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Abstract— In this paper a framework for fast face detection 
is presented. The features used in the system are low order 
Central Geometrical Moments (CGMs) of Face Components 
and their horizontal and vertical gradients. To speed up the 
detection process we have utilized a fast method to compute 
CGMs locally in the feature extraction phase, and in the 
classification phase we have used a fast multistage classifier. 
To enable each stage of the classifier to operate as fast as 
possible, in each stage, classification is carried out by using 
the optimal set of features which are selected for that 
particular stage according to a classification error measure. 
To detect faces in an image, a window the same size as the 
faces to be detected,  scans the image and in each  location the 
part of the image contained in the window is input to the 
multistage classifier which quickly discards background 
regions within its initial stages, and spends more computation 
on promising  face-like regions. The presented results show 
that the proposed system yields good performance in terms of 
detection and false positive rates. The proposed framework is 
not limited to detecting faces and shall be used to detect other 
objects in an image as well.  

I. INTRODUCTION

ACE detection is the first step to be carried out in 
applications involving human face processing and 

perception. Applications including face 
recognition/identification, face and/or facial feature 
tracking, facial expression recognition, which are utilized 
in human-machine interface systems, image data bases, 
teleconferencing, and security systems. A fast and accurate 
detection framework enhances the performance of a face 
processing system and the amount of post-processing 
required. A thorough survey of previous works on face 
detection can be found in [2] and [3]. Many of the recent 
methods focus on learning-based techniques that are data 
driven [1], [4], [14], [17]-[19]; in these methods 
classification function or face model is learned from a set of 
training images which capture the representative variability 
of facial appearance [3]. Our system shall be regarded as a 
learning-based system. In many systems classification is 
done based on pixel gray values, rather than features 
extracted from them [4], [14] [17], [18]. There are many 
motivations for using features rather than the pixel values 
directly; the most common reason is that features can act to 
code ad-hoc domain knowledge that is difficult to learn 
using a finite quantity of training data. Moreover, a 
feature-based system can operate much faster than a 
pixel-based system [1]. In our previous work [27] we 
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presented a face detection framework based on low order 
2-dimensional Central Geometrical Moments (CGMs) of 
Face components and their horizontal and vertical 
gradients. Two-dimensional Moments [25] have been 
widely used in computer vision; typical examples of 
applications involving lower order moments in pattern 
recognition can be found in [20], [21]. The motivation 
behind using local object components is that they yield 
better results than Global features [15]. Since the detection 
process includes two major steps, i.e., feature extraction 
and classification, in order to speed up the detection 
process, in our previous system we proposed a fast method 
to extract local CGMs rapidly, and a fast multistage 
classifier [27]. Several fast algorithms have been described 
for computing geometrical moments for gray-level images 
[7], [22], [23], [24]; many of these methods compare their 
computational costs with Hatamian's digital filter method 
[7], and usually have computational costs comparable to 
Hatamian's method, specially for low order moments. In 
our previous paper [27] we propose a fast method to 
compute low order local geometrical moments, and we 
showed that its computational cost is much less than that of 
an improved version of Hatamian's method [8]. Moreover, 
unlike most of the other methods, its computational cost is 
invariant to scale (the size of the local window over which 
the moments are to be computed). In this system CGMs up 
to the order three are computed for object components, and 
to increase the accuracy of the system, we increase the 
number of components instead of using higher order 
moments. In our previous system in order to avoid 
round-off errors in the fast method proposed to compute 
local CGMs, the input image had to be resized to less than 
320-by-240 pixels, but in the new system we have 
overcome this limitation by improving the proposed 
method by utilizing the Kahan summation algorithm [28], 
and the effect of round-off error [10] is decreased greatly. 
 To speed up the classification process, we use a 
multistage classifier in the system. Multistage or cascade 
classifiers have been utilized for fast face detection [1], 
[11].  A multistage classifier consists of a successively 
more complex classifiers combined in a cascade structure; 
many of the scanning windows are quickly rejected by 
early stages of the cascade and the few promising 
(face-like) ones can make their way to the subsequent 
stages which do more complex processing on them; 
therefore, a multistage classifier acts like an attentional 
filter (a focus of attention filter) [1] and speeds up the 
classification process. A great majority of the input image 
which contains non-face patterns is processed by the few 
initial stages of the cascade classifier, and only a few 
face-like parts of the image can pass the initial stage and 
reach the higher stages. Therefore, in order to make the 
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cascade classifier operate fast, the initial stages should be 
designed as simple as possible, i.e., each stage classifier 
should be designed so that it can reach the required false 
positive and true positive (detection) rates by using the 
minimal number of features. In our previous system [27] 
the feature for each stage of the classifier were chosen 
heuristically; in the system presented in this paper the best 
minimal set of features are selected for each stage by using 
a feature selection algorithm which selects the best features 
among the huge number of possible features, according to a 
classification error measure. By using these selected 
features for each stage, the average number of operations 
per location required for detection decreases greatly, 
compared to our previous system in which the features for 
each stage were selected heuristically. 
 The remaining sections of the paper are organized as 
follows. Section 2 gives an overview of the system. In 
section 3 the features and the proposed fast method to 
extract them locally and how to reduce round-off errors are 
discussed. In section 4 the proposed feature selection 
algorithm and the training procedure of the multistage 
classifier are explained. Section 5 is dedicated to results, 
and finally the paper ends with conclusions in section 6. 

