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Abstract−The paper presents a computational approach for 
verifying system architectures that employs a modal logic, an 
architecture design process, and a computer-aided formal model 
checking technique. The approach is shown to address the 
traceability issue between the architectural views, developed in 
accordance to the DoD Architecture Framework (DoDAF), and 
the executable model derived from the framework products. It 
provides an analytical underpinning of the verification of systems 
architectures, especially when requirements and capabilities of 
the systems under consideration evolve over time. The approach 
is presented with the help of an illustrative example. 

I.  INTRODUCTION 
Two fundamental approaches have been developed at the 

System Architectures Lab, George Mason University [2-4] to 
implement the DoD Architecture Framework (DoDAF): 
structured analysis and object orientation. The end product in 
both cases is an executable model, derived from information 
contained in the framework’s artefacts. These artefacts (or 
products) describe the structure, data and rules that manipulate 
the data to accomplish tasks. An executable model, if derived 
from these products in a traceable way, can enable logical, 
behavioural, and performance analyses: it can help verify if 
the combination of rules, data, and structure works, e.g., the 
rules are consistent and complete; its simulation runs can be 
used to debug the architecture and validate if the architecture 
does what it is supposed to.  The nature in which modern-day 
systems evolve by integrating available (possibly at run-time) 
services or parts of other systems to develop new and 
unprecedented capabilities calls for robust analytical tools that 
can validate, verify, and even correct a system’s behaviour  
well before the unintended consequences are observed. The 
ability to trace a system’s behaviour, especially the undesired 
system trajectories, to its operational requirements forms a 
preliminary step, albeit an important one, towards building 
such tools. 

This paper presents the use of modal temporal logics and 
formal automated model checking techniques, first proposed 
in [5], for an analytic underpinning of the architectural design 
process and analyses that follow it. The paper illustrates the 
approach with the help of an example architecture developed 
in [2] that uses the structured analysis paradigm. A branching-
time logic, called ASK-CTL [6], is shown to model the 
specifications for the modelled system derived directly from 
the DoDAF architecture products. The set of formal logic 

statements describing the system properties is also shown to 
be refined throughout the design process with the help of 
developed architectural products. For brevity, the example 
presented in this paper only uses processes/(by)products from 
the first three stages of the design approach to illustrate the 
refinement of some of the system properties. The last product 
in the design process, presented in [2], is an executable 
Colored Petri Net (CPN) of the system. The approach in this 
paper shows how a state-space based formal model checking 
technique can be employed to verify if the designed system 
satisfy the properties given as ASK-CTL statements. The CPN 
model is implemented using the software application CPN 
Tools. The tool is developed and maintained by the CPN 
Group, University of Aarhus, Denmark. The ASK-CTL toolkit 
provided with CPN Tools is used to run the verification step. 
This last step of the approach is fairly automated provided a 
designer correctly derived the properties to be verified; 
however, a lot of information that goes into an executable 
model (i.e., CPN) might have been provided by the designer 
(as modelling artefacts) without a proper mapping to/from the 
other architectural products, which creates a traceability 
problem between the products and the executable model. The 
approach presented in this paper can be used to address this 
issue since it interprets the logic statements, representing 
specifications in the architecture products, on the state-space 
of the executable model, thus linking behaviour of the 
executable model to the elements of architecture products.  

The remainder of this paper is organized into six sections. 
Section II presents a very brief outline of the design approach 
presented in [2]. This is followed by another brief introduction 
to the temporal logic ASK-CTL [6] in Section III. Section IV 
presents the algorithm for the computational verification that 
combines the model checking technique with the architecture 
design process. The verification is then illustrated with the 
help of an example and the formal logic statements that 
capture the system properties in Section V. The paper 
concludes in Section VI with a summary of the verification 
process and a discussion on possible future directions for 
further inquiry. 

II.  ARCHITECTURE DESIGN APPROACH 

The details of the architecture design approach based on 
structured analysis were first presented in [2]. The article also 
presented procedures for deriving, from the information 
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document shared between the two groups for the system to be 
developed. In the following discussion, the document will be 
referred to as the ‘Specification Document.’ It can be further 
refined or updated by the architects throughout the design 
process. 

