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Abstract: This paper discusses a research project that employs 
Computational Intelligence (CI) to improve the ability of military 
planners to route sensors and weapons to effectively engage mo-
bile targets. Future target motion is predicted through the use of 
multiple software agents employing Goal Oriented Action Plan-
ning (GOAP). Derived from the Stanford Research Institute 
Planning System (STRIPS), GOAP is a relatively new class of CI 
that is ideally suited to dynamic real-time environments such as 
military operations. The project is unusual in its adaptation of 
computer gaming industry technology for use in real-time, tacti-
cal military applications. 

I.  INTRODUCTION 

The efforts described within this paper are the results of an 
on-going Small Business Innovation Research (SBIR) grant 
between the Navy and Applied Visions, Inc. of Northport, 
NY. The SBIR Topic, now entering its 2nd year of Phase II 
funding, is called Display and Visualization of Movement 
Predictions for Ground Vehicles and is managed by the Naval 
Undersea Warfare Center (NUWC) Newport, RI. Its primary 
focus is the Tactical Tomahawk missile and the associated 
control system, though the research and its application must 
be extensible to future weapon systems.  
The Tomahawk missile is a long range, subsonic cruise mis-
sile, launched from U. S. Tomahawk missiles, used for land 
attack warfare, are designed to fly at extremely low altitudes 
at high subsonic speeds and are piloted over an evasive route 
by several mission-tailored guidance systems. There are two 
variants of the Tomahawk Missile currently deployed, the 
Block III and the Block IV. Both feature an Inertial Naviga-
tion System (INS) aided by Terrain Contour Matching (TER-
COM) for missile navigation and a Digital Scene Matching 
Area Correlation (DSMAC) and Global Positioning Satellite 
(GPS) System, which are coupled to the guidance systems to 
provide precision navigation.  
The Tomahawk missile has become the weapon of choice for 
the U.S. Department of Defense because of its long range, le-
thality, and extreme accuracy. They are used against high-
priority, long-dwell targets whose priority does not change 
during the missile’s transit time [1]. However, the Tomahawk 
has limited effectiveness against short-dwell or Time Sensitive 
Targets (TST), and has never been used against mobile, high-
value targets such as mobile missile launchers. These targets 
present special challenges for the weapon system because the 

missile cannot be retargeted quickly. Furthermore, the Toma-
hawk missile has limited endurance, increasing the likelihood 
that it will run out of fuel before new target solutions can be 
determined [2].The Block IV, or Tactical Tomahawk, is the 
latest in the evolution of the Tomahawk weapon system. It 
adds the capability to reprogram the missile in-flight to either 
strike preprogrammed alternate targets or to redirect the mis-
sile to newly found targets of opportunity. The missile is also 
able to loiter over a given area, either using its on-board cam-
era to assess the target, or operating in a stand-off mode, wait-
ing for a target to enter a kill window, perhaps some distance 
away. Figure 1 below illustrates some of these capabilities. 
 The ability to reprogram the missile in-flight is provided by 
the Tactical Tomahawk Weapon Control System (TTWCS). 
The success of TTWCS will depend on how well a weapons 
officer can decide which missile should be assigned to what 
target and when it should carry out its attack. To make such 
decisions the warfighter requires timely, actionable informa-
tion that enables effective use of existing weapon and sensor 
systems, as well as provides an understanding of the spatial 
relationships of the weapon, sensor, target, and the battle-
space. The goal of this research project is to provide the 
TTWCS operator with the technology to achieve that under-
standing 

 

Figure 1 – Tactical Tomahawk Missions 
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III. PROBLEM DOMAIN 

Currently, the TTWCS operator does not have the ability to 
fully utilize the features of the Tactical Tomahawk against an 
expanded target set that includes TSTs and high-value mobile 
assets. This is because the current level of Situational Assess-
ment (SA) is insufficient to support the operator’s ability to 
respond to these emerging targets in a timely fashion. This 
lack of SA results in longer response times to requests for 
weapon strikes; the sequence of events from request to re-
sponse is known as the “kill chain”. The inability to strike a 
target in a timely manner is not unique to the Tomahawk mis-
sile. Therefore, it is important that solutions to address this 
deficiency be extensible to route sensors, Unmanned Aerial 
Vehicles (UAV), Unmanned Combat Aerial Vehicles 
(UCAV), and future high-speed weapons, as well as any fu-
ture weapon whose objective is to engage TSTs and mobile 
targets. 
In order to attack TSTs, it is necessary to shorten the kill chain 
time. To reduce the response times it is necessary to provide 
the operator with the correct level of actionable information so 
that weapon/sensor selection and route planning decisions can 
be made in a timely manner. To address this problem a capa-
bility is required that supports the real-time comprehension of 
the battlespace in order to engage TSTs and moving targets. 
The operator must have the ability to visualize the spatial rela-
tionships between the sensors used to detect the target, the 
weapon employed against the target, threats to the weapon, 
the movement of the target, and the battlespace itself, which 
includes the terrain and weather conditions. Therefore, the 
proposed solution must provide the ability to conflate target 
movement and visualization knowledge and associate this in-
formation to land-based targets and sensor/weapon require-
ments in real-time. The solution must consider the target’s ca-
pabilities and operating terrain, the position and capabilities of 
the sensors, and apply motion analysis techniques to quickly 
locate/relocate mobile targets, as well as predict the future 
movements in a rapidly changing battlespace. 

