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Abstract – Determining adversarial intent is important on a 
battlefield. In this paper, we propose a method for intent analysis 
using evolutionary computation. The proposed approach defines 
the model as an optimization problem then gives an algorithm for 
determining the parameters of the model in a Valuated State 
Space® domain. Example experiments using simulation data are 
discussed. 

 

I. INTRODUCTION 
 

One of the keys to successful command and control is to 
understand the enemy’s intent, particularly in light of 
incomplete and perhaps inaccurate information regarding 
social and cultural norms. It is inappropriate to project our 
own goals and aspirations onto the enemy. For example, in 
asymmetric warfare, the enemy’s tactics and objectives may 
be radically different from our own and those of our allies. 
Given the same resources to allocate, if placed in obverse 
roles, our decisions on how best to use those resources might 
be very different. Furthermore, warfare is becoming 
increasingly that of semi-autonomous machines versus 
machines (e.g., swarms of semi-autonomous vehicles reacting 
to automated defense systems). Understanding the enemy’s 
intent will therefore become less a matter of understanding the 
thinking of higher command authority and more a matter of 
inferring the adversary’s intent based on a priori beliefs 
regarding their objectives and observed data reflecting the 
actual decisions that the enemy takes in real settings.  

A novel combination of two technologies, evolutionary 
computation and the Valuated State Space® Approach used to 
quantify purpose, holds the promise of a general procedure for 
inferring the enemy’s purpose in combat settings ranging from 
the campaign-level to the level of the individual. The 
capability described in this report is the result of the research 
and development undertaken that examined an automatic 
method for optimizing models of the adversary’s intent, 
structured in a hierarchic form. The models were evolved 
(optimized) in light of data acquired on decisions made 
presuming the adversary is rational (i.e., attempting to 
maximize success as he defines it) using multi-agent 
adversarial games. The effort developed and tested software to 
assess the capability of this procedure in simulated combat 
settings of sufficient complexity. A collection of alternative 
models of the adversary’s purpose was evolved dynamically 
over time, with evolutionary algorithms used to adapt those 
models in light of the most recent data describing the observed 
adversary’s behavior. The feasibility of the approach has been 
assessed in a series of experiments using a statistical design to 
determine the computational requirements of the procedure 

and the identifiability of the adversary’s objectives as a 
function of the complexity of the setting.  

 

A. Modeling the Enemy as a Problem in System Identification 

The challenge of inferring the enemy’s purpose is similar 
to the problem of system identification. As indicated in Fig. 1, 
data are observed regarding the input-output behavior of a 
system. The goal is to develop a model of the transducer that 
maps the input stimulus into the output set of observed actions 
with the least error. The choice of models is often crucial in 
identifying an appropriate representation of the system. As 
will be discussed in the next section, the Valuated State Space 
(VSS) Approach provides the framework for modeling the 
adversary’s mission. Once the class of models is chosen, a 
search is initiated for the best model of those available. This 
requires a criterion by which to measure the goodness-of-fit of 
the model and its associated parameter values to the observed 
data.  

Caines [1] regarded identification as the invention and 
evaluation of scientific theories, that is, system identification 
is performed by using the scientific method. This method 
involves induction and inductive inference, followed by 
independent verification. It is an iterative process that 
facilitates gaining new knowledge about the nature of an 
observable environment.  

Fogel et al. [2] remarked that there is a correspondence 
between the scientific method and natural evolution. In nature, 

 

 
Fig. 1. Evolving models of the adversary using the Valuated State Space 
(VSS) structure to represent the adversary’s intent. The adversary examines 
the present condition (state) and chooses a course of action (eCOA, for enemy 
course of action) that is believed to maximize his future success based on his 
intent. The adversary can be modeled using evolutionary computation by 
estimating the adversary’s intent using the VSS structure. Alternative intents 
based on relative importance of parameters, degrees of achievement, and 
normalization are maintained as a population of competing ideas about the 
adversary’s intent. Evolutionary optimization is used to maximize the 
correspondence between the prior observed conditions and eCOAs based on 
the hypothesized intent represented in each alternative estimated VSS and 
rationale for selecting the best eCOA. The best-evolved VSS at each decision 
point can be used to evaluate alternative eCOAs and arrive at eCOA_hat, the 
predicted adversary course of action, which can then be used as the basis for 
COA planning. 
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organisms serve as hypotheses about their environment. They 
are in essence predictions about the conditions that the future 
environment will present over their lifespan (at least to the 
point of reproduction). Those organisms that are good 
predictors of their surroundings survive to pass along their 
behaviors indirectly through their genes to their progeny. The 
progeny serves as modifications of the hypotheses, altered by 
mutation, sexual recombination, and/or many other variational 
processes. Over time, the evolutionary process of variation 
and selection performs the scientific method and continually 
optimizes the behaviors of the organisms involved in the 
process. 