The next three design stages, 1-3, of the six-stage design 
approach are shown in the Data Flow diagrams of Figs. 2 to 4. 
The diagrams show the needed inputs on the left (from Stage 0 
or from previous stages) and the framework products on the 
right. The diagrams are included in this paper for the 
constituent processes that are shown to be helpful for refining 
the system correctness statements. Fig. 4 is partially drawn 
and does not show a number of processes that contribute to 
subsequent stages in the design approach. More specifically, 
the processes that contribute to the Specification Document 
are shown shaded in these diagrams. The detailed and 
comprehensive account of the approach is in [2].  

The process of constructing and refining the Specification 
Document is illustrated with the help of an example system. 
The example uses only the first four stages to illustrate the 
verification approach. All the design stages used in this paper 

yield DoDAF products for the Operational View of the 
architecture. The approach can be easily extended to include 
design stages resulting in the Systems View of the architecture. 

Syn

The derivation of executable model, as described in [2], is 
carried out with structure and data/rule models extracted from 
Activity Model (OV-5), Operational State Transition 
Description (OV-6b), Operation Rules Model (OV-6a), and 
Logical Data Model (OV-7) of the architecture framework. 
Reference [2] provides details of the procedures for deriving, 
from the information contained in the architectural products, 
an executable Colored Petri Net (CPN) model. A number of 
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Fig. 1. Template of the Architecture and Evaluation Process [1]. 

contained in the architectural products, an executable Col
Petri Net (CPN) model. The CPN model is shown to ex
behaviour and performance characteristics of the architec
An abstract, top-level view of the architecture design 
evaluation process is shown in Fig. 1, adapted from [1].
detailed description of the process contains six stages. E
stage generates one or more of the DoDAF products fo
Operational and Systems views. The first step (Stage 0
this six-state process, involves the collection of dom
information. Table 1 suggests some of the documents 
information that can be useful inputs to the design process
was described in [1], the architecting process must start w
clear purpose and viewpoint. An operational concep
concise statement that describes how the goal will be 
must be provided. In this paper, we propose to use som
these source documents, namely D1, D2, D5, D6, D7, and
to extract formal logic statements about the system prope
described in these documents. More specifically, 
information provided in D1, D5 and/or D8 can be use
construct logical formulas comprising of propositions, st
events, and/or functions of the modelled system depicting 
operational relationships and/or (un)desired behavio
properties. The other documents, D2, D6, and/or D7, ca
used to construct the initial glossary (or dictionary) of te
used to represent the system propositions, states, events an
functions. The construction of formal logic statem
representing system properties can be carried out by eithe
users or the architects of the system. The resulting docum
listing these statements may be used as a formal requirem

TABLE 1 
INPUT TO THE PROCESS (STAGE 0) 

AV1 Purpose, Viewpoint  (Problem Definition) 
D1 Operational Concept Narrative 
D2 Universal Joint Task List 
D3 Current DoD Organization Charts  
D4 Description of Organizational Relationships 
D5 Textual Description of Doctrine, Tactics and Operational 

Procedures 
D6 List of Operational Information Elements 
D7 Definition of States and Events 
D8 Description of System Functions 
D9 Communication System Description 
D10 Performance Attributes of Systems 
D11 Migration Plans for Systems 
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of DoDAF compliant architectures have also picked up on the 
idea of developing executable models, in the form of Finite-
State machines, to facilitate the validation and performance 
analysis of the designed system. 

III.  MODAL LOGICS AND FORMAL MODEL CHECKING 

In this section, we present a very brief description of ASK-
CTL taken from the detailed presentation in [6]. ASK-CTL is 
a branching-time modal logic and an extension of 
Computational Tree Logic (CTL), which is interpreted over 
the state-space of Colored Petri Nets (CPN), i.e., Occurrence 
Graphs (OG). Since an OG of a CPN is a labelled transition 
system, carrying information on both nodes and edges, the 
CTL extension in ASK-CTL allows the construction of logic 
formulas with both state and transition information depicting 
properties of the system under analysis. For brevity, we refrain 
from presenting details on CPNs, OGs and CTL. For more 
information on these topics, see [7] for material on CPNs and 
OGs, and [8] for CTL. 

