
Algorithmic Tools for Adversarial Games: Intent
Analysis Using Evolutionary Computation

Tasha Vanesian and Ken Kreutz-Delgado
ECE Department

Univ. of California, San Diego
La Jolla, CA 92093 USA

{tcvanesi, kreutz}@ucsd.edu

George Burgin and David Fogel
Natural Selection, Inc.

3333 N. Torrey Pines Ct. Suite 200
La Jolla, CA 92137

{gburgin, dfogel}@natural-selection.com

Abstract – Determining adversarial intent is important on a
battlefield. In this paper, we propose a method for intent analysis
using evolutionary computation. The proposed approach defines
the model as an optimization problem then gives an algorithm for
determining the parameters of the model in a Valuated State
Space® domain. Example experiments using simulation data are
discussed.

I. INTRODUCTION

One of the keys to successful command and control is to
understand the enemy’s intent, particularly in light of
incomplete and perhaps inaccurate information regarding
social and cultural norms. It is inappropriate to project our
own goals and aspirations onto the enemy. For example, in
asymmetric warfare, the enemy’s tactics and objectives may
be radically different from our own and those of our allies.
Given the same resources to allocate, if placed in obverse
roles, our decisions on how best to use those resources might
be very different. Furthermore, warfare is becoming
increasingly that of semi-autonomous machines versus
machines (e.g., swarms of semi-autonomous vehicles reacting
to automated defense systems). Understanding the enemy’s
intent will therefore become less a matter of understanding the
thinking of higher command authority and more a matter of
inferring the adversary’s intent based on a priori beliefs
regarding their objectives and observed data reflecting the
actual decisions that the enemy takes in real settings.

A novel combination of two technologies, evolutionary
computation and the Valuated State Space® Approach used to
quantify purpose, holds the promise of a general procedure for
inferring the enemy’s purpose in combat settings ranging from
the campaign-level to the level of the individual. The
capability described in this report is the result of the research
and development undertaken that examined an automatic
method for optimizing models of the adversary’s intent,
structured in a hierarchic form. The models were evolved
(optimized) in light of data acquired on decisions made
presuming the adversary is rational (i.e., attempting to
maximize success as he defines it) using multi-agent
adversarial games. The effort developed and tested software to
assess the capability of this procedure in simulated combat
settings of sufficient complexity. A collection of alternative
models of the adversary’s purpose was evolved dynamically
over time, with evolutionary algorithms used to adapt those
models in light of the most recent data describing the observed
adversary’s behavior. The feasibility of the approach has been
assessed in a series of experiments using a statistical design to
determine the computational requirements of the procedure

and the identifiability of the adversary’s objectives as a
function of the complexity of the setting.

A. Modeling the Enemy as a Problem in System Identification

The challenge of inferring the enemy’s purpose is similar
to the problem of system identification. As indicated in Fig. 1,
data are observed regarding the input-output behavior of a
system. The goal is to develop a model of the transducer that
maps the input stimulus into the output set of observed actions
with the least error. The choice of models is often crucial in
identifying an appropriate representation of the system. As
will be discussed in the next section, the Valuated State Space
(VSS) Approach provides the framework for modeling the
adversary’s mission. Once the class of models is chosen, a
search is initiated for the best model of those available. This
requires a criterion by which to measure the goodness-of-fit of
the model and its associated parameter values to the observed
data.

Caines [1] regarded identification as the invention and
evaluation of scientific theories, that is, system identification
is performed by using the scientific method. This method
involves induction and inductive inference, followed by
independent verification. It is an iterative process that
facilitates gaining new knowledge about the nature of an
observable environment.

Fogel et al. [2] remarked that there is a correspondence
between the scientific method and natural evolution. In nature,

Fig. 1. Evolving models of the adversary using the Valuated State Space
(VSS) structure to represent the adversary’s intent. The adversary examines
the present condition (state) and chooses a course of action (eCOA, for enemy
course of action) that is believed to maximize his future success based on his
intent. The adversary can be modeled using evolutionary computation by
estimating the adversary’s intent using the VSS structure. Alternative intents
based on relative importance of parameters, degrees of achievement, and
normalization are maintained as a population of competing ideas about the
adversary’s intent. Evolutionary optimization is used to maximize the
correspondence between the prior observed conditions and eCOAs based on
the hypothesized intent represented in each alternative estimated VSS and
rationale for selecting the best eCOA. The best-evolved VSS at each decision
point can be used to evaluate alternative eCOAs and arrive at eCOA_hat, the
predicted adversary course of action, which can then be used as the basis for
COA planning.

