

Computational Verification of System Architectures∗

∗ The work was carried out with support provided by the Air Force Office of
Scientific Research under contract number FA9550-05-1-0388.

Abbas K. Zaidi and Alexander H. Levis, Life Fellow IEEE
System Architectures Laboratory, ECE Dept., MS 1G5

George Mason University
Fairfax, VA 22030 USA

Abstract−The paper presents a computational approach for
verifying system architectures that employs a modal logic, an
architecture design process, and a computer-aided formal model
checking technique. The approach is shown to address the
traceability issue between the architectural views, developed in
accordance to the DoD Architecture Framework (DoDAF), and
the executable model derived from the framework products. It
provides an analytical underpinning of the verification of systems
architectures, especially when requirements and capabilities of
the systems under consideration evolve over time. The approach
is presented with the help of an illustrative example.

I. INTRODUCTION
Two fundamental approaches have been developed at the

System Architectures Lab, George Mason University [2-4] to
implement the DoD Architecture Framework (DoDAF):
structured analysis and object orientation. The end product in
both cases is an executable model, derived from information
contained in the framework’s artefacts. These artefacts (or
products) describe the structure, data and rules that manipulate
the data to accomplish tasks. An executable model, if derived
from these products in a traceable way, can enable logical,
behavioural, and performance analyses: it can help verify if
the combination of rules, data, and structure works, e.g., the
rules are consistent and complete; its simulation runs can be
used to debug the architecture and validate if the architecture
does what it is supposed to. The nature in which modern-day
systems evolve by integrating available (possibly at run-time)
services or parts of other systems to develop new and
unprecedented capabilities calls for robust analytical tools that
can validate, verify, and even correct a system’s behaviour
well before the unintended consequences are observed. The
ability to trace a system’s behaviour, especially the undesired
system trajectories, to its operational requirements forms a
preliminary step, albeit an important one, towards building
such tools.

This paper presents the use of modal temporal logics and
formal automated model checking techniques, first proposed
in [5], for an analytic underpinning of the architectural design
process and analyses that follow it. The paper illustrates the
approach with the help of an example architecture developed
in [2] that uses the structured analysis paradigm. A branching-
time logic, called ASK-CTL [6], is shown to model the
specifications for the modelled system derived directly from
the DoDAF architecture products. The set of formal logic

statements describing the system properties is also shown to
be refined throughout the design process with the help of
developed architectural products. For brevity, the example
presented in this paper only uses processes/(by)products from
the first three stages of the design approach to illustrate the
refinement of some of the system properties. The last product
in the design process, presented in [2], is an executable
Colored Petri Net (CPN) of the system. The approach in this
paper shows how a state-space based formal model checking
technique can be employed to verify if the designed system
satisfy the properties given as ASK-CTL statements. The CPN
model is implemented using the software application CPN
Tools. The tool is developed and maintained by the CPN
Group, University of Aarhus, Denmark. The ASK-CTL toolkit
provided with CPN Tools is used to run the verification step.
This last step of the approach is fairly automated provided a
designer correctly derived the properties to be verified;
however, a lot of information that goes into an executable
model (i.e., CPN) might have been provided by the designer
(as modelling artefacts) without a proper mapping to/from the
other architectural products, which creates a traceability
problem between the products and the executable model. The
approach presented in this paper can be used to address this
issue since it interprets the logic statements, representing
specifications in the architecture products, on the state-space
of the executable model, thus linking behaviour of the
executable model to the elements of architecture products.

The remainder of this paper is organized into six sections.
Section II presents a very brief outline of the design approach
presented in [2]. This is followed by another brief introduction
to the temporal logic ASK-CTL [6] in Section III. Section IV
presents the algorithm for the computational verification that
combines the model checking technique with the architecture
design process. The verification is then illustrated with the
help of an example and the formal logic statements that
capture the system properties in Section V. The paper
concludes in Section VI with a summary of the verification
process and a discussion on possible future directions for
further inquiry.