It is natural, therefore, to use algorithms that model 
evolution in system identification applications. Evolutionary 
algorithms can be very effective in system identification, 
particularly in simultaneously optimizing model parameters 
and the number of degrees of freedom in light of information-
theoretic criteria.  

 

B. Combat as a Game 

Combat can be viewed in the framework of a game. Each 
SAM player faces a current situation and prospective future 
situations that will be a function of the decisions made on both 
(or more) sides over time. Each player has objectives that he 
wants to achieve and must be able to quantify the extent to 
which his overall mission is being accomplished at any point 
in the operation. Players can be expected to make decisions 
that they believe will improve the prospects of attaining their 
objectives. Note that these objectives may be related solely to 
each players’ individual condition (e.g., survive or increase the 
probability of survival) and may be related directly to other 
players’ conditions (e.g., eliminate the enemy, decrease the 
probability that the enemy would survive a particular tactical 
move). Thus, the objectives of players in combat settings must 
reflect both their individual concerns as well as the mutual 
attitudes of the involved players.  

With a quantitative statement of each side’s purpose, each 
side can evaluate future possible states in the combat by 
assessing the numeric effects on its overall degree of 
achievement. This is the fundamental basis for all computer 
programs that play strategy games, such as chess. A numeric 
evaluation function is used to assess features of a current 
position, or prospective future positions, and the output of this 
function is used to estimate the value of the input position 
(current or future state). A rationale such as minimax is used 
to favor one state over another based on the numeric 
evaluations across a range of alternative future states. The 
same procedure can be used in combat simulation, where 
present and future states are evaluated numerically in terms of 
how well they fit with a player’s objectives (alternatively 
described as a “belief system”) using the VSS Approach. 

 

C. Quantifying Purpose with the Valuated State Space 
Approach 

Optimal decision-making requires a well-defined purpose, 
for decision-making in the absence of a purpose is 
meaningless. To be well defined, a purpose must allow for 
trading off every possible allocation of resources in light of 
the parameters of concern, their relative importance, degree of 

criticality, and the degrees of achievement attained with 
respect to each parameter. These aspects of the purpose can be 
captured in the form of a VSS and normalizing function [3,4].  

A VSS is used to express a purpose in terms of the 
relative worth of each of the significantly different outcomes, 
and therefore can be used to measure the overall worth of 
current and prospective situations. Achieving the most 
valuable class interval on each of the parameters corresponds 
with the state of the highest overall worth (a measure of 1.0, or 
10 on a 10 scale, 100 on a percent scale). Achieving no 
success on any parameter corresponds with an overall worth of 
zero. Any intermediate state has some worth, depending upon 
the normalizing function.  

In many situations, any level of achievement has some 
overall worth. A multiattribute utility function specifies the 
overall worth of any particular situation; that is, the VSS and 
its normalizing function yields a single overall measure for the 
worth of each significantly different situation.  

When applying the VSS approach, decisions are almost 
always best made in the light of the other players’ perceived, 
known, or assumed intent, capabilities, and motivation. It is, 
therefore, suitable to construct a similar representation of the 
purpose of each of the involved players (e.g., the United 
States, coalition members, and an opposing entity), then 
examine the joint state space that defines the game. This 
portrays a finite number of possible situations, those situations 
that are significantly different from any single or multiple 
players' points of view. There is a joint payoff in each 
cell/state for each of the players, this being a function of their 
marginal worth. Every sequence of moves and countermoves 
corresponds with a trajectory across states in the joint state 
space, there being some overall worth for that series of 
transitions. 

 

D. Modeling the Adversary by Combining Evolutionary 
Computation and the Valuated State Space Approach  

Just as a VSS can provide the justification for optimal 
decision-making for one’s own forces in combat, the 
adversary can be viewed as using a VSS as the basis for his 
own decision-making. Therefore, viewing the challenge of 
modeling the adversary as a problem of system identification, 
a best estimate of the adversary’s VSS (and normalizing 
function) can be gained by utilizing the empirical data on 
decisions that the adversary has made based on his presumed 
knowledge of the current and prospective future conditions. 
As indicated in Fig. 1, the desired process can utilize 
evolutionary computation to optimize models of the 
adversary’s VSS over successive generations. At any point in 
time, the evolutionary algorithm can yield a single best or best 
collective set of estimates of the adversary’s VSS, which can 
be used to infer how the adversary will respond in future 
possible settings. This will allow planners to gauge and 
evaluate the effectiveness of alternative plans under varying 
actions and reactions, and also facilitate semi-autonomous 
COA planning should that be desired. 