Evolutionary
Computation on
VSS Model

Adversary Intent

Present Condition eCOA

eCOA

108

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

1-4244-0700-1/07/$20.00 ©2007 IEEE

organisms serve as hypotheses about their environment. They
are in essence predictions about the conditions that the future
environment will present over their lifespan (at least to the
point of reproduction). Those organisms that are good
predictors of their surroundings survive to pass along their
behaviors indirectly through their genes to their progeny. The
progeny serves as modifications of the hypotheses, altered by
mutation, sexual recombination, and/or many other variational
processes. Over time, the evolutionary process of variation
and selection performs the scientific method and continually
optimizes the behaviors of the organisms involved in the
process.

It is natural, therefore, to use algorithms that model
evolution in system identification applications. Evolutionary
algorithms can be very effective in system identification,
particularly in simultaneously optimizing model parameters
and the number of degrees of freedom in light of information-
theoretic criteria.

B. Combat as a Game

Combat can be viewed in the framework of a game. Each
SAM player faces a current situation and prospective future
situations that will be a function of the decisions made on both
(or more) sides over time. Each player has objectives that he
wants to achieve and must be able to quantify the extent to
which his overall mission is being accomplished at any point
in the operation. Players can be expected to make decisions
that they believe will improve the prospects of attaining their
objectives. Note that these objectives may be related solely to
each players’ individual condition (e.g., survive or increase the
probability of survival) and may be related directly to other
players’ conditions (e.g., eliminate the enemy, decrease the
probability that the enemy would survive a particular tactical
move). Thus, the objectives of players in combat settings must
reflect both their individual concerns as well as the mutual
attitudes of the involved players.

With a quantitative statement of each side’s purpose, each
side can evaluate future possible states in the combat by
assessing the numeric effects on its overall degree of
achievement. This is the fundamental basis for all computer
programs that play strategy games, such as chess. A numeric
evaluation function is used to assess features of a current
position, or prospective future positions, and the output of this
function is used to estimate the value of the input position
(current or future state). A rationale such as minimax is used
to favor one state over another based on the numeric
evaluations across a range of alternative future states. The
same procedure can be used in combat simulation, where
present and future states are evaluated numerically in terms of
how well they fit with a player’s objectives (alternatively
described as a “belief system”) using the VSS Approach.

C. Quantifying Purpose with the Valuated State Space
Approach

Optimal decision-making requires a well-defined purpose,
for decision-making in the absence of a purpose is
meaningless. To be well defined, a purpose must allow for
trading off every possible allocation of resources in light of
the parameters of concern, their relative importance, degree of

criticality, and the degrees of achievement attained with
respect to each parameter. These aspects of the purpose can be
captured in the form of a VSS and normalizing function [3,4].

A VSS is used to express a purpose in terms of the
relative worth of each of the significantly different outcomes,
and therefore can be used to measure the overall worth of
current and prospective situations. Achieving the most
valuable class interval on each of the parameters corresponds
with the state of the highest overall worth (a measure of 1.0, or
10 on a 10 scale, 100 on a percent scale). Achieving no
success on any parameter corresponds with an overall worth of
zero. Any intermediate state has some worth, depending upon
the normalizing function.

In many situations, any level of achievement has some
overall worth. A multiattribute utility function specifies the
overall worth of any particular situation; that is, the VSS and
its normalizing function yields a single overall measure for the
worth of each significantly different situation.

When applying the VSS approach, decisions are almost
always best made in the light of the other players’ perceived,
known, or assumed intent, capabilities, and motivation. It is,
therefore, suitable to construct a similar representation of the
purpose of each of the involved players (e.g., the United
States, coalition members, and an opposing entity), then
examine the joint state space that defines the game. This
portrays a finite number of possible situations, those situations
that are significantly different from any single or multiple
players' points of view. There is a joint payoff in each
cell/state for each of the players, this being a function of their
marginal worth. Every sequence of moves and countermoves
corresponds with a trajectory across states in the joint state
space, there being some overall worth for that series of
transitions.

