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Abstract— Evolutionary algorithms have been applied to a
variety of network flow problems with acceptable results. In
this research, a multiobjective evolutionary algorithm (MOEA)
is used to solve a variation of the multicommodity capacitated
network design problem (MCNDP). This variation represents
a hybrid communication network as found in network cen-
tric models with multiple objectives including costs, delays,
robustness, vulnerability, and reliability. Nodes in such centric
systems can have multiple and varying link capacities, rates and
information (commodity) quantities to be delivered and received.
Each commodity can have an independent prioritized bandwidth
requirement as well. Insight to the MCNDP problem domain
and Pareto structure is developed. The nondominated sorting
genetic algorithm (NSGA-II) is modified and extended to solve
such a MCNDP. Since the MCNDP is highly constrained, a novel
initialization procedure and mutation method are also integrated
into this MOEA. Empirical results and analysis indicate that
effective solutions are generated very efficiently.

I. INTRODUCTION

The basis of military doctrine is presented in the Department
of Defense document entitled Joint Vision (JV) 2020. The
document outlines goals that attempt to provide the formation
of a joint military force that is dominant in all aspects of
military operations. Information superiority is one of the key
tenets outlined in the document. Having information superior-
ity allows for network centric warfare (NCW). NCW attempts
to translate an information advantage into military advantage
through the use of a geographically dispersed robust network.
This network has many nodes, each of which has information
that may be of value to another node. Therefore the design of
robust networks is paramount in the development of associated
NCW.

This research focuses on the design of robust communica-
tions networks. We use a variant of the fairly detailed network
design problem (NDP) model called the multicommodity ca-
pacitated network design problem (MCNDP). The MCNDP is
an NP-complete problem [1] that models many key aspects of
a communications network. This detailed model enables us to
generate solutions that can effectively meet mission objectives
in an efficient manner.

The views expressed in this article are those of the authors and do not reflect
the official policy of the United States Air Force, Department of Defense, or
the United States Government.

This research consists of the following sections. Section II
presents a high level overview of the network design problem
and the methods that researchers have used to solve it. The
section then delves deeper into the MCNDP approach and
discusses some of the contemporary research. The complexity
of the problem is discussed, as well as some of the other
stochastic approaches that researchers have used. Section III
discusses the MCNDP problem domain in more detail. Specific
problem details are discussed including the mathematical
problem formulation, problem objectives, and the problem
difficulty. Section IV presents the MOEA design. The section
briefly touches on MOEAs and the specific MOEA used, a
modified NSGA-II (M-NSGA-II). The section concludes with
a discussion of how the problem domain is integrated into the
algorithm. Section V presents the results of the experiments
and provides analysis of the results.

II. NETWORK DESIGN PROBLEM BACKGROUND

Historically, there are many types of NDPs that researchers
have modelled in order to solve real world problems. They
range from fairly simplistic models to more in depth mod-
els that allow for more flexible network design parameters.
The main issue with all networks is being able to move a
commodity from its source node to its destination node. The
commodity can be information or some type of product. If
the network being modelled is very simplistic, a variation of
the network flow problem can be implemented. If the model is
more complex, then a variation of the MCNDP would be more
appropriate. This section briefly discusses several approaches
for solving the NDP and lists the advantages and disadvantages
of each.

A. Network Flow Problems

Network flow problem have been researched as far back
as 1736, when the famous Swiss mathematician Leonhard
Euler proved that the Königsberg bridges problem could not be
solved. There are many other examples of network flow prob-
lems, such as the Chinese Postman Problem, but most of these
are not well suited to model a communication network. Many
models incorporate flows that start and stop at the same node,
whereas communication networks model flows from multiple
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points to other points in the network. Speed and reliability are
two of the major criteria when designing a communication
network. In general, communication network models typically
examine one or more of the following components [2]:

1) The physical hardware - nodes and arcs (computers,
routers, communication lines, etc)

2) The information packets (commodities) - bandwidth
required, priority, etc.

3) The limited capability of the physical hardware to handle
the information - capacity limits on the arcs, buffers in
the nodes, etc.

Given the specifications of the communication network
model, a researcher can use a variety of network flow problem
models to solve a specific problem. This section briefly dis-
cusses a few of the network flow models that can be employed
to aid in the design of a communication network. Approaches
to solving these problems are presented, the complexity of
the problem is addressed, as well as stochastic approaches
researchers have previously applied to the problem. First, we
present the approaches to the problem.

1) Minimum Cost Flow Problem: One of the simplest
communication network models is the minimum cost flow
problem. This problem finds the minimum cost between two
nodes, based on the arc costs. For this problem, each network
arc has a predetermined length or cost. The goal is to simply
connect the nodes via the arcs to produce the shortest aggre-
gate paths for the network. This simplistic model does not
take into account any constraints at the nodes or arcs, so it
is not an ideal choice to use for designing a communications
network.