II. ARCHITECTURE DESIGN APPROACH

The details of the architecture design approach based on
structured analysis were first presented in [2]. The article also
presented procedures for deriving, from the information

 42

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

1-4244-0700-1/07/$20.00 ©2007 IEEE

Es

Operational
Concept

(AV1 and D1)

Create
High Level

Operational
Concept Graphic

with Textual
Description

Operational
Concept

Graphic OV-1

Fig. 2. Process Model of Stage 1.

ored
hibit
ture.
and

 The
ach

r the
), in

ain
and
. As
ith a
t, a
met,
e of
 D8,
rties
the

d to
ates,
their
ural

n be
rms
d/or
ents
r the

ent
ents

document shared between the two groups for the system to be
developed. In the following discussion, the document will be
referred to as the ‘Specification Document.’ It can be further
refined or updated by the architects throughout the design
process.

The next three design stages, 1-3, of the six-stage design
approach are shown in the Data Flow diagrams of Figs. 2 to 4.
The diagrams show the needed inputs on the left (from Stage 0
or from previous stages) and the framework products on the
right. The diagrams are included in this paper for the
constituent processes that are shown to be helpful for refining
the system correctness statements. Fig. 4 is partially drawn
and does not show a number of processes that contribute to
subsequent stages in the design approach. More specifically,
the processes that contribute to the Specification Document
are shown shaded in these diagrams. The detailed and
comprehensive account of the approach is in [2].

The process of constructing and refining the Specification
Document is illustrated with the help of an example system.
The example uses only the first four stages to illustrate the
verification approach. All the design stages used in this paper

yield DoDAF products for the Operational View of the
architecture. The approach can be easily extended to include
design stages resulting in the Systems View of the architecture.

Syn

The derivation of executable model, as described in [2], is
carried out with structure and data/rule models extracted from
Activity Model (OV-5), Operational State Transition
Description (OV-6b), Operation Rules Model (OV-6a), and
Logical Data Model (OV-7) of the architecture framework.
Reference [2] provides details of the procedures for deriving,
from the information contained in the architectural products,
an executable Colored Petri Net (CPN) model. A number of

l
07)
Architecture
Design

Product
Generation

DoDAF

Product
Generation

DoDAF

Executable
Model

Construction

Architecture
Analysis and

Evaluation

DoDAF Products

MOPs, MO

Fig. 1. Template of the Architecture and Evaluation Process [1].

contained in the architectural products, an executable Col
Petri Net (CPN) model. The CPN model is shown to ex
behaviour and performance characteristics of the architec
An abstract, top-level view of the architecture design
evaluation process is shown in Fig. 1, adapted from [1].
detailed description of the process contains six stages. E
stage generates one or more of the DoDAF products fo
Operational and Systems views. The first step (Stage 0
this six-state process, involves the collection of dom
information. Table 1 suggests some of the documents
information that can be useful inputs to the design process
was described in [1], the architecting process must start w
clear purpose and viewpoint. An operational concep
concise statement that describes how the goal will be
must be provided. In this paper, we propose to use som
these source documents, namely D1, D2, D5, D6, D7, and
to extract formal logic statements about the system prope
described in these documents. More specifically,
information provided in D1, D5 and/or D8 can be use
construct logical formulas comprising of propositions, st
events, and/or functions of the modelled system depicting
operational relationships and/or (un)desired behavio
properties. The other documents, D2, D6, and/or D7, ca
used to construct the initial glossary (or dictionary) of te
used to represent the system propositions, states, events an
functions. The construction of formal logic statem
representing system properties can be carried out by eithe
users or the architects of the system. The resulting docum
listing these statements may be used as a formal requirem

TABLE 1
INPUT TO THE PROCESS (STAGE 0)

AV1 Purpose, Viewpoint (Problem Definition)
D1 Operational Concept Narrative
D2 Universal Joint Task List
D3 Current DoD Organization Charts
D4 Description of Organizational Relationships
D5 Textual Description of Doctrine, Tactics and Operational

Procedures
D6 List of Operational Information Elements
D7 Definition of States and Events
D8 Description of System Functions
D9 Communication System Description
D10 Performance Attributes of Systems
D11 Migration Plans for Systems

Proceedings of the 2007 IEEE Symposium on Computationa
Intelligence in Security and Defense Applications (CISDA 20
comD12 Description of Systems

 43
thesis of Executable Model

Organization
List
(D3)

Operational
Concept

(AV1 and D1)

Universal
Joint Task

List
(D2)

Organizational
Relationships

(D4)

Organizational
Relationship

Chart
(OV-4)

Determine
Organizational
Relationships

Select
Organizations

Determine
Assets

Define
Operational

Elements
Define

Operational
Nodes

Create
Functional

Decomposition
Select

Functions

Fig. 3. Process Model of Stage 2.
mercially available software tools that support the design

of DoDAF compliant architectures have also picked up on the
idea of developing executable models, in the form of Finite-
State machines, to facilitate the validation and performance
analysis of the designed system.