D. Modeling the Adversary by Combining Evolutionary
Computation and the Valuated State Space Approach

Just as a VSS can provide the justification for optimal
decision-making for one’s own forces in combat, the
adversary can be viewed as using a VSS as the basis for his
own decision-making. Therefore, viewing the challenge of
modeling the adversary as a problem of system identification,
a best estimate of the adversary’s VSS (and normalizing
function) can be gained by utilizing the empirical data on
decisions that the adversary has made based on his presumed
knowledge of the current and prospective future conditions.
As indicated in Fig. 1, the desired process can utilize
evolutionary computation to optimize models of the
adversary’s VSS over successive generations. At any point in
time, the evolutionary algorithm can yield a single best or best
collective set of estimates of the adversary’s VSS, which can
be used to infer how the adversary will respond in future
possible settings. This will allow planners to gauge and
evaluate the effectiveness of alternative plans under varying
actions and reactions, and also facilitate semi-autonomous
COA planning should that be desired.

In essence, the evolutionary approach was used to answer
the question: Given the observed adversary decisions, what
values of his prospective VSS and rationale (e.g., minimax)

109

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

would yield the same or most similar decisions in the same
settings? These values were optimized using evolutionary
algorithms that were iterated for simulated generations at each
decision point. The best-evolved estimates at each point in
time were used as the basis for future estimation based on each
next move and countermove as the combat unfolded. As the
volume of empirical data on the adversary’s decision-making
grew so too did the accuracy of the estimates of the relative
importance of his parameters of concern.

II. METHOD AND RESULTS

A. Framework for Analysis
The evolutionary approach to identifying the relative

preference of the parameters of concern in the VSS can be
framed as a mathematical optimization problem. Given n
different observed OPFOR plans, assume that the preference
(precedence ordering) of the plans is known. For example, for
plans A, B, C, and D, it may be that the OPFOR orders the
plans where B > D > C > A, meaning that B is preferred to D,
which is preferred to C, which is preferred to A. The VSS
results in a single numeric evaluation of a plan’s overall
worth, and therefore pathological cases where a strict order of
preference is not obtained (e.g., B > A, A > C, but C > B) are
excluded by this framework.

The VSS is constructed as a weighted sum of the degree
of achievement on each parameter and the relative importance
of the parameter. For example, suppose there are three
parameters of concern, say, damage inflicted, survivability,
and sensing performed. Suppose further that the relative
importance for these parameters are w1, w2, and w3,
respectively, and the degree of achievement made with respect
to each parameter is d1, d2, d3, respectively. Then the overall
worth under a linear normalization function is the dot product,
or w1d1 + w2d2 + w3d3. The framework for evolving the
relative importance weights, wi, i = 1 to p, where p is the
number of parameters, assumes knowledge of the degrees of
achievement, di, and the precedence orderings of the plans, A,
B, C, D, etc.

For the cases studied in this research, there were at most
eight parameters (p = 8), corresponding to ammunition used,
fuel remaining, damage inflicted, sensing performance, bomb
damage assessment (BDA) performed, platform survival,
returning to base, and reconnaissance, but many cases studied
used p < 8. Given d = {d1, …, dp}T and constraints:
0 ≤ di ≤ 1
0 ≤ wi

1=∑
i

iw

the objective is to find the vector w = {w1, …, wp} that
satisfies the precedence ordering of the available plans. The
constraint that all weights must sum to 1.0 means that all
solutions w lie in a simplex. If the vector w can be identified
uniquely, then as a consequence so can the purpose of the
force using that VSS. Even if the vector w cannot be identified
uniquely, relationships between the elements w1, …, wp may
be obtainable.

With n available plans, there are at most n! different
precedence orderings. If a granularity for W, the space of all

w, is defined, there is a finite set of possible candidate vectors
w; however, an enumerative approach can only be effective
for a small number of parameters p and available plans n. This
approach has been implemented and the results are most easily
visualized for p = 3. Typically, not all n! precedence orderings
can be satisfied because of the constraints on the weight space
based on the available degrees of achievement.

For example, suppose there are four plans (A, B, C, and
D) with three weight parameters (p = 3), with the following
observed (or inferred) degrees of achievement (d1, d2, d3):
A = [0.8 0.8 0.2];
B = [0.8 0.0 1.0];
C = [0.2 0.0 1.0];
D = [0.7 0.3 0.9];
Fig. 2 shows the precedence orderings as a function of the
weights taken pairwise; due to the weight restrictions, w3 is
completely determined by w1 and w2. With four plans there are
4! = 24 different precedence orderings, but the constraint that
the weights must be nonnegative and sum to one limit the
available permutations such that only nine of these orderings
are viable in light of the degrees of achievement above.

Fig. 3 shows an alternative view of the results with plots
of the planes formed by calculating the score for each
potential weight vector in the space W. Projecting the
intersections of these score planes onto the w1w2 plane results
in Fig. 2.