IV. APPROACH 

The goal of this project is to develop a cost-effective, yet 
high-performance capability that provides the warfighter the 
correct level of SA necessary to engage mobile and TSTs. 
While developing an entirely new system for this purpose is 
certainly possible, it would also represent a high-risk, high-
cost solution. The most efficient approach is to adapt existing 
technology from the military or commercial marketplace. 
Since the technology found in existing military systems typi-
cally lags the commercial market by a decade or more, our re-
search centered on the latter. We were somewhat surprised to 
discover that the computer game industry could provide what 
we were looking for in the form of a “Game Engine”. A Game 
Engine is the core software component of a computer game 
that uses real-time graphics. The Game Engine itself is a 
middleware that provides a level of abstraction between the 
hardware and the application. It provides the underlying 
technologies for commercially produced computer games, 

simplifies development, and includes a rendering engine for 
graphics, a physics engine for vehicle dynamics and collision 
detection, a computational intelligence subsystem to control 
the non-player characters, a sound engine for aural effects, 
scripting, animation, and networking capabilities. Game 
Engine technology is driven by a huge market of consumers 
and the technology continues to improve each year. 
Commercially available Game Engines are well-documented, 
open, modular products that combine high-performance visual 
rendering, sophisticated real-world physics and vehicle 
dynamics, as well as the reliability that our product requires. 
In addition, due to its modular design, it is possible to easily 
upgrade the Game Engine, taking advantage of new features 
as they are introduced. Although, Game Engines are not typi-
cally used in tactical applications, their capabilities and matur-
ity are a natural fit for the requirements of this problem do-
main,  
The problem of predicting vehicle movement can be broken 
down logically into three essential parts: prior history, current 
state, and future goals.. These correspond to the following 
technology areas: 
- Computational Intelligence – “memory” of prior events, 

“sensing” current status and events, and decision making, 
all resulting in evaluation of holding position or moving 
to a new destination. 

- Pathfinding – given a decision to move to a new destina-
tion, what routes would the ground vehicle take and what 
are the relative benefits and risks of each path? 

- Vehicle Physics – how quickly can the vehicle move 
along each route to reach the potential destinations? 

- Visualization – provide the operator with a user interface 
(UI) that allows intuitive interaction and rapidly increases 
situational awareness. 

All relevant elements of the battlespace and their relationships 
must be presented by the system and understood by the opera-
tor. In its simplest form, the battlespace will contain a target, a 
weapon, a sensor, the terrain, and any threats to the weapon 
and/or sensor; all of which interacting with each other at some 
level. That is, it must be possible to predict the movement of a 
target within a specified terrain, optimize the use of sensors 
(most likely UAV) by employing efficient search routes, de-
velop efficient weapon mission plans, incorporate threat 
avoidance into sensor and weapon routes, and determine the 
time-on-target distance vs. time relationships, all of which 
needs to be presented to operator in a comprehensible visual 
package. These tasks and relationships, though complex, are 
within the capabilities of modern game engines. In particular, 
the ability extend the computational intelligence incorporated 
in the game engine makes it an ideal solution for target 
movement prediction requirements. 
In the Phase I of the project, our research looked at several 
types of game-based AI as potential candidates for the final 
product. We finally selected a product called AI.implant as our 
Phase I choice as it combined excellent functionality with the 
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availability of a free development license, good documenta-
tion and an active user community. 
AI.implant’s development environment (AI.DE) includes an 
editor that allows creation and modification of agents, includ-
ing a full definition of the “brain” of the agent. This brain 
consists of the following elements: 
- Knowledge of one’s own capabilities and performance 

parameters 
- Knowledge of prior events (world and self history) 
- Knowledge of current state 

o Internal status, such as fuel, speed, etc. 
o External status, such as proximity to threats, 

gained through the use of user-defined sen-
sors 

- Decision Logic – given the current state and prior history, 
what action, if any, to take next. 