2) The Shortest Path Problem: The shortest path problem
is similar to the minimum cost flow problem, but it introduces
upper and lower bounds on the arc flows. Like the minimum
cost flow problem, this problem simply finds the shortest path
between two nodes. Each network arc has a predetermined
length or cost. This model does have some constraints on
the arcs, so it is more realistic than the minimum cost flow
problem, but it doesn’t take into account the commodities that
need to flow on the network.

B. Uncapacitated Network Design Problem

In the uncapacitated NDP Ahuja et al [3] the network must
route multiple commodities. Each commodity k has a single
source node sk and a single destination node dk. This problem
differs slightly from our problem in that each arc introduced
into the network has enough capacity to route the flow of all
of the commodities present on the network. This research is
geared more toward the real-world, where network connections
have finite capacities, and the arcs may not be able to handle
large amounts of commodity flow.

A mathematical description of the uncapacitated NDP
model is [3–5]:

Let xk denote the vector of flows of commodity k on the
network.

Let xk
ij denote the fraction of the required flow of commod-

ity k to be routed from the source sk to the destination dk that
flows on arc (i, j).

Let ck denote the cost vector for commodity k (ck
ij is the

per unit cost for commodity k on arc (i, j) multiplied by the
flow requirement of that commodity).

Let f denote the fixed cost vector for the construction of
each arc in the network.

Let yij be a zero-one variable indicating whether arc (i, j)
is selected as part of the network design.

Given these definitions, Equations 1 through 5 mathemati-
cally describe the problem.

Minimize
∑

1≤k≤K

ckxk + fy (1)

subject to

∑
{j:(i,j)∈A}

xk
ij −

∑
{j:(j,i)∈A}

xk
ji =

⎧⎨
⎩

1 if i = sk

−1 if i = dk

0 otherwise
(2)

∀i ∈ N, k = 1, 2, . . . ,K

xk
ij ≤ yij ∀(i, j) ∈ A, k = 1, 2, . . . ,K (3)

xk
ij ≥ 0 ∀(i, j) ∈ A, k = 1, 2, . . . ,K (4)

yij is binary ∀(i, j) ∈ A (5)

Simply stated, the goal of the uncapacitated network design
problem is to find the lowest cost of a network based on
both fixed and variable costs. Fixed costs are the number
of arcs fy that need to be constructed for the network. The
variable costs are a summation of the costs of the commodities
flowing over the necessary arcs to reach their destination. The
constraints make this problem more difficult. Node balance
constraints, listed in Equation 2, ensure that 100% of each
commodity leaves its source node and arrives at its destination.
It also ensures that the intermediate nodes are balanced, i.e.
they send the same amount of a commodity that they receive.
Constraints 3 through 5 ensure that a link is present for every
commodity flow, the commodity flows are non-negative, and
arcs are either present or not. As stated earlier, a limitation of
this model is that arcs have unlimited capacity. This unlimited
capacity allows for all commodities to flow across the network.
In reality, it may be necessary to drop a commodity in
order to meet arc capacity constraints. This leads into the
multicommodity capacitated network design problem.

C. Multicommodity Capacitated Network Design Problem
(MCNDP)

The MCNDP is similar to the uncapacitated NDP with
capacity limits included with each arc. A good mathemati-
cal formulation of the problem is presented in [1] and [6].
The MCNDP formulation is similar to the variant used in
this research, and discussed in further detail in Section III-
B. The MCNDP formulation views dropped commodities as
constraints. In this research, a dropped commodity is allowed,
but a steep penalty is applied for every dropped commodity.
This type of implementation allows the algorithm to find
solutions to networks that may otherwise be unsolvable due
to the capacity limits on the arcs.
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D. MCNDPs and the Network Centric Framework

MCNDPs can have as objectives costs, delays, robustness,
vulnerability, and reliability with associated constraints of net-
work flow capacities, rates, and quantities of information. The
optimization of such complex MCNDPs is an integral but low-
level element of network centric systems design. These high-
level robust centric systems by definition must provide im-
proved information sharing and collaboration between network
elements. Such systems enhance the quality of information
awareness, improving sustainability, and mission effectiveness
and efficiency. The centric network includes all dynamic in-
formation elements and applied so as to maximize the desired
decision and action impact. Near instantaneous cooperation
between all network forces and elements is of course desired
to effectively accomplish each mission. Moreover, in real-
world operations, an integrated and distributed network centric
operating system (NCOS) is required to manage information.
The NCOS is a key element in network centric warfare
(NCW). However, we only focus on the generation of an
”optimized” flow of quality information given some of the
above objectives and constraints of a static network. Since
we show that static MCNDPs can be solved quickly using an
MOEA, future NCOSs could include this process in dynamic
environments where various information channels become un-
available, change their characteristics, or information priorities
are modified.