Fig. 2. Mapping of precedence relationships satisfied in each region for the
given degrees of achievement by weight parameter. Each region is a different
precedence relationship. Note that although there are 4! = 24 possible
precedence orderings, only 9 of these orderings can be satisfied with the
weight restrictions.

Fig. 3. Two views of the planes formed by the scores produced for each plan.
Each color here corresponds to a different plan (A = Blue, B = Green, C =
Red, D = Cyan). Scores are plotted as a function of w1 and w2. The weight w3
is completely determined by w1 and w2 because of the weight space
restrictions.

An enumerative search for satisfactory weights is very
slow and memory intensive for larger values of p and n. An
alternative approach is to use evolutionary computation to
optimize the set of weights that satisfies the constraints

A>D>B>C

D>A>B>C

D>B>C>A
D>B>A>C

B>C>D>A

B>D>C>A B>D>A>C

A>B>D>C

B>A>D>C

w2

w1

110

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

induced by both the weight constraints and the precedence
relationships.

An examination of the precedence relationship map (Fig.
2) and the score planes (Fig. 3) reveals some geometric insight
into the search space. The desired region (the region in weight
space that we want to find) satisfies all nC2 precedence
relationships. Regions that border on this optimal region
satisfy nC2 – 1 precedence relationships. Adjacent regions
have only one difference in precedence relationships; this
difference occurs where score planes intersect and the score
plane ordering changes. This suggests that the optimal region
need not be found by blind resampling but instead that an
evolutionary approach can gradually approach and discover
the optimal region.

B. Evolutionary Algorithm
The evolutionary algorithm employed in the experiments

proceeded as follows:

Given the desired precedence ordering:
1. Set the number of initialization vectors (popsize) and
number of generations (G). The number of initialization
vectors is the number of survivors allowed at each generation.
2. Randomly initialize the population by taking a uniform
sample from the (p – 1)-simplex (i.e., choose only from those
weights that satisfy the weight constraints).
3. Repeat the evolutionary process of mutation and selection G
times

A. Mutate:
Create popsize offspring from the parents:

Randomly choose a point on the simplex and
interpolate between the parent and the random point
based on the inverse of the parent fitness score
(provides for taking small evolutionary steps for a
parent with high fitness and large evolutionary steps for
a parent with low fitness).

Create popsize offspring randomly:
Randomly choose popsize points on the simplex.

B. Selection
For each member of the population, compute the score
for each plan, along with several fitness values based on
the scores.

i.) Overall fitness, F(i), which is the number of
precedence relationships satisfied by the weights, the
maximum is nC2.

ii.) Shared fitness, F'(i). This fitness score is designed
to keep the population from converging on a single
point and encourages the population to spread across a
region, thereby providing not just a single example of a
point in a region that satisfies the constraints, but
instead the entire region. The shared fitness for an
individual solution is calculated following standard
evolutionary computing literature with the following
function:

∑
=

= µ

1

)),((

)()('

j
jidsh

iFiF

where



 <−

=
otherwise

difd
dsh shareshare

0
,)/(1

)(
σσ α

and d = d(i,j) = || wi – wj ||2 and σshare is chosen by the
user as the “niching radius” for the neighborhood in
which fitness must be shared. Fitness sharing reduces
the fitness of each individual in a neighborhood based
on the number of other solutions that are already in the
neighborhood. This encourages more diversity.

iii.) Closeness-to-boundary fitness, FB(i). This fitness
score is designed to encourage the population to move
near the boundaries of a region. The boundaries of a
region are where one of the precedence relationships is
satisfied by an equality. For example, if the desired
precedence relationship is B > A > D > C, then one
boundary of the region will be created where B = A >
D > C. Increased fitness is also awarded to solutions
that lie on the weight restriction boundaries, so the
following method is used:

FB(i) = 1 – min(min(w), min(score differences)),

where w is the vector of weights and score differences
are the magnitudes of all pairwise differences in scores
computed for each plan. Thus a point that lies exactly
on a boundary achieves the maximum score of 1.

iv.) Shared closeness-to-boundary fitness, FB'(i). This
uses the same sharing function described above, but
considers only members of the population with the
same overall fitness F(i). This fitness measure
encourages members of the population to spread out
along boundaries.

Selection can be performed in one of two ways. The first
method fills the desired region; the second fills the boundaries
of the desired region. Both selection types use the same two-
part selection concept, but they use different fitness measures
to determine survivors.