In essence, the evolutionary approach was used to answer 
the question: Given the observed adversary decisions, what 
values of his prospective VSS and rationale (e.g., minimax) 
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would yield the same or most similar decisions in the same 
settings? These values were optimized using evolutionary 
algorithms that were iterated for simulated generations at each 
decision point. The best-evolved estimates at each point in 
time were used as the basis for future estimation based on each 
next move and countermove as the combat unfolded. As the 
volume of empirical data on the adversary’s decision-making 
grew so too did the accuracy of the estimates of the relative 
importance of his parameters of concern. 

 

II. METHOD AND RESULTS 
 

A. Framework for Analysis 
The evolutionary approach to identifying the relative 

preference of the parameters of concern in the VSS can be 
framed as a mathematical optimization problem. Given n 
different observed OPFOR plans, assume that the preference 
(precedence ordering) of the plans is known. For example, for 
plans A, B, C, and D, it may be that the OPFOR orders the 
plans where B > D > C > A, meaning that B is preferred to D, 
which is preferred to C, which is preferred to A. The VSS 
results in a single numeric evaluation of a plan’s overall 
worth, and therefore pathological cases where a strict order of 
preference is not obtained (e.g., B > A, A > C, but C > B) are 
excluded by this framework. 

The VSS is constructed as a weighted sum of the degree 
of achievement on each parameter and the relative importance 
of the parameter. For example, suppose there are three 
parameters of concern, say, damage inflicted, survivability, 
and sensing performed. Suppose further that the relative 
importance for these parameters are w1, w2, and w3, 
respectively, and the degree of achievement made with respect 
to each parameter is d1, d2, d3, respectively. Then the overall 
worth under a linear normalization function is the dot product, 
or w1d1 + w2d2 + w3d3. The framework for evolving the 
relative importance weights, wi, i = 1 to p, where p is the 
number of parameters, assumes knowledge of the degrees of 
achievement, di, and the precedence orderings of the plans, A, 
B, C, D, etc. 

For the cases studied in this research, there were at most 
eight parameters (p = 8), corresponding to ammunition used, 
fuel remaining, damage inflicted, sensing performance, bomb 
damage assessment (BDA) performed, platform survival, 
returning to base, and reconnaissance, but many cases studied 
used p < 8. Given d = {d1, …, dp}T and constraints: 
0 ≤ di ≤ 1 
0 ≤ wi 

1=∑
i

iw    

the objective is to find the vector w = {w1, …, wp} that 
satisfies the precedence ordering of the available plans. The 
constraint that all weights must sum to 1.0 means that all 
solutions w lie in a simplex. If the vector w can be identified 
uniquely, then as a consequence so can the purpose of the 
force using that VSS. Even if the vector w cannot be identified 
uniquely, relationships between the elements w1, …, wp may 
be obtainable. 

With n available plans, there are at most n! different 
precedence orderings. If a granularity for W, the space of all 

w, is defined, there is a finite set of possible candidate vectors 
w; however, an enumerative approach can only be effective 
for a small number of parameters p and available plans n. This 
approach has been implemented and the results are most easily 
visualized for p = 3. Typically, not all n! precedence orderings 
can be satisfied because of the constraints on the weight space 
based on the available degrees of achievement. 

For example, suppose there are four plans (A, B, C, and 
D) with three weight parameters (p = 3), with the following 
observed (or inferred) degrees of achievement (d1, d2, d3): 
A = [0.8 0.8 0.2];  
B = [0.8 0.0 1.0];   
C = [0.2 0.0 1.0];  
D = [0.7 0.3 0.9]; 
Fig. 2 shows the precedence orderings as a function of the 
weights taken pairwise; due to the weight restrictions, w3 is 
completely determined by w1 and w2. With four plans there are 
4! = 24 different precedence orderings, but the constraint that 
the weights must be nonnegative and sum to one limit the 
available permutations such that only nine of these orderings 
are viable in light of the degrees of achievement above. 

Fig. 3 shows an alternative view of the results with plots 
of the planes formed by calculating the score for each 
potential weight vector in the space W. Projecting the 
intersections of these score planes onto the w1w2 plane results 
in Fig. 2. 