E. Approaches for Solving these Problems

Researchers have approached the NDP in various ways.
Depending on the requirements of the problem, the networks
can be modelled as a probabilistic undirected graph, degree
constrained spanning tree (DCMST), and a mixed integer
linear program (MILP) to name a few.

Dengiz et al [7] and Flores et al [8] solved their NDPs using
a probabilistic undirected graph. In this approach, the network
is modelled after a graph that consists of nodes, arcs, and the
reliability of the links. The model does not take into account
the capacity of the links and the models presented in the above
papers only looked at fixed costs (total cost of all arcs in the
network). Since commodities are not a part of this model, they
did not include variable costs (costs to send commodities over
the arcs) as part of their objective function.

Several researchers [4, 6, 9] model the NDP using a
DCMST. This approach consists of nodes, arcs, and degree
constraints for each node. The degree constraint limits the
number of arcs that can be attached to each node. The objective
function only calculates the fixed cost of the network and
commodities are not part of the problem formulation.

Erwin [4] applied the MILP approach. This approach uses
matrices to represent the node, arc, and commodity values.
The goal is to minimize the total cost of the network, which
includes fixed costs, variable costs, and a penalty function
for dropping commodities. This method incorporates more
network detail than the previously mentioned methods. Given
the extra detail, it is capable of producing better solutions. But
a disadvantage of using this method is the amount of time it
takes to search for all possible solutions. This research extends

Erwin’s by applying an MOEA to the MILP and looking at
the total flow results and the average number of hops as the
two objectives.

F. Complexity of Problem

Some models of network design problems can be im-
plemented using polynomial time algorithms. The classical
implementation of the minimum spanning tree problem is an
example of a problem model that can be solved in polynomial
time [10]. But the multicommodity capacitated network design
problem is an NP-complete problem [1, 11]. This means there
exists no polynomial deterministic algorithm that can solve a
realistically sized problem instance in a reasonable amount of
time. For this reason, stochastic approaches are often applied
to the problem.

G. Stochastic Approaches

Erwin [4] attempted to use some heuristic methods to solve
the MCNDP problem. To do this he simplified the problem into
a DCMST, similar to the ones implemented by [6, 9]. Since
the DCMST ignores traffic requirements, it must be combined
with the MILP approach. The MILP phase of the heuristic
starts with a minimal solution generated by the DCMST. Using
this method no longer guarantees optimality, but it is able to
generate a solution that would be considered a ”good” solution
to the decision maker, in a more efficient manner.

Alvarez et al [1] used a greedy randomized adaptive search
procedure (GRASP) embedded scatter search to solve the
MCNDP. GRASP [12] is a two phase algorithm that is used
to solve large optimization problems. The first phase, the
construction phase, iteratively generates a feasible solution that
is created using an adaptive greedy function and random se-
lection. Once the construction phase completes, it is improved
through the use of a local search technique. Scatter search
is a population based algorithm that constructs solutions by
combining previous solutions. This is similar to some forms
of crossover, but uses more bookkeeping in order to create high
quality and diverse solutions [1]. Their research objective is to
minimize the total cost of the network, but considers dropped
commodities as hard constraints.

Zaleta et al [13] used a Tabu search-based algorithm to solve
the MCNDP. Tabu search uses long and short-term memory.
The short-term memory allows the algorithm to exploit a
region in the search space. The long-term search is used to
explore the search space in an effort to avoid convergence on
a local optimal solution instead of the global optimal solution.
Their research solved the same variant of the MCNDP as [1],
where dropped commodities are not penalized and considered
for a solution but are considered hard constraints and as such,
are invalid solutions.

Chou et al [9] applied a genetic algorithm (GA) to the MC-
NDP. Their research used a DCMST to model the problem. As
stated earlier, the DCMST model does not utilize commodities
when determining the solution. Their research focuses on the
impact that mutation, crossover, and encoding have on the
performance of their GA. They use a repair function as well
as a penalty function to handle any solutions that fail to meet
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constraints. Our research differs in that we use commodities
and we attempt to generate valid or ”near valid” solutions with
our initialization process and mutation operator.

Lo et al [6] applied a multiobjective hybrid genetic al-
gorithm (MOHGA) to solve the MCNDP. Their work also
uses a DCMST model, so commodities are not part of their
equation. Their goal is to minimize the fixed cost of connecting
nodes via arcs and to minimize the average delay of each arc.
The MOHGA algorithm uses four subpopulations which are
generated using a variety of methods [6]. These subpopulations
are then mixed to produce the next generation. The algorithm
fairs well compared to the vector evaluated genetic algo-
rithm (VEGA) [14] and the single-objective genetic algorithm
(SOGA) [15]. Since the SOGA is a single-objective algorithm,
equal weighting of each objective was applied in order to come
up with a solution. Their research differs from our in that
commodities are not part of the problem model.