An ASK-CTL statement is defined to be a state or a 
transition formula. The two categories are mutually recursive 
and are defined, in [6], as follows: 

 Definition 1.  ASK-CTL State Formula 
An ASK-CTL state formula A is defined by the following 
production system: 
 A := tt | ¬ A | A ∨ A | EU(A, A) | AU(A, A) | α | <B>   
where tt is interpreted as true, α is a function from CPN 
markings to Boolean values and B is a transition formula, 
defined below. 

Definition 2.  ASK-CTL Transition Formula 
An ASK-CTL transition formula B is defined by the 
following production system:  
B := tt | ¬B | B ∨ B | EU(B, B) | AU(B, B) | β | <A> 
where β  is a function from CPN transition bindings 
elements to Boolean values and A is a state formula. 

A given ASK-CTL expression is by default a state formula 
and transition formulas appear as nested sub-formulas in a 
state expression. The following notation is used to define the 

semantics of the operators introduced in Definitions 1 and 2 
above. 

A.  Notation 
Let the state-space, OG, of a CPN model be denoted by (V, 

D), where V is the set of states and D is set of edges in the 
OG. A state in V is denoted by M, with M0 being the initial 
state. An edge eij in D is denoted as (Mi,<t, b>, Mj), where Mi 
and Mj are the input and output states of the edge and <t, b> 
shows the transition label with t being the CPN transition and 
b the binding on t. A path in the OG is represented by the 
symbol  θ with θi denoting the ith state (θ1 being the state the 
path originates from) and πi the ith edge on the path. In order to 
define the semantics, we will also need the functions α and β. 
The two functions return a Boolean value after checking some 
properties about the marking(s) in a state and the binding on a 
transition, respectively. The ASK-CTL toolkit of CPN Tools 
requires a user (or an architect) to implement these functions 
using CPN ML and Standard ML (SML) programming 
languages. (An example of such a function is provided in the 
following section.) 

Activity 
Model 
(OV-5)

STD  
(OV-6b)

Rule 
Model 

(OV-6a)

Logical 
Data 

Model  
(OV-7)

Create  
Activity 
Model

Create 
Logical 

Data 
Model

Define 
Logical 
Rules

Create 
Operational 

State 
Transition 

Description

Ensure 
Concordance

Create 
Functional 

Decomposition

Textual 
Description of 

Doctrine, 
Tactics,  

Operational 
Procedures 

(D5)

From Stage 2

Fig. 4. Process Model of Stage 3a. 
α : V → {True, False}   and   β : D → {True, False}   

The semantics of state formulas can now be defined as: 
Given a state M and a state formula A, the expression ‘M ╞ A’ 
denotes ‘M satisfies A’ or ‘A holds in M’. 

M ╞ tt always holds   
M ╞ α iff α(M) = True   
M ╞ ¬A  iff not M ╞ A 
M ╞ A1 ∨ A2 iff M ╞ A1 or M ╞ A2   
M ╞ A1 ∧ A2 iff M ╞ A1 and M ╞ A2   
M ╞ EU(A1, A2) iff  there exists a path θ in the OG 
starting at state M such that ∃i, θi╞ A2 and ∀j , 0 <  j < i, 
θj╞ A1 (The temporal operator EU is read ‘Exist Until’.) 
M ╞ AU(A1, A2) iff for all paths θ in the OG starting at 
state M such that ∃i, θi╞ A2 and  ∀j , 0 <  j < i, θj╞ A1 
(The temporal operator AU is read ‘For All Until’.) 

The semantics of transition formulas are defined similarly 
as follows. In an expression of the type ‘e ╞ B’, where e or         
eij = (Mi,<t, b>, Mj)  represents an edge in the OG under 
investigation and B represents the transition formula. 

e ╞ tt always holds   
e ╞ β iff β (t, b) = True   
e ╞ ¬B  iff not  e ╞ B 
e ╞ B1 ∨ B2  iff e ╞ B1 or e╞ B2    
e ╞ B1 ∧ B2 iff e ╞ B1 and e╞ B2  
eij ╞ EU(B1, B2) iff  there exists a path θ in the OG 
starting at state Mi with eij being the first edge on the path, 
∃k, πk ╞ B2 and ∀m , 0 <  m < k, πm╞ B1  
eij ╞ AU(B1, B2) iff for all paths θ in the OG starting at 
state Mi with eij being the first edge on all of these paths, 
∃k, πk ╞ B2 and ∀m , 0 <  m < k, πm╞ B1
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A is event
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constructing complex exp
Some of these, for state f
their semantics expresse
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B.  Model Checking and C
ASK-CTL 