II. OVERVIEW OF THE SYSTEM

This system is intended for detecting multiple faces with 
different scales in a gray-scale image. Detection is carried 
out by shifting (sliding) a multi-scale window over the 
image and classifying the part of the image contained in the 
window as being either face or non-face.  

Each window first goes through a gradient filter which 
rejects windows whose mean vertical or horizontal gradient 
is less than a certain threshold. Many parts of the image 
with nearly constant gray levels are quickly rejected by this 
filter and are not further processed. If a window is rejected 
by this filter, the system proceeds to the next location; 
otherwise the window goes through a multi-stage classifier 
which determines if it is showing a face or not. A 
multi-stage classifier consists of a series of classifiers, 
structured in a cascade; if a window is rejected (detected as 
non-face) by any stage, the system proceeds to the next 
window; otherwise the window will go to the next stage. 
The location of a window which manages to pass through 
all stages of the multi-stage classifier is marked by the 
system, indicating a face location. 

At each stage of the classifier, CGMs for the selected 
components associated with that stage are computed. 

CGMs are then normalized for intensity and scale, by 
dividing each of them by mean intensity of the window and 

2++qp
wS  respectively [26], in which p and q are the order 

of the moment and wS  is the size of the window. Then the 
classifier of that stage (which in our system is an MLP 
Neural Network) classifies the window according to its 
computed features. The size of the window is gradually 
increased by a factor of 1.2, after each complete scanning 
over the image, i.e., S

wS 2.1=  with S  varying from -3 to 7 
in our system; therefore with a base window size of 
19-by-19 pixels, which is the size of the images in the 
training data base that we used, faces as small as 11-by-11 
and as large as 68-by-68 pixels will be detected by the 
system. After completing the search over the image for all 
scales, usually multiple detections occur for each face at 
contiguous locations; these multiple detections are then 
merged to determine the exact locations of faces contained 
in the subject image.  