All of these elements are completely customizable without 
writing any code, thus putting the design of the “brain” di-
rectly into the hands of an Analyst without needing the sup-
port of a Programmer. Figure 4 contains a screenshot taken 
from the AI.mplant development environment showing the 
development of an agent. 
 

Figure 1 – Designing a “brain” in AI.DE 

The version of AI.implant we used allowed two types of deci-
sion logic: Decision Trees and Finite State Machines (FSMs). 
In Phase I we experimented with Finite State Machines as the 
primary methodology. While this approach was certainly suf-
ficient for the Phase I Prototype, we realized that further ex-
ploration in Phase II was necessary  
In Phase II of the project, we entered into a Cooperative Re-
search and Development Agreement (CRADA) with the Naval 
Postgraduate School (NPS), located in Monterrey, CA, to as-
sist us in surveying the current state of AI as it applied to the 
computer gaming market. After reviewing the latest method-
ologies, NPS suggested we evaluate Goal Oriented Action 

Planning (GOAP) [3][4] for our application. GOAP, because 
it was developed to handle real-time game action, is well 
suited to dynamic environments such as military operations. It 
evolved from earlier cognitive systems, such as GOMS 
(Goals, Operators, Methods and Selections) [5], with major 
influence from work done at Stanford University on the Stan-
ford Research Institute Problem Solver (STRIPS) [6]. STRIPS 
consists of goals and actions, where goals describe some de-
sired state of the world, and actions are defined in terms of 
preconditions and effects. An action may only execute if all of 
its preconditions are met, and each action changes the state of 
the world in some way.  
The overall logical execution flow of a GOAP system is rela-
tively simple. At a given point in time, each agent has a set of 
goals that need to be achieved, and tries to satisfy the goal or 
goals that are most relevant for the current situation. For a 
given goal, the logic regressively searches for actions that 
have an effect that matches the goal. For each matching ac-
tion, the logic looks at its preconditions, determines if they are 
already satisfied, and if not, performs another regressive 
search to find actions that have effects that that match the pre-
condition of the previously selected action. Using the classic 
A* search technique, the regressive searching continues until 
it finds a path from the end goal all the way back to the cur-
rent world state. The agent then begins executing the actions, 
rechecking the validity of the path and end goal at each step to 
accommodate for dynamic changes in the environment. Sev-
eral interesting and useful concepts are embodied in this archi-
tecture which we feel make it a prime candidate for our re-
search: 
- For a given goal, there may be multiple paths. The system 

can be designed to either simply pick the first path that 
works, or a weighting system can be applied to individual 
actions, thus providing the mechanism for searching for 
the lowest cost path. This can be employed to find the 
lowest risk plans for achieving military goals. 

- There is no explicit mapping between goals and actions, 
thus allowing for dynamic resolution of unexpected con-
ditions such as weather changes. 

- The GOAP architecture lends itself to a separation of im-
plementation and data. This separation of the coding from 
the data allows non-programmers the ability to create or 
modify behaviors, an extremely important attribute for the 
future deployment of this application.  

- Regressively searching for plans in real-time affords op-
portunities to learn and find multiple solutions to prob-
lems 

- Atomic goals and actions of a GOAP system are easy to 
read and maintain, and can be sequenced and layered to 
create complex behaviors.  

- A GOAP system imposes a modular architecture that fa-
cilitates sharing behaviors among agents and even across 
software projects. 
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- The GOAP architecture can be defined using the Planning 
Domain Definition Language (PDDL), a machine-
parsable standardized syntax used widely throughout the 
AI planning community. Also, translators exist between 
PDDL and DARPA Agent Markup Language (DAML) 
[7]. 

V. IMPLEMENTATION  

Having chosen GOAP as the preferred AI methodology, we 
are now pursuing two parallel efforts for incorporating it into 
our project. The first effort is that of implementing the 
TTWCS “GOAP Engine” - our own version of the planner - 
and integrating it into the overall game engine architecture. 
For that portion of the work, we have entered into a Coopera-
tive Research and Development Agreement (CRADA) with 
the Naval Postgraduate School (NPS), located in Monterrey, 
CA. That effort is now underway at NPS with an initial ver-
sion expected to be available by the end of 2006. 
The second effort is that of developing the planning logic that 
will be processed by the GOAP Engine. The planning logic 
needs to encompass a fairly large number of scenarios, such as 
the following 
Scenario: Target Vehicle to Missile Launch at Remote Loca-
tion Scenario 
Goal: Launch missile from “launch basket” – an area at some 
distance from current position that is within range of one or 
more selected targets for the missile.  
Preconditions for launch: 
- Within “launch basket” 
- Weapon system ready  
- Sufficient fuel to escape after launch 
- Weather conditions limit probable detection (e.g. night, 

cloud cover, etc) 
In the simplest case, with the assumption that no opposing ac-
tion will be taken against the target vehicle, the following 
steps must be followed to achieve the goal: 