III. PROBLEM DOMAIN APPROACH

This section presents our approach to solve the MCNDP
problem. Section III-A gives an overview of the variant of the
MCNDP. Section III-B presents the mathematical formulation
of the problem. Section III-C details the specific objectives
associated with the problem. Section III-D discusses the dif-
ficulty of the problem.

A. Problem Overview

The specific goal of this research is to design a network
given specific network requirements and limitations. These
requirements and limitations are passed as input files that de-
scribe the network characteristics and the commodity require-
ments. From this input, the objective is to design a network
that optimizes user defined objectives. For this research, the
total cost and average number of hops are optimized. The next
section presents the mathematical formulation of the problem.

B. Problem Formulation

This research utilizes the MILP problem formulation created
by Erwin [4]. This formulation is a modification of the
uncapacitated NDP by Ahuja et al [3] (discussed in Section
II-B). It is a variant of the MCNDP. This formulation differs in
two key respects. First, the Erwin formulation includes degree
and interface constraints to accommodate a hybrid network.
Secondly, the formulation includes capacity constraints on
all the arcs. This is done in an effort to mirror real-world
telecommunications networks that have multiple types of links
and capacities. The problem formulation, as presented initially
by Erwin [4], is as follows:

Let N denote the set of nodes, K the number of commodi-
ties, and F the number of interface types.

Let (i, j, f) denote the arc connecting node i to node j by
interface type f .

Let A denote the node-incidence matrix where aijf = 1 if
node i is incident to node j via interface type f , and aijf = 0
otherwise.

Let xk
ijf denote the fraction of the required flow of com-

modity k to be routed from the source sk to the destination
dk that flows on arc (i, j, f).

Let denote the yijf variable indicating whether arc (i, j, f)
is selected as part of the network topology.

Let vk
ijf denote the per unit cost for commodity k on arc

(i, j, f) multiplied by the flow requirement for that commodity.
Let cijf denote the fixed cost of including arc (i, j, f) in

the network.
Let uif denote the number of interfaces of type f at node

i.
Let bk denote the required bandwidth for commodity k.
Let capijf denote the capacity of arc (i, j, f).
With these definitions, Equations 6 through 14 describes the

problem mathematically.
Minimize

∑
{k,(i,j,f):aijf=1}

vk
ijf xk

ijf +
∑

{(i,j,f):aijf=1}

cijf yijf

+
∑

k

1000rkmk

(6)

subject to

∑
{j,f :aijf=1}

xk
ijf −

∑
{j,f :aijf=1}

xk
jif =

⎧⎨
⎩

1 − mk if i = sk

−1 + mk if i = dk

0 otherwise

∀i ∈ N, k = 1, . . . , K (7)

∑
k

rkxk
ijf ≤ capijf ∀(i, j, f) ∈ A � aijf = 1 (8)

∑
k

yijf ≤ uif ∀i ∈ N, f = 1, . . . , F (9)

xk
ijf ≤ yijf ∀(i, j, f) ∈ A,� aijf = 1, k = 1, . . . , K (10)

yijf = yjif ∀(i, j, f) ∈ A � aijf = 1 (11)

xk
ijf ≥ 0 ∀(i, j, f) ∈ A � aijf = 1, k = 1, . . . , K (12)

yijf is binary ∀(i, j, f) ∈ A � aijf = 1 (13)

mkis binary ∀k = 1, . . . , K (14)

Equation 6 is the objective function for the total cost. The
goal is to minimize the total cost, which is an aggregation of
the variable costs, the fixed costs, and the penalty function
for any commodities that are dropped. There are numerous
constraints that must be met as well. Equation 7 is the
node balance constraint, which varies slightly from the one
presented in Equation 2, since this problem definition takes
into account dropped commodities. Equation 2 is for an un-
capacitated NDP, and since the arcs had unlimited capacities,
there was no need to drop commodities. Equation 7 takes this
into account. Constraint 8 ensures that the total amount of
commodity flow over an arc doesn’t exceed the arcs capacity.
Constraint 9 ensures the number of arcs adjacent to a node
doesn’t exceed the number of interfaces assigned to that node.
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Constraint 10 ensures that there is an arc available for each
commodity flow. Constraint 11 ensures that the directional arcs
allow commodity flow to and from both nodes. Constraint 12
ensures that all flows are non-negative. Constraints 13 and
14 simply state that arcs and commodities are represented as
binary variables.