III. FEATURES AND THEIR FAST COMPUTATION

 The features used in the system are Central Geometrical 
Moments (CGMs) of Face Components and their horizontal 
and vertical gradients. Face Components are irregular 
rectangular regions on the face image and its horizontal and 
vertical gradients, as shown in fig.1. Detection is carried 
out by shifting (sliding) a window with the same size as the 
faces to be detected, over the image and classifying the part 
of the image contained in the window as being either face 
or non-face based on the value of the CGMs of the 
Components inside the scanning window. Therefore, at 
each location of the image, CGMs for several Components 
inside the scanning window should be computed. In our 
previous paper [27] we presented a fast method to compute 
CGMs for any rectangular region in the subject image, with 
the number of calculations required, being independent 
from the size of the region. And, it was shown that our 
method is much faster than Hatamian's digital filter 
approach for fast moment computation [7] and its improved 
version [8], for a PC-based system [9]. In our previous 
method the subject image had to be scaled down to less than 
320-by-240 pixels (while preserving its aspect ratio, to 
avoid round-off errors that arose while computing CGMs. 
Round-off errors are caused because of the limited number 
of bits used for representing floating point numbers in 
computers. In this section after reviewing our previous 
method, we discuss the Kahan [28] summation algorithm 
and incorporate it into our previous method to decrease the 
effect of round-off errors. 

A. Computing CGMs for Face Components using IMMs  
Our face detector classifies the contents inside the 

scanning window as either face or non-face, based on the 
value of Central Geometrical Moments (CGMs) computed 
for the Components of that section of the subject image 
contained in the scanning window, and the Components of 
its horizontal and vertical gradients. Gradients are 
computed by using 3-by-3 vertical and horizontal Sobel 
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Fig. 1.  Some possible Components of a face image and its horizontal 
and vertical gradients. 
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filters. In fig.1 a face image and some possible 
corresponding components are shown. Components are 
actually a number of sub-windows inside the window. For 
each stage of the multi-stage classifier different sets of 
components may be used, also the number of components 
usually increases in higher stages of the classifier because 
those stages have to solve a more difficult problem than that 
of previous stages; since each stage of the classifier is 
trained by using false positives of the previous stages; 
training procedure is described in the next section. 

We have selected the best components for each stage of 
the classifier in this paper to optimize the speed of the 
classifer. There exist numerous methods for feature subset 
selection which shall be used for finding the best 
components for each stage of the classifier. Since the 
number of possible components among which the best 
components should be selected is very large, a fast subset 
selection method is presented in the next section. One may 
find a survey of feature selection methods and their 
applications in [5] and [6].  

In the remaining of this subsection, we review our 
previously proposed method for fast local computation of 
CGMs and in the next subsection we discuss how to alter 
this method to reduce the round-off error. 

Geometrical Moments, qpm , , and Central Geometrical 

Moments of the order )( qp + , qp,μ , for a rectangular 

region R , in image I (see fig. 2) are defined respectively, 
as follows: 

∈

=
Ryx

qp
qp yxIyxRm

,
, ),()(  (1) 

∈

−−=
Ryx

qp
qp yxIyyxxR

,
, ),()()()(μ  (2) 

 In (2), x  and y  refer to the coordinates of the center of 
the rectangular region. 

Calculating CGMs up to the order three by using (1) 
requires ( wh10 ) additions and ( wh20 )   multiplications, in 
which w  and h  are width and height of the region, 
respectively, as shown in fig. 2; the total number of 
operations sums up to 12000 operations for a 2020× pixel 
region and the number of operations increases quadratically 
with the size of the region. Such a large number of 
operations per location can make a multi-scale and 
exhaustive (pixel-by-pixel) search, infeasible for a fast 
detection system. Whereas the method proposed here, 
enables the system to perform an exhaustive multi-scale 
search with less than only 500 operations for calculation of 
CGMs up to the order three for any region in the image, 
independent of its size. Our method was in part inspired by 
Integral Image concept presented in [1] and the fact that 
Computation of Geometrical Moments for any region 
requires a double-summation over that region. The method 
begins with initial computation of 16 matrices (one for each 
order of the moment up to three), where each matrix is 
denoted by qpIMM ,  (Integral Moment Matrix of 

order )( qp + ). These matrices are stored in memory, and by 

using them, Geometrical Moments, qpm , , can be computed  

for any region in the image, independent of its size in a few 
operations (only three additions/subtractions). After 
computing Geometrical Moments for the region of interest, 
Central Geometrical Moments are obtained by utilizing the 
binomial expansion of (2). 