III. MODAL LOGICS AND FORMAL MODEL CHECKING

In this section, we present a very brief description of ASK-
CTL taken from the detailed presentation in [6]. ASK-CTL is
a branching-time modal logic and an extension of
Computational Tree Logic (CTL), which is interpreted over
the state-space of Colored Petri Nets (CPN), i.e., Occurrence
Graphs (OG). Since an OG of a CPN is a labelled transition
system, carrying information on both nodes and edges, the
CTL extension in ASK-CTL allows the construction of logic
formulas with both state and transition information depicting
properties of the system under analysis. For brevity, we refrain
from presenting details on CPNs, OGs and CTL. For more
information on these topics, see [7] for material on CPNs and
OGs, and [8] for CTL.

An ASK-CTL statement is defined to be a state or a
transition formula. The two categories are mutually recursive
and are defined, in [6], as follows:

 Definition 1. ASK-CTL State Formula
An ASK-CTL state formula A is defined by the following
production system:
 A := tt | ¬ A | A ∨ A | EU(A, A) | AU(A, A) | α |
where tt is interpreted as true, α is a function from CPN
markings to Boolean values and B is a transition formula,
defined below.

Definition 2. ASK-CTL Transition Formula
An ASK-CTL transition formula B is defined by the
following production system:
B := tt | ¬B | B ∨ B | EU(B, B) | AU(B, B) | β | <A>
where β is a function from CPN transition bindings
elements to Boolean values and A is a state formula.

A given ASK-CTL expression is by default a state formula
and transition formulas appear as nested sub-formulas in a
state expression. The following notation is used to define the

semantics of the operators introduced in Definitions 1 and 2
above.

A. Notation
Let the state-space, OG, of a CPN model be denoted by (V,

D), where V is the set of states and D is set of edges in the
OG. A state in V is denoted by M, with M0 being the initial
state. An edge eij in D is denoted as (Mi,<t, b>, Mj), where Mi
and Mj are the input and output states of the edge and <t, b>
shows the transition label with t being the CPN transition and
b the binding on t. A path in the OG is represented by the
symbol θ with θi denoting the ith state (θ1 being the state the
path originates from) and πi the ith edge on the path. In order to
define the semantics, we will also need the functions α and β.
The two functions return a Boolean value after checking some
properties about the marking(s) in a state and the binding on a
transition, respectively. The ASK-CTL toolkit of CPN Tools
requires a user (or an architect) to implement these functions
using CPN ML and Standard ML (SML) programming
languages. (An example of such a function is provided in the
following section.)

Activity
Model
(OV-5)

STD
(OV-6b)

Rule
Model

(OV-6a)

Logical
Data

Model
(OV-7)

Create
Activity
Model

Create
Logical

Data
Model

Define
Logical
Rules

Create
Operational

State
Transition

Description

Ensure
Concordance

Create
Functional

Decomposition

Textual
Description of

Doctrine,
Tactics,

Operational
Procedures

(D5)

From Stage 2

Fig. 4. Process Model of Stage 3a.
α : V → {True, False} and β : D → {True, False}

The semantics of state formulas can now be defined as:
Given a state M and a state formula A, the expression ‘M ╞ A’
denotes ‘M satisfies A’ or ‘A holds in M’.

M ╞ tt always holds
M ╞ α iff α(M) = True
M ╞ ¬A iff not M ╞ A
M ╞ A1 ∨ A2 iff M ╞ A1 or M ╞ A2
M ╞ A1 ∧ A2 iff M ╞ A1 and M ╞ A2
M ╞ EU(A1, A2) iff there exists a path θ in the OG
starting at state M such that ∃i, θi╞ A2 and ∀j , 0 < j < i,
θj╞ A1 (The temporal operator EU is read ‘Exist Until’.)
M ╞ AU(A1, A2) iff for all paths θ in the OG starting at
state M such that ∃i, θi╞ A2 and ∀j , 0 < j < i, θj╞ A1
(The temporal operator AU is read ‘For All Until’.)