1. Group the individuals in the population based on
overall fitness F(i) Select the group with the highest
F(i). If that group is not large enough to provide the
sufficient number of survivors in the population (at
least popsize), then the next highest scoring group is
taken, and so forth, until enough survivors have been
selected. At some point, the number of desired
survivors will be exceeded by adding some group to the
surviving population. To determine which members of
this last group survive, go to step 2.

2. Choose the appropriate number of survivors from the
last selected group based on their shared fitness score,
F'(i) for region filling, or based on their shared
closeness-to-boundary score, FB'(i), for boundary
filling.

Return the survivors as input to step 3A for the next
generation.

For example, consider the same set of degrees of
achievement used in the enumerative search example above,
where:

111

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

A = [0.8 0.8 0.2];
B = [0.8 0.0 1.0];
C = [0.2 0.0 1.0];
D = [0.7 0.3 0.9];

Suppose that the observed precedence relationship is B > C >
D > A. The task is to find the region of weights that satisfy
this relationship in light of the degrees of achievement,
thereby yielding the relative importance of the parameters. In
Figs. 4 and 5, examples of several generations of evolution are
shown. The color coding assigned reflects the fitness of each
solution:

F(i) = 1 – 3 Not seen in images
F(i) = 4 => Yellow
F(i) = 5 => Red
F(i) = 6 => Blue

Note that F(i) = 6 is the maximum fitness that can be achieved
for this example, and indicates the weight constraints and all
precedence relationship constraints have been satisfied (as
there are 4C2 = 6 such precedence relationships).

Figs. 4 and 5 show boundary finding and region filling for
the region B > C > D > A, iterated over the first 15 generations
of evolutionary optimization. The first generation shown is at
the end of the first mutation and selection cycle. By this
generation, the population members with low fitness have
been eliminated. The method reliably finds the boundaries or
fills the appropriate precedence region given the available
degrees of achievement on each parameter.

Having found the region in the simplex that is associated
with the precedence ordering and the degrees of achievement
on each parameter, Fig. 6 shows the six different possible
regions of weight relationships (e.g., w1 < w2 < w3). The
intersection of these regions with the precedence regions of
the simplex indicates the possible relative importance of the
parameters, given the available information about precedence
ordering and degrees of achievement on each parameter. As
seen in Fig. 6, the triangular region found in Figs. 4 and 5
(lower-left corner) has two possible regions: w1 < w2 < w3 or
w2 < w1 < w3. Therefore, from the information presented in the
degrees of achievement and the precedence ordering of the
plans (A, B, C, D), parameter three definitively has the greatest
relative importance (because w3 is always greatest), and the
relative values of w1 and w2 are undecidable. This means that
more observations would be required to facilitate
differentiating the relative importance of the parameters in this
case.

III. RESULTS ON SIMULATION DATA

A. Use Best Evolved Plans
Several experiments were performed to test the algorithm on
simulation data. For the first experiment, the following setup
of terrain, platform, and sequence of revealed combat objects
was used (see Fig. 7a-e). Plans were evolved with our
Evolutionary Server/Client for each of the setups with the
following weights on the parameters in the VSS: Fuel = 5,
Damage = 7, Platform Survival = 10, AtBase (Return to Base)
= 10, and all other possible parameters = 0.

The evolutionary algorithm used a population of plans at
each generation. Attention was focused on the best plan at

Fig. 4. Sequence of generations demonstrating boundary finding of the region
B > C > D > A.

Fig. 5. Sequence of generations demonstrating region filling of the region
B > C > D > A.

 Fig. 6. The relative importance of the weights for each of the six different
possible relationships.

each of the five stages indicated in Fig. 7(a-e). Each of these
plans was scored against the state of combat objects when it
was created and the state of combat objects at each future time
in light of the newly revealed targets/threats. Table 1
summarizes the degree of achievement that each plan had on
each parameter and the total score achieved by that plan.

Table 1 shows the state of combat objects when the plan
was created in the first column. The second column indicates

w1 = w2

w1 = w3

w1<w3<w2

w3<w1<w2

w3<w2<w1

w2<w3<w1
w2<w1<w3

w1<w2<w3

w2 = w3

112

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

the state of combat objects against which the plan was scored.
The next four columns give degrees of achievement for fuel,
damage, platform (survival), and atBase (returning safely to
base). The final column gives the overall weighted score. The
top row gives the names of the non-zero parameters and the
value assigned in the VSS. The second row gives the
normalized values of the VSS. For simplified reference in text,
we will refer to scoring a particular plan against a particular
set of combat objects as (state of combat objects when the plan
was created, state of combat objects used for scoring). For
example, “2 Threat, 3 CombObj” achieved an overall score of
0.791476.