  Each order of the matrix qpIMM ,  is a cumulative 

matrix having the same size as the input image I, defined as 
follows: 

= =

=
x

i

y

j

qp
qp jiIjiyxIMM

1 1
, ),(),(  (3) 

  Each order of qpIMM ,  can be computed in one pass 

over the subject image by using an intermediate matrix 

qpMM ,  (Moment Matrix), and a pair of recurrences, 

formulated as follows: 

),(),(, yxIyxyxMM qp
qp =  (4) 
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In (5), ),( yxr  is the cumulative sum of rows 

of qpMM , , and 0),1(,0)1,( , =−=− yIMMxr qp .

After computing all qpIMM ,  matrices up to the order 

three, Geometrical moments, qpm , , for any region R in the 

subject image (see fig. 2) can easily computed as follows: 
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 Then, Central Geometrical Moments of the region R can 
be computed by utilizing the binomial expansion of (2); as 
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Fig. 2.  Rectangular region R in image I, with its top left corner 
denoted by ),( RR yx .
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illustrated in the following equation: 
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B. Decreasing round-off error by using Kahan 
summation algorithm 

Basically, when a small number is added to a very large 
number, as what occurs in recursive cumulative sum of (5), 
the lower order bits of the small number are lost, due to 
limited number of bits dedicated for representing floating 
point numbers. The Kahan summation algorithm [28] 
works by introducing a correction factor to the summation. 
Suppose we are going to compute the summation: 

1

n

i
i

s x
=

=  (8) 

The Kahan algorithm to perform the above summation is 
shown fig.3. Each time a summand is added, there is a 
correction factor C which will be applied on the next loop. 
The lower order bits of y which are lost in the summation 
are recovered in C. So, in the next loop first, the correction 
factor is subtracted from the summand and then the 
summation is carried out. There is subtle point in the Kahan 
algorithm; that is, the correction factor, C, is not subtracted 
from T immediately, but it is subtracted from the summand 
in the next loop! This is because if we subtract the 
correction factor from T right away, again the round-off 
error occurs in the subtraction, because T is a large number 
and C is a small number. 
It can be proved that the summand perturbation bound 

decreases from Nε to 2ε by using the Kahan summation 
algorithm, with N  andε  being the number of summands 
in the summation, and the machine epsilon respectively 
[28].
 By incorporating the Kahan algorithm into the recursive 
equation of (5), the round-off error shall be decreased. In 
(5) ),( yxr  is the cumulative sum of rows of qpMM , and

,p qIMM is the cumulative sum of columns of ),( yxr ;

therefore, we can first compute the ),( yxr matrix and then 

compute the ,p qIMM matrix from it. The pseudo code of 

the altered recursive summation of (5) is shown in fig.4. In 
the pseudo code W and H are the width and height of the 
subject image respectively. 

IV. MULTISTAGE CLASSIFIER AND FEATURE SELECTION

A multistage classifier is a cascade of classifiers at each 
stage of which a classifier is trained to detect almost all 
objects of interest while rejecting a certain fraction of the 
non-object patterns, and since the overall detection and 
false-positive rates of the multistage classifier is the 
product of those of individual stages, high detection rates 
and very low false-positive rates shall be obtained from 
cascade classifiers [1], [11]. Moreover, a multistage 
classifier attempts to reject as many non-face windows as 
possible, at the earliest possible stages, and since an 
overwhelming majority of scanned windows belong to 

Fig. 4.  Computing the Integral Moments Matrices, by incorporating the Kahan summation algorithm to reduce the round-off error. a) first 
Computing the accumulative row sum of 

qpMM ,
, b) and then computing the accumulative column sum of r .