1. Call a pathfinding function to determine the 
best route to the launch basket. 

2. Traverse that route, segment by segment, un-
til the launch basket is reached. 

3. Ready the weapon 

4. Launch the weapon. 

In a more realistic scenario, the Scud launcher will need to 
account for possible opposition. It may have to alter its route 
to the launch basket based on dynamic conditions affecting its 
visibility/vulnerability to enemy sensors and weapon plat-
forms. To check for these conditions, an additional function is 
called while traversing the route to check for the safety of the 
current position. The logic now expands to the following  

1. Call a Pathfinding function to determine the 
best route to the launch basket. 

2. Traverse that route, segment by segment until 
launch basket is reached. In each iteration 
perform the following 

a. Call a Visibility function to check 
if it is safe to continue on the cur-
rent route. 

i. If Safe, then continue with 
current route and destination 

ii. If Unsafe, then call Pathfind-
ing to find route to closest 
hiding area and continue to 
call Visibility function until 
no longer visible, then call 
Pathfinding to calculate new 
route to launch basket 

b. Repeat 2.a. 

3. Ready the weapon 

4. Launch the weapon. 

When other factors, such as the launcher’s fuel consumption 
and weather conditions are added to the scenario, the com-
plexity of the problem increases significantly. We are explor-
ing ways to express the problem space in a format that can be 
used by system analysts and subject matter experts (SME’s). 
We began by looking at the potential use of the Program Do-
main Descriptor Language (PDDL) [8]. A PDDL definition 
consists of two parts: The domain and the problem definition. 
A domain definition contains the properties of objects in the 
world of interest (predicates) and operators (a.k.a. actions). A 
simple domain definition is formatted as follows: 

define (domain DOMAIN_NAME) 
  (:requirements [:strips] [:equality] 
[:typing]) 
  (:predicates (PREDICATE_1_NAME [?A1 ?A2 ... 
?AN]) 
               (PREDICATE_2_NAME [?A1 ?A2 ... 
?AN]) 
        ...) 
  (:action ACTION_1_NAME 
    [:parameters (?P1 ?P2 ... ?PN)] 
    [:precondition PRECOND_FORMULA] 
    [:effect EFFECT_FORMULA] 
   ) 
  (:action ACTION_2_NAME 
    ...) 
  ...) 

A problem definition contains an initial world state and a de-
sired state of the world in terms of a goal. The PDDL for a 
simple problem is formatted as follows:: 

(define (problem PROBLEM_NAME) 
  (:domain DOMAIN_NAME) 
  (:objects OBJ1 OBJ2 ... OBJ_N) 
  (:init ATOM1 ATOM2 ... ATOM_N) 
  (:goal CONDITION_FORMULA) 
  ) 

Using our sample scenario, we began the translation into 
PDDL, as illustrated in Figures 2 and 3. While the PDDL was 
fairly manageable at first, we soon realized that we would 
need to extend the PDDL to handle complex pathfinding, fuel 
consumption and dynamic weather conditions. While other 
researchers had done comparable extensions [9], the specific 
nature of our problem space would undoubtedly require sig-
nificant additional work. This, coupled with the desire to put 
the construction of the logic into the hands of non-
programmers has led us to abandon the PDDL approach. Our 
plans now include the development of a planning definition 
tool (PDT) that will provide a deployable environment to de-
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fine the world state variables, available actions, goals and as-
sociations. 
 

 
Figure 2 - PDDL Domain Definition Code  

 

 
Figure 3 PDDL Problem Definition Code  

 

SUMMARY 

Computational Intelligence, adapted from the computer gam-
ing industry, will be used to assist U.S Navy personnel in SA 
of the battlespace and to optimize route planning for the 
Tomahawk missile and associated sensor platforms. The tech-
nology represents a leap-ahead in SA over the levels currently 
provided to operators. The approach not only supports the en-
gagement of TSTs and mobile targets through complete com-
prehension of the relationships of the entities contained in the 
battlespace, it also provides the ability to predict and visualize 

future changes in the relationship of the entities. An operator 
can not only comprehend the current battlespace, he can also 
visualize what that battlespace will look like when the weapon 
arrives.  
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