The semantics of transition formulas are defined similarly
as follows. In an expression of the type ‘e ╞ B’, where e or
eij = (Mi,<t, b>, Mj) represents an edge in the OG under
investigation and B represents the transition formula.

e ╞ tt always holds
e ╞ β iff β (t, b) = True
e ╞ ¬B iff not e ╞ B
e ╞ B1 ∨ B2 iff e ╞ B1 or e╞ B2
e ╞ B1 ∧ B2 iff e ╞ B1 and e╞ B2
eij ╞ EU(B1, B2) iff there exists a path θ in the OG
starting at state Mi with eij being the first edge on the path,
∃k, πk ╞ B2 and ∀m , 0 < m < k, πm╞ B1
eij ╞ AU(B1, B2) iff for all paths θ in the OG starting at
state Mi with eij being the first edge on all of these paths,
∃k, πk ╞ B2 and ∀m , 0 < m < k, πm╞ B1

 44

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

DER

Operator
Pos A ≡ EU(tt, A) It is possib
Inv A ≡ ¬Pos ¬A A holds in
Ev A ≡ AU(tt, A) For all pat

A is event
Along A ≡ ¬Ev ¬A There exis

dead state
 A ≡ <B ∧ <A>> There exis

A and B h
state and M

EX(A) ≡ <tt> A There exis
holds. Rea

AX(A) ≡ ¬EX(¬A) A holds in
Read ‘For

The < . > operator in the
state to a transition form
allows a user to expre
originating from a state,
about the destination stat
transition formula. Theref
and eij ╞ <A> iff for Mj ╞

Definitions 1 and 2 gi
types of formulas. The AS
a number of other d
constructing complex exp
Some of these, for state f
their semantics expresse
similar set of operators exi

B. Model Checking and C
ASK-CTL

The model checking pr
formally described as:
Given an OG of a CPN
(formula) p, determine if O

The following definitio
ASK-CTL property over a

Definition 3.
Given an OG (V, D) o
property p,

OG╞ p iff for initia
According to Definition

property (or design requ
describing this property c
state of the OG drawn for

The model checking
implemented in CPN T
complexity of the algori
product of the size of th
space—O(N(|V| + |D|)), w
|V| is the number of node
the OG. This time comple
cost of evaluating the pre
cases, the two functions
without any significant eff
two functions are implem
programming languages,

disadvantage and an advantage to a system architect: the
disadvantage comes from the fact that the user or architect
might need to learn yet another programming language to
perform the verification; and the advantage is due to the
flexibility of a programming language to construct a wide
variety of predicate functions. For example, ML functions can
be written for Timed CPNs that evaluate the timing
information on the markings/bindings in the Timed OG for
checking timeliness of certain properties in the system. This
makes the CPN Tools implementation of ASK-CTL toolkit an
especially powerful verification tool for real-time systems

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security an
TABLE 2
IVED OPERATORS

Description
le to reach a state where A holds.

 every reachable state; A is invariant.
hs, A holds within a finite number of steps;
ually true.
t a path which is either infinite or ends in a
, along which A holds in every state.
t an immediate successor state M satisfying

olds on the transition between the current
.

ts an immediate successor state in which A

d Defense Applications (CISDA 2007)
d ‘Exist Next’.
 all immediate successor states, if any.
 All Next’.

 definitions is used to switch from a
ula and vice versa. This operator

ss a property about a transition
if expressed as a state formula, or
e of a transition, if expressed as a
ore, Mi ╞ iff ∃ eij, s.t. eij ╞ B
A.
ve the minimal syntax for the two
K-CTL library of CPN Tools offers
erived, high-level operators for
ressions for the system properties.
ormulas, are listed in Table 2 with
d in terms of basic operators. A
sts for transition formulas.

omputer-aided Verification Using

oblem with ASK-CTL now can be

system and an ASK-CTL property
G is a model for p (i.e., if OG╞ p).

n describes the interpretation of an
n OG.

f a CPN system and an ASK-CTL

l state M0 ∈ V, M0 ╞ p
 3, a CPN system is said to satisfy a
irement) if the ASK-CTL formula
an be shown to hold in the initial
the CPN system under investigation.
 algorithm of ASK-CTL, as
ools, is presented in [6]. The

thm is shown to be linear in the
e formula and the size of the state
here N is the length of the formula,
s and |D| is the number of edges in
xity does not take into account the
dicate functions α and β. For most
 can be evaluated very efficiently
ect on the overall running time. The
ented using CPN ML and SML

a requirement that offers both a

with specific timeliness and/or deadline requirements for
processes and/or system states.