Fig. 3.  The Kahan Summation Algorithm.  
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non-face class, this structure increases the speed of the 
system drastically [1], [11]. A great majority of the input 
image which contains non-face patterns is processed by the 
few initial stages of the cascade classifier, and only a few 
face-like parts of the image can pass the initial stage and 
reach the higher stages. Therefore, in order to make the 
cascade classifier operate fast, the initial stages should be 
designed as simple as possible, i.e., each stage classifier 
should be designed so that it can reach the required false 
positive and true positive rates by using the minimal 
number of features. In our previous system the feature for 
each stage of the classifier were chosen heuristically; 
whereas, in the system presented in this paper the best 
minimal set of features are selected for each stage by using 
a feature selection algorithm which selects the best features 
among the huge number of possible features, according to a 
classification error measure. By using these selected 
features for each stage, the average number of operations 
per location required for detection decreases greatly, 
compared to our previous system in which the features for 
each stage were selected heuristically. In subsection A we 
describe the feature selection procedure used to select the 
best components for each stage, and in the subsection B the 
training procedure of the cascade classifier is describes. 

A. Feature Selection 
 For each stage of the classifier the best features are 
selected by using the false positives of previous stages, 
which constitute the non-face class, and the face samples of 
MIT CBCL data base [16]. The false positives are gathered 
by scanning several images containing no faces, like, 
natural scenes and different textures. The features used in 
the system are CGMs of Face Components and their 
horizontal and vertical gradients. The number of possible 
components for an image tends to be very large; therefore, 

in order to make feature selection feasible, a 10by10 
network is overlaid on the images and all possible 
components in this network are considered for feature 
selection (see fig. 5a). The total number of components in 
the networks equals 3025 for each of which 16 CGMs 
should be computed; and this should be done for horizontal 
and vertical gradients as well. Therefore a total number of 
3 16 3025 145200× × = features should be evaluated to 
select the best features at each stage. Due to the large 
number of features to be evaluated, an aggressive feature 
selection algorithm is presented here which works based on 
a classification error criterion. The feature selection 
algorithm works as follows: first for each single feature, its 
value is computed for all the samples in the face and 
non-face classes, and then the histograms of the feature 
values for each class are computed. By using these two 
histograms, the classification error corresponding to the 
feature being evaluated is determined, by computing the 
Bayes error as the classification error measure. The features 
with smaller Bayes errors should be selected for 
classification, but it should be noted that features are 
correlated and selecting correlated features would not 
decrease the classification error since they are redundant 
[5], [6]; therefore after computing the Bayes error for all the 
features, they are clustered based on the spatial correlation 
of components and their Bayes error. Each cluster would 
contain features with similar Bayes error whose 
components have a high spatial correlation value. Then the 
required number of features for training each stage’s neural 
network is picked out from the clusters with least Bayes 
errors. The spatial correlation of components is simply 
defined as their spatial overlap, which is equal to the ratio 
of cardinality of the intersection of two components’ pixel 
sets to the cardinality of the union of their pixel sets; for the 
two components shown in fig. 5b, their spatial correlation 
shall be defined by: 

,A B

A B
C

A B
=  (9) 

 The flowchart of the feature selection algorithm is shown 
in fig. 6. In the flowchart, Cε , Sε  and ,C SC denote the 
Bayes errors of and spatial correlation between the Current 
feature and the Seed of the current cluster respectively. 
Also, maxε and minC are constants defining the maximum 
allowed Bayes error difference and minimum allowed 
spatial correlation between cluster members; the values 
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Fig. 6.  The flowchart of the feature selection algorithm. 

Fig. 5.  a) Components in the overlaid network on the image. b) Two 
arbitrary overlapping Components. 
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chosen for these parameters in our experiments has been 
0.1 and 0.5 respectively. In the results section the selected 
features for the first two stages of the classifier are 
presented.  