 
Fig. 2. Mapping of precedence relationships satisfied in each region for the 
given degrees of achievement by weight parameter. Each region is a different 
precedence relationship. Note that although there are 4! = 24 possible 
precedence orderings, only 9 of these orderings can be satisfied with the 
weight restrictions. 
 

  
Fig. 3. Two views of the planes formed by the scores produced for each plan. 
Each color here corresponds to a different plan (A = Blue, B = Green, C = 
Red, D = Cyan). Scores are plotted as a function of w1 and w2. The weight w3 
is completely determined by w1 and w2 because of the weight space 
restrictions. 

An enumerative search for satisfactory weights is very 
slow and memory intensive for larger values of p and n. An 
alternative approach is to use evolutionary computation to 
optimize the set of weights that satisfies the constraints 

A>D>B>C 

D>A>B>C 

D>B>C>A 
D>B>A>C 

B>C>D>A 

B>D>C>A B>D>A>C 

A>B>D>C 

B>A>D>C 

w2 

w1
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induced by both the weight constraints and the precedence 
relationships. 

An examination of the precedence relationship map (Fig. 
2) and the score planes (Fig. 3) reveals some geometric insight 
into the search space. The desired region (the region in weight 
space that we want to find) satisfies all nC2 precedence 
relationships. Regions that border on this optimal region 
satisfy nC2 – 1 precedence relationships. Adjacent regions 
have only one difference in precedence relationships; this 
difference occurs where score planes intersect and the score 
plane ordering changes. This suggests that the optimal region 
need not be found by blind resampling but instead that an 
evolutionary approach can gradually approach and discover 
the optimal region. 

 

B. Evolutionary Algorithm 
The evolutionary algorithm employed in the experiments 

proceeded as follows: 
 

Given the desired precedence ordering: 
1. Set the number of initialization vectors (popsize) and 
number of generations (G). The number of initialization 
vectors is the number of survivors allowed at each generation. 
2. Randomly initialize the population by taking a uniform 
sample from the (p – 1)-simplex (i.e., choose only from those 
weights that satisfy the weight constraints). 
3. Repeat the evolutionary process of mutation and selection G 
times 

A. Mutate: 
Create popsize offspring from the parents: 

Randomly choose a point on the simplex and 
interpolate between the parent and the random point 
based on the inverse of the parent fitness score 
(provides for taking small evolutionary steps for a 
parent with high fitness and large evolutionary steps for 
a parent with low fitness). 

Create popsize offspring randomly: 
Randomly choose popsize points on the simplex. 

B. Selection 
For each member of the population, compute the score 
for each plan, along with several fitness values based on 
the scores. 

 

i.) Overall fitness, F(i), which is the number of 
precedence relationships satisfied by the weights, the 
maximum is nC2. 
 

ii.) Shared fitness, F'(i). This fitness score is designed 
to keep the population from converging on a single 
point and encourages the population to spread across a 
region, thereby providing not just a single example of a 
point in a region that satisfies the constraints, but 
instead the entire region. The shared fitness for an 
individual solution is calculated following standard 
evolutionary computing literature with the following 
function:  

∑
=

= µ

1

)),((

)()('

j
jidsh

iFiF
  

where 

 


 <−

=
otherwise

difd
dsh shareshare

0
,)/(1

)(
σσ α    

and d = d(i,j) = || wi – wj ||2 and σshare is chosen by the 
user as the “niching radius” for the neighborhood in 
which fitness must be shared. Fitness sharing reduces 
the fitness of each individual in a neighborhood based 
on the number of other solutions that are already in the 
neighborhood. This encourages more diversity. 

 

iii.) Closeness-to-boundary fitness, FB(i). This fitness 
score is designed to encourage the population to move 
near the boundaries of a region. The boundaries of a 
region are where one of the precedence relationships is 
satisfied by an equality. For example, if the desired 
precedence relationship is B > A > D > C, then one 
boundary of the region will be created where B = A > 
D > C. Increased fitness is also awarded to solutions 
that lie on the weight restriction boundaries, so the 
following method is used:  

 

FB(i) = 1 – min(min(w), min(score differences) ), 
 

where w is the vector of weights and score differences 
are the magnitudes of all pairwise differences in scores 
computed for each plan. Thus a point that lies exactly 
on a boundary achieves the maximum score of 1. 
 

iv.) Shared closeness-to-boundary fitness, FB'(i). This 
uses the same sharing function described above, but 
considers only members of the population with the 
same overall fitness F(i). This fitness measure 
encourages members of the population to spread out 
along boundaries. 