The model checking algorithm in [6] is a modification of the
standard CTL algorithm presented in [8]. The ASK-CTL
algorithm in CPN Tools employs some reduction rules that
break an input formula into basic primitives and eliminate the
redundant parts. The algorithm is optimized for most of the
primitive patterns in a formula. It finally employs a search of
the state-space (OG) to check the validity of these primitives
and their combinations in the states of the OG. A modified,
compact representation of a state-space, called Strongly
Connected Component graph (SCC-graph), is employed by
the implementation in CPN Tools to increase the efficiency of
the algorithm. The implementation is said to have handled
state spaces with millions of nodes. An overview of the
computer-aided verification approach presented in this paper,
employing CPN Tools based ASK-CTL model checker, is
presented in Table 3.

IV. VERIFICATION OF ARCHITECTURES

In this section, we present a verification approach for
architectures by combining the model checking technique with
the architecture design process. The revised template for the
architecture design and evaluation process of Fig. 1 is shown
in Fig. 5. We have already identified the input source
documents and sub-processes in design stages that potentially
contribute to the development and refinement of Specification
Document, with ASK-CTL formulas describing requirements
for the system to be modelled. A synthesis of an executable
CPN model directly from the DoDAF products at the end of
the architecture design process has already been proposed in
[2,4] for both structured and object-oriented approaches. In
this paper, we propose to employ CPN Tools’ ASK-CTL

 45
Architecture
Design

Product
Generation

DoDAF

Product
Generation

DoDAF

Executable
Model

Construction

Architecture
Analysis and

Evaluation

DoDAF Products

MOPs, MOEs

Formal
Specification
Construction

Formal
Specification
Refinement

Computer
Aided

Verification

Correctness
Claims

Feedback to Design
for Violations
Fig. 5. Revised Template of the Architecture and Evaluation Process

TABLE 3

ALGORITHM FOR COMPUTER AIDED VERIFICATION
USING ASK-CTL

Given: (1) A CPN System (i.e., a CPN model with Initial Marking)
implemented in CPN Tools.

(2) A list of ASK-CTL formulas derived from architecture
products

Step 1. Run State Space Analysis Tool
Step 2. Generate State Space and SCC graphs
Step 3. Select a new ASK-CTL formula from the input list
Step 4. Construct the predicate function(s) in the formula using CPN ML

and SML syntax and embed the function(s) in the formula
Step 5. Invoke ASK-CTL library
Step 6. Evaluate the formula. If it returns true go to Step 3, else report the

violation of property and stop
toolkit to model check the synthesized CPN model against
entries in the Specification Document.

Reference [2] illustrated the architecture design approach
with the help of a fictitious commercial system, called
FastPass system, that is inspired by the SpeedPass™ system
used in the US by Exxon Mobil. We employ the same
example system to illustrate our verification approach. The
example has been extensively used in courses on the design
approach.

V. THE EXAMPLE

Stages 0−2. Table 4 presents some of the input source
documents available for the design process. Table 5 shows our
first pass at the Specification Document with a sample of key
statements taken from D1 and rewritten with the help of