B. Training Procedure of the Cascade Classifier 

In a multi-stage classifier the overall detection (true 
positive) rate and false positive rates are the products of that 
of individual stages [1]. Therefore, by increasing the 
number of classifier stages, both the overall detection and 
false positive rates decrease; so, in order to have a high 
overall detection rate, each stage of the multi-stage 
classifier is trained so that it can achieve a detection rate 
near 100% while rejecting a certain fraction of non-face 
patterns. In a cascade structure each subsequent classifier is 
trained by using false positives of previous stages [1]. As a 
result, each subsequent stage faces a more difficult problem 
than that of the previous stages; therefore the number of 
features, which in our system depends on the number of 
Components, should normally be increased for each 
subsequent classifier to achieve a detection rate near 100%, 
while maintaining a reasonable rejection rate [1]. A 
detection rate near 100% shall be achieved by tuning the 
decision threshold of each stage classifier by observing its 
ROC (Receiver Operator Characteristics) curve. The 
multistage classifier in our system incorporates an MLP 
(Multi-Layer Perceptron Neural Network) with one hidden 
layer in each stage. The output of each stage's MLP is 
compared with a threshold, associated with that stage; input 
patterns which result in an output value greater than the 
threshold are classified as face, otherwise, as non-face. By 
varying the mentioned threshold from 1 to -1 and 
determining the detection and false positive rates, the ROC 
curve for the classifier in each stage is drawn. According to 
this curve the proper value for the threshold which results 
in a detection rate above 0.99%, is determined. 

To train the MLPs we used the Resilient 
Back-Propagation algorithm [12] which provides much 
faster training than normal Gradient Descent algorithm 
[13]. Each element of the feature vectors (CGMs of 
Components) was normalized to zero mean and unity 
standard deviation prior to training; the target values for 
face and non-face classes were selected as 1 and -1 
respectively. To train the first stage we used the CBCL MIT 
data base [16] and for subsequent stage, 2800 faces in 
CBCL MIT data base and the same number of false 
positives from previous stages were used. To gather the 
false positives the system was fed with several images 
containing no faces, like natural scenes or different 
textures, etc, and all the detections were considered as false 
positives. 

One problem that may occur in the training of a Neural 
Network is over-fitting [13], i.e., the error on the training 
set is driven to a very small value by the training algorithm, 
but the network's classification error when presented with 
new data tends to be large and therefore the network 
demonstrates poor generalization. In order to avoid 
over-fitting we divided the available data set into two 
subsets, one for training and one for validation. The 
training was continued until the error on the validation set 
stopped decreasing. For each stage of the classifier prior to 
training the best features for that stage are selected by using 
algorithm presented in the previous subsection. The 
number of neurons and components normally increases for 
higher stages as described before (see table I).  

V. RESULTS

In our experiments we trained a seven-stage classifier 
using the method described in the previous section. Table I, 
summarizes the parameters of each stage of the classifier 
after training. It can be seen than the complexity of each 
subsequent stage classifiers gradually increases in terms of 
the number of neurons and components, since higher stages 

(a)                                                                            (b) 
Fig. 7.  Selected features for a) First stage, b) Second stage, classifiers, including the number of operations required to compute them. 
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face a more difficult problem than early stages. Since the 
overall detection and classification rates of a multi-stage 
classifier is the product of that of individual stages [1], one 
can expect a detection rate of 93.97% with false positive 
rate of 1.15e-5 from the system, according to Table I. 
Nevertheless the false positive rate of the system can be 
decreased by adding more stages to the classifier. The 
selected features for the first two stages of the classifier are 
shown in fig. 7. It can be seen that different features are 
suitable for different stages of the multi-stage classifier. 
The average number of operations required to compute the 
features for classification at each location in the subject 
image can be obtained as follows [1]: 

1
2

( )
K

i j
i j i

N n n f
= <

= + ∏  (10) 

In the above equation in is the number of operations 
required to compute all the features in the i-th stage of the 
classifier, and if  is the false positive rate of the i-th stage. 
The average number of operations to compute features per 
location according to table I equals 209 for the system; 
whereas, in our previous system [27] this quantity was 
about 2240 operations per location. Effectively, in the new 
system by using the best selected features for each stage, 
the average number of operations per location decreases 
considerably compared to our previous system in which the 
features for each stage were selected heuristically, therefore 
a significant speed increase is achieved in the new detection 
system. 