Figure 1 shows a graphical example of two nodes. Note that
the arcs between the nodes are directed arcs and each is has
its own cost and capacity. Also note that each node can have
multiple interfaces. Therefore a commodity can have multiple
flow options from a node. To minimize the variable cost, it is
important to send the commodity along the lowest cost arc.
But given the capacity constraints of each arc, that may not
be possible.

ui1 ui2

cij1,capij1

i j 

uj1

cji1,capji1

cij2,capij2

cji2,capji2

uj2

Fig. 1. An arc example for the Network Design Problem [4]

Figure 2 depicts an example of a four-node instance that
has two possible interfaces per node. Note that node 3 has
two outgoing satellite links while node 4 has zero. All the arcs
have the same cost (4) and capacity (4). This does not have
to be the case. The arcs can have varying costs and varying
capacities, just as the nodes can have varying interfaces.

2 2 

1 0 1 

3

1 2 

4

1

2 0 

4,4 

4,4 

4,4 

4,4 

4,4 

4,4

4,4

4,4

4,4

4,4
4,4

4,4

4,4

4,4

Fig. 2. Four node instance of the Network Design Problem [4]

To go along with the four node example in Figure 2, Table I
lists the commodities that are required to flow on the network.
The total number of commodities possible commodities is
N(N − 1), in this instance, 12. Each commodity has a
source, destination, and a bandwidth requirement. For source-

TABLE I

COMMODITY LIST FOR THE FOUR NODE INSTANCE OF THE NDP [4]

Commodity Source Destination BW Required
1 1 2 4
2 1 3 1
3 1 4 2
4 4 1 3
5 2 1 1
6 2 3 4
7 2 4 2
8 4 2 2
9 3 1 5
10 3 2 1
11 3 4 2
12 1 3 3

destination pairs that have no commodity flow between them,
the bandwidth required would be zero. This bandwidth, in
conjunction with the amount of flow over an arc, is used to
calculate the variable cost.

C. Specific Problem Objectives

Our program calculates the following objectives for each
network: total cost, fixed cost, variable cost, average number
of hops, and diameter. For this research we examine only two
of these objectives:

• Minimize total cost
• Minimize average number of hops

By minimizing the total cost, the goal is to design a network
as cheaply as possible. But at the same time, we want to
minimize the average number of hops, which aids in the
efficiency of the network. Fewer hops for a commodity equate
to a faster delivery time.

These objectives were chosen in order to compare with
previous results. Other objective can be easily used that help
to categorize the network based on efficiency, robustness, or
any other network metric.

D. Problem Difficulty

For a relatively small number of nodes, the search space
for this problem is quite large. Equations 15 to 17 show the
required size of each matrix for the problem, where Xn is the
number of possible commodity flows, Yn lists whether an arc
is present between the specific interface of two nodes, Sn lists
whether commodities have been dropped, N is the number of
nodes, K is the number of commodities, and F is the number
of interfaces from each node. Observe K = N(N − 1), so
as N grows, so does K. This problem grows in a non-linear
fashion as the number of nodes increases, making the problem
intractable for deterministic algorithms as the number of nodes
increase.

Xn = N(N − 1)KF (15)

Yn = N(N − 1)F (16)

Sn = K − 1 (17)
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But the matrix size is only part of the problem. Not only
are there a lot of values for the X matrix, but the values
represent the percentage of flow for a commodity from one
node to another. In order to limit the search space somewhat,
we chose to limit the percentages at 20% increments. This
limits the search space somewhat, but is still granular enough
to allow the network to divide commodities and send them
across different arcs. Table II shows the search space size for
a four node and 10 node problem, given the 20% increments.
Granted, most of the possible values do not meet the given
restraints, so a researcher can greatly decrease the effective
search space by avoiding the generation of invalid solutions.

TABLE II

SEARCH SPACE SIZE EXAMPLES

4 node 10 node

Possible X values 1.28 × 10
224

1.12 × 10
12606

Possible Y values 1.68 × 10
7

1.53 × 10
54

Possible S values 2048 6.19 × 10
26

Solution space size 4.40 × 10
234

1.06 × 10
12687

To visualize the search space, we attempted to generate
valid solutions using a Monte Carlo approach. We generated
10, 000, 000 instances and every one of them failed to meet
constraints. We then modified the Monte Carlo search so that
our solutions would meet all the node balance constraints.
We generated 50, 000 solutions and roughly 80% were valid
solutions. Figure 3 shows the results of a modified Monte
Carlo run using the second problem instance found in Erwin’s
initial work [4]. Circled in the figure are the points that
create the known Pareto front for the valid solutions generated.
The Pareto front is the set of nondominated, valid solutions
generated by the algorithm. Figure 3 shows that the algorithm
found 15 valid solutions that were not dominated by another
solution. Note that some invalid solutions were generated that
were better than the valid solutions, but for the most part, valid
and invalid solutions are all intermingled in the search space.