functions and sub-functions listed in D2 and the Operational
Elements from D6. These statements are also shown translated
to corresponding ASK-CTL statements in the same table. The
predicate terms representing a transition (sub)formula, in these
statements, are constructed by identifying (wherever possible)
the operational elements from D6 (e.g., Pump) and by
selecting a task from the UJTL in D2, e.g.,
Pump.Sense_FastPass. The specific function/task names used
in these predicates are the result of the processes (shaded in
Fig. 3) in Stage 1. A closer look at the translated logic
statements reveals the fact that the choice of temporal
operators (e.g., AU, EU, Inv, etc.) may impose certain design
restrictions that are not very obvious in the descriptive English
statements. For example, in the statement Sj (Table 5), the use
of operator AX mandates that after receiving the receipt the
driver should be immediately out of the system. As an
alternate, if the operator Ev is used instead of AX, the driver
can go out of the system any time after the receipt. The
formal, unambiguous nature of these statements, while
desirable, may in some cases restrict (or impose) the design
choices available to an architect. One possible solution could
be to construct statements with operators that offer flexibility
of the type illustrated by the use of Ev in Sj. Another solution
could be to prepare a list of several ASK-CTL statements with
each reflecting a possible translation of the requirement. For a
meaningful verification of the architecture at the end, the set
of formal statements should be made as comprehensive and
accurate as possible. A missed requirement, or an incorrectly

TABLE 4
STAGE 0 DOCUMENTS FOR FASTPASS SYSTEM

Purpose: To increase convenience and reduce
the time it takes for users buying gas with a
credit card and in the self-service mode

Point of View: A key thread is considered.
A key thread is a sequence of activities that take place when an individual
driver pulls up at the pump and use the FastPass to get gas for his/her car.

A
V

1

Assumptions: The operation of a single pump equipped with the FastPass system is modelled. The architect need not worry
about the details of the electronic accounting system used by the gas station. It has already been implemented and available for
integration.

D
1:

 O
pe

ra
tio

na
l C

on
ce

pt

N
ar

ra
tiv

e

A driver pulls up at one of the Self-Serve fuel pumps with the FastPass sign on it. If his/her car is equipped with the FastPass
tag, then the sensor on the pump senses its presence and reads the information on the tag. If the driver has a key-chain tag, s/he
waves the tag in front of the sensor (1 to 2 inches away) and the sensor reads the information. The sensor lights up.
The information read from the FastPass tag is then sent from the pump, through the LAN at the gas station, to the FastPass
central data base where the relevant credit card information is retrieved. The request for authorization along with the credit
card data is then transmitted to the financial institution issuing the credit card. If the request is approved, the fuel pump is
enabled and the driver can pump gas. If the request is denied, the pump is not enabled and the process terminates with the
FastPass light going off. If enabled, the driver selects the grade of gas s/he desires and pumps gas until s/he turns off the pump
by throwing a switch. Then the cost of the sale is computed at the pump and the amount is transmitted back to the financial
institution where it is entered as a charge in the driver’s corresponding credit card account. A receipt is issued at the pump. The
data about the sale are entered in the electronic ledger of the gas station. The pump returns to the idle state.

D
2:

 U
ni

ve
rs

al

Jo
in

t T
as

k
Li

st

(U
JT

L)

1. Validate Payments
1.1 Sense FastPass
1.2 Retrieve Driver Info
1.3 Validate Credit

2. Operate Pump
2.1 Maintain Status
2.2 Control Operation Mode
2.3 Dispense Gas

3. Manage Sales
3.1 Compute Cost of Sale
3.2 Request Charges
3.3 Print Receipt
3.4 Update Account

Operational Node Operational Elements

Driver Driver
Gas Station Pump, Gas Station Office
OilCo OilCo

D
6:

O

pe
ra

tio
na

l
N

od
es

 a
nd

 E
le

m
en

ts

Financial Institution Financial Institution

 46

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

TABLE 5
SPECIFICATION DOCUMENT

ID Statement ASK-CTL Formula
S1 When a driver pulls up with a FastPass tag and the pump senses FastPass,

then the pump’s light goes on
(Driver.In ∧ <Pump.Sense_FastPass>) ∧
AX(Pump.Light_On)

S2 If the FastPass tag is sensed and the information on the tag is read, then
the request of authorization and credit validation is sent to the financial
institution.