VI. CONCLUSION

In this paper, we presented a fast face detection system 
which excels previous face detection [27] system in two 
major aspects. Firstly, we improved our proposed method 
for fast calculation of local CGMs, by incorporating Kahan 
summation algorithm [28] to decrease the effects of 
round-off error. Secondly, in this paper we proposed an 
aggressive feature selection algorithm to select best 
features for each stage of the multistage classifier; which 
enabled the system to achieve the desired detection 
performance by using fewer features, which in turn resulted 

in a great reduction in the average number of calculations 
required to compute features per location, and therefore a 
significant speed advantage over our previous system is 
obtained. 

Since the number of features among which the best ones 
had to be selected for each stage was very large, we 
proposed an aggressive feature selection algorithm based 
on Bayes error as the classification error measure and 
clustering to eliminate correlated features. There exist other 
feature selection methods whose performance shall be 
investigated for this problem and compared with our 
proposed method. Also, using other statistical classifiers 
for the stage classifier like SVMs (Support Vector 
Machines), and more efficient algorithms for training the 
cascade of classifiers could be examined in future works. 
The framework presented in this paper is general in that no 
prior assumptions are made on the type of the object to be 
detected by the system. Moreover, the feature set used in 
the system is a comprehensive one in that it includes both 
the intensity and gradient information of the object; this 
comprehensive feature set combined with the presented fast 
feature selection algorithm makes the proposed framework 
suitable for detecting other object types as well, as long as 
proper training data bases are available for them.  

REFERENCES

[1] P. Viola and M. -J. Jones, “Robust Real-Time Face Detection,” 
International Journal of Computer Vision, vol. 57, no. 2, pp. 

137-154, 2004 
[2] M.-H. Yang, D. J. Kreigman, and N. Ahuja, “Detecting Faces in 

Images: A Survey,” IEEE Transactions on Pattern Analysis and 
Machine Intelligence (PAMI), vol. 24, no. 1, pp.34-58, 2002. 

[3] M.-H. Yang, “Recent Advances in Face Detection,”   IEEE ICPR 
Tutorial, Cambridge, United Kingdom, August, 2004. Available: 
http://vision.ai.uiuc.edu/mhyang/face-detection-survey.html

[4] H. Rowley, S. Baluja, and T. Kanade,“Neural network-based face 
detection,” IEEE Patt. Anal. Mach. Intell., vol. 20, pp.22–38, 1998. 

[5] M. Dash and H. Liu, “Feature Selection for Classification,” 
International Journal of Intelligent Data Analysi, vol. 1, pp. 
131-156, 1997. 

[6] E. Cantu-Paz, S. Newsam, and C. Kamath, “Feature Selection in 
Scientific Applications,”  in Proc. Int. Conf. on Knowledge 
Discovery and Data Mining, pp. 788-793, 2004. 

[7] M. Hatamian, “A real-time two-dimensional moment generating 
algorithm and its single chip implementation,” IEEE Trans. Acoust., 
Speech,  Signal Processing,vol. ASSP-34, no. 3, pp. 546-533, 1986. 

TABLE I
PARAMETERS OF EACH STAGE CLASSIFIER AFTER TRAINING

21

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Security and Defense Applications (CISDA 2007)



[8] W.-H.Wong and W.-C.Siu, “Improved digital filter structure for fast 
moments computation,” in IEE proc. Vis. Image Signal Process.,
vol. 146, No. 2, pp. 73-79, April 1999. 

[9] D. Alpert and D. Avnon, "Architecture of the Pentium 
Microprocessor," IEEE Micro, vol. 13, no. 3, pp. 
11-21, May/Jun, 1993. 

[10] J. Martinez and F. Thomas, “Efficient Computation of Local 
Geometrical Moments,” IEEE Trans. On Image Processing, vol. 11, 
no. 9, pp. 1102–1111, September 2002. 