The model checking pr
formally described as: 
Given an OG of a CPN 
(formula) p, determine if O

The following definitio
ASK-CTL property over a

Definition 3.  
Given an OG (V, D) o
property p,  

OG╞ p iff for initia
According to Definition

property (or design requ
describing this property c
state of the OG drawn for 

The model checking
implemented in CPN T
complexity of the algori
product of the size of th
space—O(N(|V| + |D|)), w
|V| is the number of node
the OG. This time comple
cost of evaluating the pre
cases, the two functions
without any significant eff
two functions are implem
programming languages, 

disadvantage and an advantage to a system architect: the 
disadvantage comes from the fact that the user or architect 
might need to learn yet another programming language to 
perform the verification; and the advantage is due to the 
flexibility of a programming language to construct a wide 
variety of predicate functions. For example, ML functions can 
be written for Timed CPNs that evaluate the timing 
information on the markings/bindings in the Timed OG for 
checking timeliness of certain properties in the system. This 
makes the CPN Tools implementation of ASK-CTL toolkit an 
especially powerful verification tool for real-time systems 
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ools, is presented in [6]. The 
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here N is the length of the formula, 
s and |D| is the number of edges in 
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dicate functions α and β. For most 
 can be evaluated very efficiently 
ect on the overall running time. The 
ented using CPN ML and SML 

a requirement that offers both a 

with specific timeliness and/or deadline requirements for 
processes and/or system states.  

The model checking algorithm in [6] is a modification of the 
standard CTL algorithm presented in [8]. The ASK-CTL 
algorithm in CPN Tools employs some reduction rules that 
break an input formula into basic primitives and eliminate the 
redundant parts. The algorithm is optimized for most of the 
primitive patterns in a formula. It finally employs a search of 
the state-space (OG) to check the validity of these primitives 
and their combinations in the states of the OG. A modified, 
compact representation of a state-space, called Strongly 
Connected Component graph (SCC-graph), is employed by 
the implementation in CPN Tools to increase the efficiency of 
the algorithm. The implementation is said to have handled 
state spaces with millions of nodes. An overview of the 
computer-aided verification approach presented in this paper, 
employing CPN Tools based ASK-CTL model checker, is 
presented in Table 3. 

IV.  VERIFICATION OF ARCHITECTURES 

In this section, we present a verification approach for 
architectures by combining the model checking technique with 
the architecture design process. The revised template for the 
architecture design and evaluation process of Fig. 1 is shown 
in Fig. 5. We have already identified the input source 
documents and sub-processes in design stages that potentially 
contribute to the development and refinement of Specification 
Document, with ASK-CTL formulas describing requirements 
for the system to be modelled. A synthesis of an executable 
CPN model directly from the DoDAF products at the end of 
the architecture design process has already been proposed in 
[2,4] for both structured and object-oriented approaches. In 
this paper, we propose to employ CPN Tools’ ASK-CTL 
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TABLE 3 

ALGORITHM FOR COMPUTER AIDED VERIFICATION  
USING ASK-CTL 

Given: (1) A CPN System (i.e., a CPN model with Initial Marking) 
implemented in CPN Tools.  

(2) A list of ASK-CTL formulas derived from architecture 
products 

Step 1. Run State Space Analysis Tool 
Step 2. Generate State Space and SCC graphs 
Step 3. Select a new ASK-CTL formula from the input list 
Step 4. Construct the predicate function(s) in the formula using CPN ML 

and SML syntax and embed the function(s) in the formula 
Step 5. Invoke ASK-CTL library 
Step 6. Evaluate the formula. If it returns true go to Step 3, else report the 

violation of property and stop 
toolkit to model check the synthesized CPN model against 
entries in the Specification Document.   