The process of introducing combat objects at points in
time is intended to generate a persistence of excitation
condition sufficient for identifying the relative importance
weights. A starting state of combat objects was introduced and
the enemy degrees of achievement were observed. More
combat objects were then revealed and changes to the degrees
of achievement of the altered enemy plans were observed.
With constant intent, the enemy would not change plans
unless the new plans were better, i.e., the new degrees of
achievement resulted in a higher score than the previous
degrees of achievement for the new combat object setup. This
condition is verified in Table 1. When scored against the new
combat object setup, the score for the plan is higher than the
score for any previous plan. Had a previous plan resulted in a
higher score for the new combat object setup, it would have
been readopted instead of a new plan. This means that
score(n, n) > score(n − m, n) for all n, and 0 < m < n − 1. This
provides many precedence relationships between plans when
determining enemy intent.

Constraints were taken from relationships with score(n, n)
> score(n − m, n) to determine the set of weight vectors that
would satisfy these constraints. Fig. 8 depicts the evolved
population of candidate weight sets plotted on all possible wiwj
axes, at generation 10. By this point, the population had
converged to the appropriate region in the 4-D simplex.

Fig. 8 does not present any clear ordering for the weights
in this experiment. However, if each population member is
considered a vote for the actual relationship between the
weights, then at generation 10, the population voted for w2 >
w3 > w4 > w1. The actual weight ordering was w3 = w4 > w2 >
w1. The population correctly determined w3 > w1, w4 > w1, and
w2 > w1 (thus, that w1 was the least important parameter of the
four). The remaining relationships were incorrectly
determined by voting. The following matrix shows the number
of population members voting in each category (e.g., 30
means 30 of 100 population elements determined w1 > w2).
 w1 w2 w3 w4
w1 100 30 42 44
w2 70 100 67 68
w3 58 33 100 58
w4 56 32 42 100

It is evident that obtaining enemy plans by observing changes
in response to new combat objects does not produce the
desired persistence of excitation; more observations are
needed.

Fig. 7a. Evolved plan for one combat
object (target and co-located threat).

Fig. 7b. Evolved plan when second
combat object revealed (target and
co-located threat).

Fig. 7c. Evolved plan when third
combat object revealed (target and
co-located threat).

Fig. 7d. Evolved plan when fourth
combat object revealed (threat only).

Fig. 7e. Evolved plan when fifth
combat object revealed (threat only).

TABLE 1.

DEGREES OF ACHIEVEMENT OF EACH PLAN WITH RESPECT TO THE WEIGHTED
PARAMETERS OF CONCERN AT EACH STAGE IN THE SCENARIO OF EXPERIMENT 1.
 Weights Fuel

(5)
Damage
(7)

Platform
(10)

AtBase
(10)

Total
Score

 0.156250 0.218750 0.312500 0.312500
Plan CombObj
1 Threat 1 CombObj 0.888296 1.000000 1.000000 1.000000 0.982546

1 Threat 2 CombObj 0.888296 0.333333 1.000000 1.000000 0.836713
2 Threat 2 CombObj 0.776111 0.994713 0.796520 1.000000 0.900273

1 Threat 3 CombObj 0.888296 0.166667 1.000000 1.000000 0.800255
2 Threat 3 CombObj 0.776111 0.497356 0.796520 1.000000 0.791476
3 Threat 3 CombObj 0.740963 0.998977 0.624702 1.000000 0.842021

1 Threat 4 CombObj 0.888296 0.166667 0.096369 1.000000 0.517870
2 Threat 4 CombObj 0.776111 0.497356 0.049736 1.000000 0.558106
3 Threat 4 CombObj 0.740963 0.998977 0.084823 1.000000 0.673309
4 Threat 4 CombObj 0.806926 0.662701 0.796313 1.000000 0.832396

1 Threat 5 CombObj 0.888296 0.166667 0.096369 1.000000 0.517870
2 Threat 5 CombObj 0.776111 0.497356 0.003471 1.000000 0.543649
3 Threat 5 CombObj 0.740963 0.998977 0.084823 1.000000 0.673309
4 Threat 5 CombObj 0.806926 0.232729 0.032373 1.000000 0.499608
5 Threat 5 CombObj 0.748185 0.988184 0.623654 1.000000 0.840461

113

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

B. Use All Evolved Plans
Rather than focusing only on the best-evolved plans at

each step in the scenarios, attention was given to all plans in
the population, which could be rank ordered. When evolving a
population of, say, 20 plans at each step, as new combat
objects were added, the number of available observed
precedence relationships increased considerably as compared
to the previously described experiments. Only plans within the
same generation were compared.

