriminating information than the scale channels and 5) 
the worst results are achieved when using the min rule, and 
the sum rule has the best classification results followed in 
order by the product rule, the median rule, majority vote 
rule and max rule. The results are consistent with the 
analysis in [21] except for the product rule, which is the 
worst combination rule there. 
B. Experimental  results on Yale face database 

The Yale dataset consists of 165 images of 15 subjects 
under various facial expressions and lighting conditions. 
Each image is cropped according to the eye positions and 
rescaled to 32×32 pixels in our experiments. We carried 
out a series of experiments to compare the performance of 
EGFR-based and   MGFR-based (2D)2PCA method against 
(2D)2PCA method under conditions where the sample size 
is varied. In MGFR-based (2D)2PCA method the group of 
64+1 channels is selected. Table 3 demonstrates the top 
recognition accuracy (%) achieved by different methods for 
varying number of training samples. 

 
Table 3 Recognition rate (%) for different combination rules on Yale 

dataset 
Number of Training Samples per 

Class Method 
2 3 4 5 

(2D)2PCA 84.44 87.50 89.52 91.11
EGFR+(2D)2PCA 85.19 88.33 95.24 96.67

Sum 83.70 91.67 95.24 96.67
Product 82.96 91.67 95.24 96.67

Min 82.96 84.17 91.43 84.44
Max 83.70 88.33 93.33 92.22

Median 80.00 91.67 95.24 96.67

MGFR 
+(2D)2PCA

Majority 
Vote 92.59 92.50 98.10 98.89

 
We can see from Table 3 that 1) the performance of 

EGFR-based and MGFR-based (2D)2PCA method are 
better than (2D)2PCA method except for few cases 2) the 
worst results are achieved when using the min rule, and the 
majority vote rule has the best classification results and 3) 
the sum rule, product rule and median rule have the 
approximate performance except for the condition in which 
the number of training samples per class is 2. 

VI. CONCLUSION  

In summary, the main contribution of this paper is in two 
respects. First of all, we propose a scheme that is based on 
linear correlation criterion to select Gabor filter bank as 
uncorrelated as possible, which directly results in a 
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reduction of redundancy of feature sets. And we obtain the 
optimal Gabor filter bank to achieve the minimal values in 
the correlation matrix. In addition, we introduce two kinds 
of 2D Gaborface representation methods: EGFR and MGFR. 
As opposed to conventional Gabor-based method, our 
method is based on 2D Gaborface matrices rather than 1D 
sampled feature vectors. Therefore, there is no loss of 
information due to downsampling. 

From our experimental results on ORL and Yale 
databases, we can see that the MGFR-based (2D)2PCA 
method achieves the best face recognition performance as 
compared with the others. Moreover, the method shows 
good performance in the low dimension. In addition, we 
apply six commonly used classifier combination rules to 
evaluate the performance of the MGFR-based (2D)2PCA 
method, and find that no rule is superior to others in all 
conditions and the sum rule, product rule, the majority vote 
rule and median rule have the approximate excellent 
performance, whereas the min rule has the worst 
classification results. In [21], Kittler and Hatef proved that 
the sum rule outperformed other rules and the worst one 
was product rule, which are a little inconsistent with our 
results. However, it should be pointed out that the multiple 
Gaborface channels have parallel and mutual 
complementary characteristics and the number of classifiers 
in our MGFR method is much higher than the one in [21] 
and these may be some explanations of the varieties in the 
performance of different fusion rules. Comparing the results 
of different groups of channels, we find that the orientation 
channels contain more discriminating information than the 
scale channels. 
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