Ev (Pump.FastPass_Sensed ∧
Pump.Driver_Info_Retrieved ∧
<Pump.Send_Authorization_Request> ∧
AX<FinancialInst.Validate_Credit>)

S3 If request for authorization is approved, then Fuel Pump is Enabled. Ev(<Authorization_Approved> ∧ AX (Pump.Enabled))
S4 If request for authorization is denied, then pump’s light goes off. Ev(<Authorization_Declined> ∧ AX (Pump.Light_Off))
S5 If the Pump is enabled and gas grade is selected, then gas is dispensed. Ev(Pump.Enabled ∧ Driver.Gas_Grade_Selected ∧

Ev <Pump.Dispense_Gas>)
: … …

Sj Driver should get a receipt and go out of the system in the end Ev(<Driver.ReceiveReceipt> ∧ AX (Driver.Out))

Sk The pump in the end returns to the initial idle state. Inv (Pos (Pump.IdleState))

TABLE 7
CPN CODE FOR ASK-CTL FORMULA Sj

1. fun ReceiveReceipt a = st_TI (ArcToTI (a))
2. = "Driver'ReceiveReceipt 1";
3. fun IsDriverOut n =
4. Mark.Environment'DriveOut 1 n <>[];
5. val myASKCTLformula =
6. EV (AND(MODAL(AF ("_", ReceiveReceipt)),
7. FORALL_NEXT (NF ("_", IsDriverOut))));

TABLE 6
OV-6a RULE IN ASK-CTL

Rule R22 ASK-CTL Formula
If (Authorization_Transaction.approval AND (Selection.On,
Selection.Quntity, Selection.Grade)) Then
(Dispensed_Gas_Data.Grade = Selection.Grade AND
Dispensed_Gas_Data.Quantity = Selection.Quntity AND
Display.Content = Message 3 Else Display.Content =
Message 9

Ev ((Authorization_Transaction.approval ∧ Selection.On ∧
Selection.Quantity ∧ Selection.Grade ∧ <Dispense_Gas> ∧ AX
(Dispensed_Gas_Data.Grade = Selection.Grade ∧
Dispensed_Gas_Data.Quantity = Selection.Quntity ∧ Display.Content =
Message 3))∨
Display.Content = Message 9)

constructed statement, results in a system design with a low
level of fidelity or unnecessary errors reported by the
verification algorithm.

Stage 3. Stage 3 of the design process begins with
creating the Activity Model (IDEF0), the Data Model
(IDEF1X), and the rule model that correspond to the Activity
Model (OV-5), Logical Data Model (OV-7), and Operational
Rule Model (OV-6a), respectively. The construction of these
products helps identify the exact labels for the predicates used
to construct atomic state and transition formulas, shown in
Table 5. An architect may also add rules from OV-6 to this
document. In fact, most of the rules in OV-6a can be easily
traced back to ASK-CTL formulas in the Specification
Document. A software tool implementing the architecture
design process may incorporate this mapping (or traceability)
to/from the Specification Documents and the framework
products. Table 6 presents a sample rule from OV-6a of the
FastPass architecture and its corresponding ASK-CTL
representation. In contrast to the rule in OV-6a, this
representation of the rule can actually be used by the
verification algorithm to check if it is used by the executable
model to generate the right outputs.

Computer Aided Verification. Fig. 6 shows the top-level
CPN of the FastPass system developed in [2]. Each transition

in the CPN represents a substitution transition with a sub-
page containing a detailed net. For lack of space, we only
show the detailed CPN for the substitution transition labelled
‘OperateFastPassSystem’ in Fig. 6. The detailed CPN is
shown in Fig. 7. Note that there are several substitution
transitions in Fig. 7 depicting the fact that there exist sub-
pages for each of them with even further detailed networks.
The CPN shown is the object of the verification step. The use
of CPN Tools and its built-in version of the ASK-CTL verifier
require an architect to construct ML functions for each of the
predicates in the Specification Document. For brevity, we
illustrate the process for only one of the statements in Table 5.
Table 7 presents the ML code constructed for checking the Sj
property. In the code, Lines 1 and 2 implement
Driver.ReceiveReceipt predicate; Lines 3 and 4 show the
function for Driver.Out predicate. The two functions use CPN
ML constructs for transitions binding elements and node
markings. Lines 6 and 7 show the CPN ML implementation of
the ASK-CTL formula.

 47

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

Fig. 6. CPN Top-Page for FastPass with Example Verification

The term MODAL implements the <.> operator and the
identifiers NF and AF represent α and β predicates,
respectively. Line 5 assigns the formula to a variable that is
then evaluated by invoking the built-in CPN ML compiler, as
shown by ‘3.Verify’ step in Fig. 6. For the example formula
(Sj), the verifier returns a ‘true’ that confirms the property for
the model. The other properties can be verified in a similar
manner.