Reference [2] illustrated the architecture design approach 
with the help of a fictitious commercial system, called 
FastPass system, that is inspired by the SpeedPass™ system 
used in the US by Exxon Mobil. We employ the same 
example system to illustrate our verification approach. The 
example has been extensively used in courses on the design 
approach.  

V.  THE EXAMPLE 

Stages 0−2. Table 4 presents some of the input source 
documents available for the design process. Table 5 shows our 
first pass at the Specification Document with a sample of key 
statements taken from D1 and rewritten with the help of 

functions and sub-functions listed in D2 and the Operational 
Elements from D6. These statements are also shown translated 
to corresponding ASK-CTL statements in the same table. The 
predicate terms representing a transition (sub)formula, in these 
statements, are constructed by identifying (wherever possible) 
the operational elements from D6 (e.g., Pump) and by 
selecting a task from the UJTL in D2, e.g., 
Pump.Sense_FastPass. The specific function/task names used 
in these predicates are the result of the processes (shaded in 
Fig. 3) in Stage 1. A closer look at the translated logic 
statements reveals the fact that the choice of temporal 
operators (e.g., AU, EU, Inv, etc.) may impose certain design 
restrictions that are not very obvious in the descriptive English 
statements. For example, in the statement Sj (Table 5), the use 
of operator AX mandates that after receiving the receipt the 
driver should be immediately out of the system. As an 
alternate, if the operator Ev is used instead of AX, the driver 
can go out of the system any time after the receipt. The 
formal, unambiguous nature of these statements, while 
desirable, may in some cases restrict (or impose) the design 
choices available to an architect. One possible solution could 
be to construct statements with operators that offer flexibility 
of the type illustrated by the use of Ev in Sj. Another solution 
could be to prepare a list of several ASK-CTL statements with 
each reflecting a possible translation of the requirement. For a 
meaningful verification of the architecture at the end, the set 
of formal statements should be made as comprehensive and 
accurate as possible. A missed requirement, or an incorrectly  

TABLE 4 
STAGE 0 DOCUMENTS FOR FASTPASS SYSTEM 

Purpose: To increase convenience and reduce 
the time it takes for users buying gas with a 
credit card and in the self-service mode 

Point of View: A key thread is considered. 
A key thread is a sequence of activities that take place when an individual 
driver pulls up at the pump and use the FastPass to get gas for his/her car. 

A
V

1 

Assumptions: The operation of a single pump equipped with the FastPass system is modelled. The architect need not worry 
about the details of the electronic accounting system used by the gas station. It has already been implemented and available for 
integration. 

D
1:

 O
pe

ra
tio

na
l C

on
ce

pt
  

N
ar

ra
tiv

e 

A driver pulls up at one of the Self-Serve fuel pumps with the FastPass sign on it. If his/her car is equipped with the FastPass 
tag, then the sensor on the pump senses its presence and reads the information on the tag. If the driver has a key-chain tag, s/he 
waves the tag in front of the sensor (1 to 2 inches away) and the sensor reads the information. The sensor lights up. 
The information read from the FastPass tag is then sent from the pump, through the LAN at the gas station, to the FastPass 
central data base where the relevant credit card information is retrieved. The request for authorization along with the credit 
card data is then transmitted to the financial institution issuing the credit card. If the request is approved, the fuel pump is 
enabled and the driver can pump gas. If the request is denied, the pump is not enabled and the process terminates with the 
FastPass light going off. If enabled, the driver selects the grade of gas s/he desires and pumps gas until s/he turns off the pump 
by throwing a switch. Then the cost of the sale is computed at the pump and the amount is transmitted back to the financial 
institution where it is entered as a charge in the driver’s corresponding credit card account. A receipt is issued at the pump. The 
data about the sale are entered in the electronic ledger of the gas station. The pump returns to the idle state. 