[11]  R. Lienhart, A. Kuranov, and V. Pisarevsky, “Empirical Analysis of 
Detection Cascades of Boosted Classifiers for Rapid Object 
Detection,” Lecture Notes in Computer Science, vol. 2781, 
pp.297-304, 2003. 

[12] M. Riedmiller and H. Braun, “A direct adaptive method for faster 
backpropagation learning: The RPROP algorithm,” in Proc. of the 
IEEE International Conference on Neural Networks, pp. 586-591, 
1993. 

[13] M. T. Hagan, H. B. Demuth, and M. H. Beale, Neural Network 
Design, Boston, MA: PWS Publishing, 1996. 

[14] K. Sung and T. Poggio, “Example-based learning for viewbased face 
detection,” IEEE Patt. Anal. Mach. Intell., vol. 20, pp.39–51, 1998. 

[15] B. Heisele, T. Serre, M. Pontil, T. Vetter, and T. Poggio, 
“Categorization by Learning and Combining Object Parts,”
Advances in Neural Information Processing System, vol. 2, no. 14, 
pp.1239-1246, 2001. 

[16] CBCL Face Data Base #1 
MIT Center for Biological and Computation Learning 
Available: http://www.ai.mit.edu/projects/cbcl

[17] E. Osuna, R. Freund, and F. Girosi, “Training support vector 
machines: an application to face detection,” In Proc. Of the IEEE 
conf. on Computer Vision and Pattern Recognition, pp. 130-136, 
1997. 

[18] H. Schneiderman and T. Kanade, “A statistical method for 3D object 
detection applied to faces and cars,” Proceedings of Int. Conference 
on Computer Vision and Pattern Recog., vol. 1, pp. 746-751, 2000. 

[19] D. Roth, M. Yang, and N. Ahuja, “A snowbased face detector,” In
proc. Advances in Neural Information Processing Systems, pp. 
855-861, 2000. 

[20] M.-K. Hu, “Visual Pattern recognition by moment invariants,” IRE 
Trans. Inform. Theory, vol. IT-8, pp. 179-187, 1962. 

[21] Y. S. Abu-Mostafa et al, “Recognition aspects of moment 
invariants,” IEEE trans. Pattern Anal. Machine Intell., vol. PAMI-6, 
pp. 698-706,1984. 

[22] B. Li, “High-order moment computation of grey-level images,” IEEE 
trans. Image Processing, vol. 4, pp. 723-730, 1992. 

[23] J. Martinez and F. Thomas, “A reformulation of gray-level image 
geometrical moment computation for real-time applications,” in
IEEE conf. Robotics and Automation, vol. 3, pp. 2315-2320, 1996. 

[24] T-W. Shen, D. P. K. Lun, and  W. C. Siu, “Fast Algorithm for 2-D 
image moments via Radon transform,” in int. Conf. Acoustics, 
Speech, and Signal Processing, vol. 3, pp. 1327-1330, 1996. 

[25] C.-H. Teh and R. T. Chin, “On Image Analysis by the Methods of 
Moments,” IEEE Ttrans. On Pattern Recognition and Machine 
Intelligence, vol. 10, no. 4, pp. 496-513, 1998. 

[26] A. Khotanzad and Y. H. Hong, “Invariant Image Recognition by 
Zernike Moments,” IEEE Trans. On Pattern Analysis and Machine 
Vision, vol. 12, no. 5, pp. 489-497, May 1990. 

[27] S. Kh. Pakazad, K. Faez and F. Hajati, “Face Detection Based on 
Central Geometrical Moments of Face Components,” in Proc. of the 
IEEE International Conference on Systems, Man and Cybernetics 
2006, to be published. 

[28] W. Kahan, “A Survey of Error Analysis,” in Information Processing 
71, vol. 2, pp. 1214-1239, 1972. 

22

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Security and Defense Applications (CISDA 2007)