Fig. 7. Detailed View of the Substitution Transition
‘OperateFastPastSystem’ in Fig. 6.

A high-level representation of the derivation of executable
CPN and the Specification Document, as applied to the
illustrative example, from a selected set of framework
products and a subsequent verification process is shown in
Fig. 8.

VI. CONCLUSIONS

An application of formal model checking techniques for
developing analysis and assessment mechanisms for system
architectures developed in accordance with the DoD
Architecture Framework (DoDAF) is presented.

The presented approach offers a potential solution to the
traceability problem between the DoDAF products and the
executable model of the system: The construction of a fully
executable model (e.g., Colored Petri net) requires an architect
to incorporate information from several architectural products.
The mapping of information from the products to artifacts in
the executable model is not straight forward (or algorithmic),
resulting in the loss of traceability. Any errors found in the
executable model must be corrected in the appropriate
views/products to have a meaningful evaluation. The approach
uses ASK-CTL formulas, directly derived from the
architecture products, to model check the architecture. It
requires a user/architect to construct a Specification Document
comprising these ASK-CTL formulas as part of the
architecture design process. The strict semantics of the
language, in turn, requires a user/architect to remove a number
of ambiguities that might be present in the input
description(s). CPN Tools is used for constructing the
executable model and its built-in ASK-CTL library is used for
running model checking algorithms. Errors, if found, can be

traced back to the product(s) the corresponding formula was
derived from and fixed. The approach can be employed using
other available model checking, computer-aided verification
tools. The syntax of a formal logic may not be very intuitive to
a user and may require formal understanding of both the
syntax and semantics of the logic and its language to develop a
comprehensive and accurate, yet flexible, set of statements.
An understanding of CPN Tools and SML programming
language/environment is also required for someone interested
in using the approach. Further research is required to fully
automate the construction of Specification Document.

The approach was applied to an example architecture of a
fictitious commercial system that has been extensively used in
courses on system architectures. To facilitate the construction
of the Specification Document, its refinement and a mapping
between the logic statements in the document to architectural
products and/or source documents, a number of software
support tools can be developed as extensions to the existing
software applications for developing DoDAF compliant
architectures.

 48

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)
Fig. 8. The 3-Stage Representation of the Proposed Approach

REFERENCES

[1] Levis, A.H. and Wagenhals, L.W., “C4ISR Architectures I : Developing
a Process for C4ISR Architecture Design.” Systems Engineering, Vol 3,
No. 4, December 2000, pp. 225-247.

[2] Wagenhals L.W., Shin, I, Kim, D and Levis, A.H., “C4ISR
Architectures II : Structured Analysis Approach for Architecture
Design.” Systems Engineering, Vol 3, No. 4, December 2000, pp. 248-
287.

[3] Wagenhals, L.W., Haider S. and Levis, A. H., “Synthesizing Executable
Models of Object Oriented Architectures.” Systems Engineering, Vol. 6
No. 4. December 2003, pp. 266-300.

[4] Bienvenu M.P., Shin, I and Levis, A.H., "C4ISR Architectures III : An
Object Oriented Approach for Architecture Design." Systems
Engineering, Vol 3, No. 4, December 2000, pp. 288-312.

 [5] Zaidi, A. K., and Levis, A. H., “Verification of System Architectures

Using Modal Logics and Formal Model Checking Techniques.”
Conference on Systems Engineering Research (CSER), Los Angeles,
CA, April 2006.

[6] Cheng, A., Christensen, S, and Mortensen, K.H., “Model Checking
Coloured Petri Nets Exploiting Strongly Connected Components.” in
Proc. of the International Workshop on Discrete Event Systems,
Institution of Electrical Engineers, University of Edinburgh, UK, August
1996, pp. 169-177.

[7] Jensen, K., Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volumes 1-3, Monographs in Theoretical Computer
Science, Springer-Verlag, 1997.

[8] Clarke, E.M., Emerson, E.A. and Sistla, A.P., “Automatic Verification
of Finite State Concurrent System Using Temporal Logic.” ACM
Transactions on Programming Languages and Systems, Vol. 8(2), 1986,
pp. 244-263.

 49