D
2:

 U
ni

ve
rs

al
 

Jo
in

t T
as

k 
Li

st
 

(U
JT

L)
 

1. Validate Payments 
1.1 Sense FastPass 
1.2 Retrieve Driver Info 
1.3 Validate Credit 

2. Operate Pump 
2.1 Maintain Status 
2.2 Control Operation  Mode 
2.3 Dispense Gas 

3. Manage Sales 
3.1 Compute Cost of Sale 
3.2 Request Charges 
3.3 Print Receipt 
3.4 Update Account 

Operational Node Operational Elements 

Driver Driver 
Gas Station Pump, Gas Station Office 
OilCo OilCo 

D
6:

 
O

pe
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tio
na

l 
N

od
es

 a
nd

 E
le

m
en

ts
 

Financial Institution Financial Institution 
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TABLE 5  
SPECIFICATION DOCUMENT 

ID Statement ASK-CTL Formula 
S1 When a driver pulls up with a FastPass tag and the pump senses FastPass, 

then the pump’s light goes on 
(Driver.In ∧ <Pump.Sense_FastPass>) ∧ 
AX(Pump.Light_On) 

S2 If  the FastPass tag is sensed and the information on the tag is read, then 
the request of authorization and credit validation is sent to the financial 
institution. 

Ev (Pump.FastPass_Sensed ∧ 
Pump.Driver_Info_Retrieved ∧ 
<Pump.Send_Authorization_Request> ∧ 
AX<FinancialInst.Validate_Credit>) 

S3 If request for authorization is approved, then Fuel Pump is Enabled. Ev(<Authorization_Approved> ∧ AX (Pump.Enabled)) 
S4 If request for authorization is denied, then pump’s light goes off. Ev(<Authorization_Declined> ∧ AX (Pump.Light_Off)) 
S5 If the Pump is enabled and gas grade is selected, then gas is dispensed. Ev(Pump.Enabled ∧ Driver.Gas_Grade_Selected ∧            

Ev <Pump.Dispense_Gas>) 
: … … 

Sj Driver should get a receipt and go out of the system in the end Ev(<Driver.ReceiveReceipt> ∧ AX (Driver.Out)) 
 

Sk The pump in the end returns to the initial idle state. Inv (Pos (Pump.IdleState)) 

TABLE 7 
CPN CODE FOR ASK-CTL FORMULA Sj 

1. fun ReceiveReceipt a = st_TI (ArcToTI (a)) 
2. = "Driver'ReceiveReceipt 1"; 
3. fun IsDriverOut n =  
4. Mark.Environment'DriveOut 1 n <>[]; 
5. val myASKCTLformula =  
6. EV (AND(MODAL(AF ("_", ReceiveReceipt)),  
7. FORALL_NEXT (NF ("_", IsDriverOut)))); 

TABLE 6 
OV-6a RULE IN ASK-CTL 

Rule R22 ASK-CTL Formula 
If (Authorization_Transaction.approval AND (Selection.On, 
Selection.Quntity, Selection.Grade)) Then 
(Dispensed_Gas_Data.Grade = Selection.Grade AND 
Dispensed_Gas_Data.Quantity = Selection.Quntity AND 
Display.Content = Message 3 Else Display.Content = 
Message 9 

Ev ((Authorization_Transaction.approval ∧ Selection.On ∧ 
Selection.Quantity ∧ Selection.Grade ∧ <Dispense_Gas> ∧ AX 
(Dispensed_Gas_Data.Grade = Selection.Grade ∧ 
Dispensed_Gas_Data.Quantity = Selection.Quntity ∧ Display.Content = 
Message 3))∨ 
Display.Content = Message 9) 

 
constructed statement, results in a system design with a low 
level of fidelity or unnecessary errors reported by the 
verification algorithm.  

Stage 3. Stage 3 of the design process begins with 
creating the Activity Model (IDEF0), the Data Model 
(IDEF1X), and the rule model that correspond to the Activity 
Model (OV-5), Logical Data Model (OV-7), and Operational 
Rule Model (OV-6a), respectively. The construction of these 
products helps identify the exact labels for the predicates used 
to construct atomic state and transition formulas, shown in 
Table 5. An architect may also add rules from OV-6 to this 
document. In fact, most of the rules in OV-6a can be easily 
traced back to ASK-CTL formulas in the Specification 
Document. A software tool implementing the architecture 
design process may incorporate this mapping (or traceability) 
to/from the Specification Documents and the framework 
products. Table 6 presents a sample rule from OV-6a of the 
FastPass architecture and its corresponding ASK-CTL 
representation. In contrast to the rule in OV-6a, this 
representation of the rule can actually be used by the 
verification algorithm to check if it is used by the executable 
model to generate the right outputs. 