A complex, campaign-level scenario and set of combat
objects were created and tested with several sets of importance
weights. Fig. 9a shows the scenario with evolved plans; Table
II shows the weights and results.

Degrees of achievement and corresponding scores were
extracted from the data file for non-zero parameter weights
and a selected generation. Then, the data were sorted by score.
"Duplicate" members of the population were eliminated,
where "duplicate" means members of the population with
identical degrees of achievement (and hence identical scores),
but not necessarily the same plan. Note that it is possible to
have the same score with different degrees of achievement, so
the precedence ordering is assumed to be "better than or the
same as" instead of strictly "better than."

For a test case, there were 320 potential distinct
population members (plans to compare). Typically after
elimination of duplicate population members, this number was
reduced to less than 200. Accuracy could be sacrificed to
further reduce the number of comparisons and the
computational complexity by sampling randomly from those
remaining. In ad hoc experimentation, it was determined that
anywhere from 25-50 population members were needed to
obtain reasonable results. The variation stems from the
particular choice of population members and in the choice of
random potential weight vectors used in the inverse problem.

Each set of weights considered had between 4 and 7
parameters of importance (non-zero weights), as shown in
Table II. The forward simulation was run with each of these
sets of weights to obtain the best plan. Degrees of achievement
for intermediate plans were collected as well, to allow for
adequate information in estimating the parameter weights.
Table II shows the values input to the VSS, the normalized
values for each parameter, and the resulting estimated values
(center of mass of the evolved population of potential weights)
for the parameters based on the degrees of achievement of
evolved plans. In the table, only the non-zero parameter
weights were evolved. The estimated values listed in the tables
are those found after 500 generations of evolving the
estimated weights for various groups of degrees of
achievements considered. The error, measured as Euclidean
distance, is also shown, and is small in each case.

Additionally, using the weights labeled "A", the algorithm
was tested while including an unimportant parameter, one
whose true weighted value was zero. The algorithm performed
well, with an error of 0.0018616 after 500 generations. The
actual normalized weights were:

ammo: 0.0000 fuel: 0.1563 damage: 0.3125 plat.
surv.: 0.2188 base: 0.3125

The estimated evolved weights were:
ammo: 0.016557 fuel: 0.1530 damage: 0.30878 plat.

surv.: 0.21496 base: 0.3067
indicating close agreement.

Better performance was observed when estimating the
actual weights when using more plans. This suggests that (1)
better performance in identifying the purpose is observed with
increasing samples and (2) better performance is observed
when degrees of achievement for comparatively bad plans are
taken into account.

Fig. 9a-d shows the original evolved plans for the set of
weights "A" and, for comparison, plans evolved using the
estimated weights. Additionally, the error in estimated weight
values is plotted as a function of the generation in the inverse
problem. The weights were evolved based on plans considered
in a specific generation during the forward evolution. Each
graph shows the estimated weight evolved with two different
seeds to the random function. Typically, the error in estimated
weight stabilizes by generation 100.

In the graphs, the error in the estimated weights actually
increases before decreasing again. A plausible explanation for
this behavior is based on the geometry of the divided simplex.
Some region that is "closer" in terms of the number of
precedence relationships may actually be an oddly shaped
region that contains some points that are further in a Euclidean
sense than all points contained in a region that is "further" in
terms of number of precedence relationships. For example, in
Fig. 10, the desired region to find is labeled 1. All regions that
are one precedence relationship away are labeled 2; regions
that are two precedence relationships away are labeled 3, etc.
The region labeled 4 that is diagonally adjacent to the desired
region is actually closer in a Euclidean sense than the region in
the lower-left corner, which is labeled 3. However, the region
labeled 3 is closer in a precedence relationship sense than the
region labeled 4. A progression of population members from
the described region 4 to the described region 3 would actually
result in an increase in error of the estimated weights; further
progression to the regions labeled 2 and then 1 would result in
the desired reduction of error again.

Fig. 8. The evolved weight relationships at generation 10 based on the
precedence ordering of the best-evolved plans when encountering five combat
objects in experiment 1.

114

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

Table II
Importance weights used in the scenario in Fig. 9. Each set of weights lists the actual numbers input to the VSS, the normalized values for each parameter, and the estimated values for the parameters based on the
degrees of achievement of evolved plans. Additionally, the error between the estimated and actual weights is listed. The evolved estimate of the weights only took into consideration the non-zero-weighted parameters.