9 10 11 12 13 14 15 16
0

1
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7

8
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4

Avg num of hops

T
ot

al
 C

os
t

Landscape of Network Design Problem

Solutions meeting constraints = 40064
Solutions not meeting constraints = 9936
Pareto Front Points = 15

Fig. 3. Modified Monte Carlo results for the 2nd instance of the 10 node
problem

IV. ALGORITHM DESIGN

This problem is highly constrained, such that a random
initialization process and standard genetic operators almost
always generate infeasible networks [7]. To overcome this,
a researcher needs to either apply a repair function such as in
[16], or ensure that individuals generated by the operators and
the initialization process are able to meet the most restrictive
constraints. This research takes the latter approach and gen-
erates only feasible and near feasible solutions (solutions that
break only minor constraints). This section briefly discusses
MOEAs in general, provides an overview of the NSGA-II
MOEA, and then discusses specific algorithm enhancements.

A. EA and MOEA Overview

Evolutionary algorithms (EA) include genetic algorithms
(GA), evolution strategies (ES), genetic programming (GP),
and evolutionary programming (EP). EAs consist of a class
of algorithms that use the concepts of genetics which enable
them to explore the search space. In an evolutionary algorithm,
there is a collection of individuals, each one is known as
a chromosome. A group of chromosomes are created and
compared to one another. This group is known as a population.
Chromosomes consist of alleles that can be encoded into a
variety of datatypes: binary, integer, real-valued, etc. These
allele values are altered by EA operators such as mutation
and recombination. Mutation occurs by inserting new ge-
netic material into the population by modifying allele values.
Recombination is accomplished by exchanging allele values
between two or more individuals of the population. There are
many varieties of genetic operators each with a different set of
parameters that may be modified given a particular EA type
[17]. After the chromosomes are modified, a selection process
occurs where a new population is determined for the next
generation. There many are ways to select one chromosome
over another [18], but the main objective of the selection
process is to steer the EA toward the solution. Regardless of
the selection process used, all EAs have a fitness function that
they assign to a chromosome. The selection process compares
the fitness functions of the chromosomes in order to determine
the new population.

A multi-objective EA (MOEA) differs from an EA in that
there is more than one fitness function for each chromosome.
This often creates a situation where there is a vector of answers
that can be considered optimal. To determine which answer
is best, the researcher must either weight the fitness values
or must pick one point out of the known Pareto front via
an inspection process. The goal of an MOEA is move the
population toward the true Pareto front while maintaining a
diverse set of solutions along the known Pareto front. The book
by Coello Coello, Lamont, and Van Veldhuizen [19] explains
many of the important aspects of MOEAs in more detail.

B. Overview of the NSGA-II Algorithm

The NSGA-II algorithm is an MOEA developed by Deb
[20]. The algorithm is an implicit building block (BB) MOEA
based on its predecessor, the NSGA algorithm [21]. The
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NSGA-II is similar to most MOEAs, in that it utilizes recom-
bination, mutation, and tournament selection operators. The
niching operator that it uses is a rank based niching which is
based on Pareto dominance and a crowding operator. The algo-
rithm gathers results for all population members and then runs
through the entire population to find the individuals that are
non-dominated. These individuals are assigned a rank of 0 and
are removed from the search population. Then the algorithm
finds the next group of non-dominated individuals and gives
them a rank of 1 and removes them from the population. The
algorithm continues in this fashion until it has sorted all the
members based on their Pareto dominance. To determine the
next generation, the algorithm pulls individuals with the lowest
Pareto ranking into the population. The crowding operator
comes into play when the algorithm must pull in a portion
of a ranked set of individuals into the population. In this case,
the algorithm accepts only the least crowded points in that
ranking. A density estimator picks the two nearest points on
either side of the point being measured and creates a cuboid.
The crowding distance for the point is the average side length
of the cuboid.

C. Algorithm Implementation

Since this problem is highly constrained, generating random
values to put into the matrices creates invalid solutions. To
overcome this situation, the initialization process is done using
a propagation mutation operator for each commodity. The
operator starts with the first commodity listed in the matrix
and ends with the last commodity listed. This introduces some
bias into the problem, where the earlier commodities have
a higher probability of meeting the arc capacities than the
last ones. But this bias can be seen as a priority bias, where
the first commodities listed are the highest priority. As such,
they are allowed to utilize arc capacity first and lower priority
commodities are able to fill any remaining arc capacity.

Figure 4 shows an example of how the propagation mutation
algorithm generates the flow of a commodity from the source
node to the destination node. The example is for a four-node
problem and the source node is 1 and the destination node is
4. To limit confusion, the example assumes only one interface
type. In reality, there can be multiple arcs between each node.