Computer Aided Verification. Fig. 6 shows the top-level 
CPN of the FastPass system developed in [2]. Each transition  

 
 
 
 
 
 

 
in the CPN represents a substitution transition with a  sub-
page containing a detailed net. For lack of space, we only 
show the detailed CPN for the substitution transition labelled 
‘OperateFastPassSystem’ in Fig. 6. The detailed CPN is 
shown in Fig. 7. Note that there are several substitution 
transitions in Fig. 7 depicting the fact that there exist sub-
pages for each of them with even further detailed networks. 
The CPN shown is the object of the verification step. The use 
of CPN Tools and its built-in version of the ASK-CTL verifier 
require an architect to construct ML functions for each of the 
predicates in the Specification Document. For brevity, we 
illustrate the process for only one of the statements in Table 5. 
Table 7 presents the ML code constructed for checking the Sj 
property. In the code, Lines 1 and 2 implement 
Driver.ReceiveReceipt predicate; Lines 3 and 4 show the 
function for Driver.Out predicate. The two functions use CPN 
ML constructs for transitions binding elements and node 
markings. Lines 6 and 7 show the CPN ML implementation of 
the ASK-CTL formula. 
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Fig. 6. CPN Top-Page for FastPass with Example Verification 

The term MODAL implements the <.> operator and the 
identifiers NF and AF represent α and β predicates, 
respectively. Line 5 assigns the formula to a variable that is 
then evaluated by invoking the built-in CPN ML compiler, as 
shown by ‘3.Verify’ step in Fig. 6. For the example formula 
(Sj), the verifier returns a ‘true’ that confirms the property for 
the model. The other properties can be verified in a similar 
manner. 

Fig. 7. Detailed View of the Substitution Transition 
‘OperateFastPastSystem’ in Fig. 6. 

A high-level representation of the derivation of executable 
CPN and the Specification Document, as applied to the 
illustrative example, from a selected set of framework 
products and a subsequent verification process is shown in 
Fig. 8.  

VI.  CONCLUSIONS 

An application of formal model checking techniques for 
developing analysis and assessment mechanisms for system 
architectures developed in accordance with the DoD 
Architecture Framework (DoDAF) is presented. 

The presented approach offers a potential solution to the 
traceability problem between the DoDAF products and the 
executable model of the system: The construction of a fully 
executable model (e.g., Colored Petri net) requires an architect 
to incorporate information from several architectural products. 
The mapping of information from the products to artifacts in 
the executable model is not straight forward (or algorithmic), 
resulting in the loss of traceability. Any errors found in the 
executable model must be corrected in the appropriate 
views/products to have a meaningful evaluation. The approach 
uses ASK-CTL formulas, directly derived from the 
architecture products, to model check the architecture. It 
requires a user/architect to construct a Specification Document 
comprising these ASK-CTL formulas as part of the 
architecture design process. The strict semantics of the 
language, in turn, requires a user/architect to remove a number 
of ambiguities that might be present in the input 
description(s). CPN Tools is used for constructing the 
executable model and its built-in ASK-CTL library is used for 
running model checking algorithms. Errors, if found, can be 

traced back to the product(s) the corresponding formula was 
derived from and fixed. The approach can be employed using 
other available model checking, computer-aided verification 
tools. The syntax of a formal logic may not be very intuitive to 
a user and may require formal understanding of both the 
syntax and semantics of the logic and its language to develop a 
comprehensive and accurate, yet flexible, set of statements. 
An understanding of CPN Tools and SML programming 
language/environment is also required for someone interested 
in using the approach. Further research is required to fully 
automate the construction of Specification Document.  

The approach was applied to an example architecture of a 
fictitious commercial system that has been extensively used in 
courses on system architectures. To facilitate the construction 
of the Specification Document, its refinement and a mapping 
between the logic statements in the document to architectural 
products and/or source documents, a number of software 
support tools can be developed as extensions to the existing 
software applications for developing DoDAF compliant 
architectures. 
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Fig. 8. The 3-Stage Representation of the Proposed Approach 
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