Weight/ Parameter Ammo Fuel Damage Done Sensing BDA
Platform
Survival

Return to Base Reconn Error

A 0 5 10 0 0 7 10 0
A (normalized) 0 0.15625 0.31250 0 0 0.21875 0.31250 0
A (estimated) 0 0.15633 0.31257 0 0 0.21874 0.31236 0 0.00018023

B 2 5 20 3 0 7 10 0
B (normalized) 0.04255 0.10638 0.42553 0.06383 0 0.14894 0.21277 0
B (estimated) 0.041818 0.1058 0.42189 0.065999 0 0.14709 0.2174 0.0066079

C 5 3 15 2 1 10 7 0
C (normalized) 0.11628 0.06977 0.34884 0.04651 0.02326 0.23256 0.16279 0
C (estimated) 0.11923 0.07085 0.34542 0.04718 0.023324 0.23216 0.16184 0 0.00480

D 5 1 0 10 0 15 7 20
D (normalized) 0.08621 0.01724 0 0.17241 0 0.25862 0.12069 0.34483
D (estimated) 0.08645 0.01726 0 0.17247 0 0.25876 0.12127 0.34379 0.0012274

IV. CONCLUSION

This paper explored the use of evolutionary algorithms to
accomplish a form of system identification on the weighted
parameters of importance guiding an enemy force. The
experiments showed that with sufficient knowledge of the
preference of enemy plans, particularly when including the
rank ordering of all models available in an evolving
population of plans, an evolutionary algorithm can determine
the enemy’s intent as a normalized VSS with high accuracy
and yield prospective eCOAs. This may provide an
opportunity to gain valuable insight into anticipating eCOAs
in more realistic settings. The experiments also showed that
when only a small sample size of observed plans is available,
the evolutionary method was not capable of identifying the
relative importance of the weighted parameters reliably.
Further experimentation is warranted to determine the

a. Plan generated from original
weights "A".

b. Plan generated from estimated
weights.

c. Error between estimated and actual
weights from generation 10 of cycle
15 of the simulation, shown for 500
generations.

d. Error zoomed to 100 generations.

Fig. 9a-d. Scenario and combat objects with actual and estimated evolved
plans; error of estimated weights. A "wall" of co-located targets and threats
separates three platforms from returning to base via a direct path; an
additional platform starting near the base is also available for planning
purposes. The evolutionary algorithm generates good agreement between the
estimated and true weights. For more results, see www.natural-
selection.com/CISDA07.html.

Fig. 10. Region 1 is the desired target region. All regions that are one
precedence relationship away are labeled 2; regions that are two precedence
relationships away are labeled 3, etc. The region labeled 4 that is diagonally
adjacent to the desired region is actually closer in a Euclidean sense than the
region in the lower-left corner, which is labeled 3. However, the region
labeled 3 is closer in a precedence relationship sense than the region labeled 4.
A progression of population members from the described region 4 to the
described region 3 would actually result in an increase in error of the
estimated weights; further progression to the regions labeled 2 and then 1
would result in the desired reduction of error again.

computational requirements as a trade off to the degree of
accuracy of weight parameter estimation.

The research and development focused on scenarios that
were in some cases simple and in other cases more complex.
The SAM player did not have the freedom to move assets in
response to the evolving aircraft plans. Future research could
offer both players freedom to adjust and adapt plans on the fly
as conditions change. It would be of interest to determine the
effectiveness of identifying the weighted parameters of
interest of both players, iteratively.

ACKNOWLEDGMENT
Some of this work was funded under Air Force STTR

FA9550-05-C-0070.

REFERENCES

[1] P.E. Caines, Linear Stochastic Systems, John Wiley & Sons, NY, 1988.
[2] L.J. Fogel, A.J. Owens, and M.J. Walsh, Artificial Intelligence through

Simulated Evolution, John Wiley & Sons, NY, 1966.
[3] Z. Michalewicz and D. Fogel. How to Solve It: Modern Heuristics, 2nd

ed. Germany: Springer-Verlag Berlin Heidelberg, 2004, pp. 443-449.
[4] L.J. Fogel. "The Valuated State Space Approach and Evolutionary

Computation for Problem Solving," in Computational Intelligence: A
Dynamic System Perspective, M. Palaniswami, Y Attikiouzel, R. Marks
II, D. Fogel, T. Fukuda, Eds. Autralia, 1995, pp. 129-136.

1 2

2
2

2
3

3

3

4

4
5

w1

w2

115

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