In the example, the algorithm initially generates a random
commodity flow of 60% from node 1 to node 3. Since the
outflow of the commodity from the source is not equal to
100%, the algorithm generates two more random outflows
to nodes 2 and 4 until the outflow constraint is met for the
source node. The algorithm then takes the last flow generated
and determines if the node is the destination node. Since 4
is the destination node, that flow path is complete and the
algorithm goes back the previously generated path. Since node
2 is not the destination, the algorithm randomly generates the
next node 3 and the outflow from 2 (20%). Since node 2 has
the same inflow and outflow (20%), the algorithm progresses
down to the next node. The algorithm continues in this fashion
until all the flows end up at the destination node. By initializing
the commodities in this way, we ensure that the source and
destination nodes have 100% inflow and outflow, respectively.

We also ensure that the intermediate nodes are balanced. This
process greatly reduces the number of individuals not meeting
constraints.
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Fig. 4. Example of the initialization of a commodity flowing from a source
node (1) to a destination node (4) in a four node problem

Table III lists the probability that a particular flow percent-
age is generated. Note that the distribution is not uniform.
Instead it is heavily biased toward allowing 100% of the
commodity to flow from one node to the next. This bias
was added to better represent the real world. Typically, it
is more efficient for the nodes to send all of a commodity
out on one node and it is easier for the destination node to
handle all the commodity coming in all at once instead of
reassembling it at the end. But link capacities may require
that some commodities be divided in order to be passed from
one node to the next, so the algorithm must allow for some
way to vary the flow percentages of the commodity. But in
doing this, the search space can be greatly increased. This
research implements an approach that allows commodities to
be divided into 20% increments. While this may prevent the
algorithm from getting the optimal solution, it greatly reduces
the amount of space the algorithm would have to search if
each of the commodities could flow in 1% increments.

TABLE III

INITIALIZATION OF FLOW PERCENTAGES

Commodity Likelihood of
flow percent generation

20% 11.1%
40% 11.1%
60% 11.1%
80% 11.1%

100% 55.6%

For the initialization process, the propagation mutation
operator is applied on all the commodities. But for the
mutation process, random commodities are picked based on
the mutation probability. For this research, only mutation is
used, so the mutation probability is set to to a relatively high
level. Table IV lists some of the key parameters used in this
research. 200 individuals and 250 generations are chosen to
create a total of 50, 000 fitness evaluations. This allows for a
better comparison of how the M-NSGA-II algorithm compares
to a Monte Carlo method that generates 50, 000 solutions.
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TABLE IV

M-NSGA-II PARAMETERS

Parameter Value

Number of individuals 200
Number of generations 250

Total evaluations 50,000
Mutation 10.0%
Crossover 0.0%

V. RESULTS AND ANALYSIS

The goal of this research is three-fold:

1) Develop better understanding of the problem domain
search space.

2) Develop an MOEA that can generate solutions for the
MCNDP quickly and effectively.

3) Generate solutions that are competitive with the work
done by Erwin [4].

As shown in Figure 3 and discussed in Section III-D, we
first developed a better understanding of the search space by
applying several Monte Carlo approaches to the problem. We
found that due to restrictive constraints, a purely randomized
initialization process failed to generate a single good solution.
Either a repair procedure or guided random initialization
process was needed. We chose the latter, using the propagation
mutation algorithm to generate commodity flows. This process
produced a population with 80% of the solutions valid. We
then found the Pareto front created by the Monte Carlo
process and used it to compare the results of the M-NSGA-II
algorithm.

Figure 5 shows a comparison of a single run of the M-
NSGA-II with the Monte Carlo method. Figure 6 shows a
close-up view of the lower Pareto front points to show that
they are nondominated.
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Comparison of NSGA−II and Monte Carlo Nondominated Points

Monte Carlo nondominated points found = 7
NSGA−II nondominated points found = 33

Fig. 5. Comparison of 10 node problem (test10a) Monte Carlo results with
M-NSGA-II results

When comparing the results of the Monte Carlo method
and M-NSGA-II, there are similarities between the generated
Pareto fronts. They both seem to conform to the same shape.

Fig. 6. Close-up view of lower M-NSGA-II nondominated points

It is interesting to note that all of the M-NSGA-II solutions
performed better than the Monte Carlo solutions. The Monte
Carlo technique appears to be hindered by the initialization
process, whereas the M-NSGA-II is able to use mutation and
selection to greatly improve its results. Figure 7 shows the
initial points generated by the M-NSGA-II algorithm as well as
the nondominated points generated from both the M-NSGA-II
and Monte Carlo methods. The initial M-NSGA-II values are
worst than the Monte Carlo method, which would be expected,
since both populations are generated in the same fashion,
but the Monte Carlo method generated 50,000 individuals
versus 200 for the M-NSGA-II. The propagation mutation
operator was then able to generate individuals that had fewer
average hops and networks with smaller total costs. But since
the mutation operator is a random process, it also generated
solutions that were worst than the parents. The selection
operator is an elitist operator, so the algorithm propagates all
the best solutions along with other good solutions, based on
dominance and diversity.
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Comparison of NSGA−II and Monte Carlo Nondominated Points

Random nondominated points found = 7
NSGA−II nondominated points found = 33
NSGA−II initial points  = 200

Fig. 7. Where the initial M-NSGA-II points are with respect to the Monte
Carlo technique and final M-NSGA-II solutions (trial 1)
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The M-NSGA-II was run 30 times for each of the 10
instances of the 10 node MCNDP. Table V compares our total
cost results with those found in [4]. Since we are dealing with
costs, the lower the number, the better result. Not only did
our mean results perform better. But even the worst result
from our thirty runs performed better than Erwin’s best result.
Erwin used Xpress-MP optimization software and he solver
the problem using the Newton Barrier method, the Primal
Simplex method, and the Dual Simplex method. He used these
deterministic approaches that find his best solutions in the
10 node instance. Since our stochastic method outperformed
his solved deterministic methods, our results were surprising.
After careful review of all objective functions and constraints,
we found that our implementation was coded exactly as it
was for Erwin. We determined that Erwin’s black box imple-
mentation was the probable fault. His optimization algorithms
do not have any parameters specifying the granularity of his
commodity flows. His programmed limitations may have made
it impossible for his deterministic algorithms to find the best
solutions.

TABLE V

COMPARISON OF TOTAL COST FOR M-NSGA-II AND ERWIN’S

RESULTS

M-NSGA-II (30 runs each trial) Erwin’s [4]
Trial mean / std dev best run worst run best run

1 585.19 / 10.63 567.80 620.60 815.9
2 516.21 / 12.24 493.40 535.00 823.45
3 519.63 / 13.59 489.20 539.40 763
4 485.87 / 13.00 444.40 507.00 898
5 535.27 / 15.20 507.20 579.60 766.8
6 544.71 / 11.32 521.60 565.00 813.42
7 527.45 / 17.94 499.60 591.40 736.8
8 543.73 / 15.48 516.00 575.80 879.65
9 514.36 / 18.36 484.80 576.40 857.33
10 510.79 / 12.95 485.40 533.00 888

Mean 528.32 500.94 562.32 824.235
Std. Dev. 29.49 31.73 33.53 56.3262

VI. CONCLUSIONS

In this research, we discuss some of the ways that re-
searchers model NDPs. The advantages and disadvantages of
each model are discussed. We present the MCNDP and discuss
some of the research done on this problem. A specific variant
of the MCNDP is introduced. We attempt to solve the MCNDP
using two objectives - total cost and average number of hops.
The search space is analyzed and the NSGA-II MOEA is
modified to solve this problem. The results show that the M-
NSGA-II is able to improve upon the best results reported
in [4]. Future work includes investigating larger real-world
problem instances. We also plan to include more objectives
functions and analyze the solutions using a larger variety of
MOEA evaluation metrics. Our overall objective is to create a
tool that can play a vital role in the development of network
centric systems. This research is a big step in that direction.
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[1] Ada M. Alvarez, José Luis Gonázlez-Velarde, and Karim De-Alba.
Grasp embedded scatter search for the multicommodity capacitated
network design problem. Journal of Heuristics, 11(3):233–257, 2005.

[2] Roger Guimera, Alex Arenas, Albert Diaz-Guilera, and Francesc Giralt.
Dynamical properties of model communication networks. Physical
Review E, 66:026704, 2002.

[3] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
Flows: Theory, Algorithms, and Applications. Prentice Hall, 1993.

[4] Michael C. Erwin. Combining quality of service and topology control
in directional hybrid wireless networks. Thesis, Air Force Institute of
Technology, Wright-Patterson AFB, OH, March 2006.

[5] Kaj Holmberg and Johan Hellstrand. Solving the uncapacitated network
design problem by a lagrangean heuristic and branch-and-bound. Oper.
Res., 46(2):247–259, 1998.

[6] Chi-Chun Lo and Wei-Hsin Chang. A multiobjective hybrid genetic
algorithm for the capacitated multipoint network design problem. IEEE
Transactions on Systems, Man, and Cybernetics, Part B, 30(3):461–470,
2000.

[7] Berna Dengiz, Fulya Altiparmak, and Alice E. Smith. Local search
genetic algorithm for optimal design of reliable networks. IEEE Trans.
Evolutionary Computation, 1(3):179–188, 1997.

[8] Susana Duarte Flores, Benjamı́n Barán Cegla, and Diana Benı́tez
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