 

Selection can be performed in one of two ways. The first 
method fills the desired region; the second fills the boundaries 
of the desired region. Both selection types use the same two-
part selection concept, but they use different fitness measures 
to determine survivors. 
 

1. Group the individuals in the population based on 
overall fitness F(i) Select the group with the highest 
F(i). If that group is not large enough to provide the 
sufficient number of survivors in the population (at 
least popsize), then the next highest scoring group is 
taken, and so forth, until enough survivors have been 
selected. At some point, the number of desired 
survivors will be exceeded by adding some group to the 
surviving population. To determine which members of 
this last group survive, go to step 2. 

 

2. Choose the appropriate number of survivors from the 
last selected group based on their shared fitness score, 
F'(i) for region filling, or based on their shared 
closeness-to-boundary score, FB'(i), for boundary 
filling. 

Return the survivors as input to step 3A for the next 
generation. 

For example, consider the same set of degrees of 
achievement used in the enumerative search example above, 
where: 
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A = [0.8 0.8 0.2];  
B = [0.8 0.0 1.0];   
C = [0.2 0.0 1.0];  
D = [0.7 0.3 0.9]; 

Suppose that the observed precedence relationship is B > C > 
D > A. The task is to find the region of weights that satisfy 
this relationship in light of the degrees of achievement, 
thereby yielding the relative importance of the parameters. In 
Figs. 4 and 5, examples of several generations of evolution are 
shown. The color coding assigned reflects the fitness of each 
solution: 

F(i) = 1 – 3 Not seen in images 
F(i) = 4 => Yellow 
F(i) = 5 => Red 
F(i) = 6 => Blue 

Note that F(i) = 6 is the maximum fitness that can be achieved 
for this example, and indicates the weight constraints and all 
precedence relationship constraints have been satisfied (as 
there are 4C2 = 6 such precedence relationships). 

Figs. 4 and 5 show boundary finding and region filling for 
the region B > C > D > A, iterated over the first 15 generations 
of evolutionary optimization. The first generation shown is at 
the end of the first mutation and selection cycle. By this 
generation, the population members with low fitness have 
been eliminated. The method reliably finds the boundaries or 
fills the appropriate precedence region given the available 
degrees of achievement on each parameter.  

Having found the region in the simplex that is associated 
with the precedence ordering and the degrees of achievement 
on each parameter, Fig. 6 shows the six different possible 
regions of weight relationships (e.g., w1 < w2 < w3). The 
intersection of these regions with the precedence regions of 
the simplex indicates the possible relative importance of the 
parameters, given the available information about precedence 
ordering and degrees of achievement on each parameter. As 
seen in Fig. 6, the triangular region found in Figs. 4 and 5 
(lower-left corner) has two possible regions: w1 < w2 < w3 or 
w2 < w1 < w3. Therefore, from the information presented in the 
degrees of achievement and the precedence ordering of the 
plans (A, B, C, D), parameter three definitively has the greatest 
relative importance (because w3 is always greatest), and the 
relative values of w1 and w2 are undecidable. This means that 
more observations would be required to facilitate 
differentiating the relative importance of the parameters in this 
case.  
 

III. RESULTS ON SIMULATION DATA 
 

A. Use Best Evolved Plans 
Several experiments were performed to test the algorithm on 
simulation data. For the first experiment, the following setup 
of terrain, platform, and sequence of revealed combat objects 
was used (see Fig. 7a-e). Plans were evolved with our 
Evolutionary Server/Client for each of the setups with the 
following weights on the parameters in the VSS: Fuel = 5, 
Damage = 7, Platform Survival = 10, AtBase (Return to Base) 
= 10, and all other possible parameters = 0.  

The evolutionary algorithm used a population of plans at 
each generation. Attention was focused on the best plan at 
 

  
  

  
Fig. 4. Sequence of generations demonstrating boundary finding of the region 
B > C > D > A. 
 

  
  

  
Fig. 5. Sequence of generations demonstrating region filling of the region 
B > C > D > A. 

 
 Fig. 6. The relative importance of the weights for each of the six different 
possible relationships. 

 

each of the five stages indicated in Fig. 7(a-e). Each of these 
plans was scored against the state of combat objects when it 
was created and the state of combat objects at each future time 
in light of the newly revealed targets/threats. Table 1 
summarizes the degree of achievement that each plan had on 
each parameter and the total score achieved by that plan. 

Table 1 shows the state of combat objects when the plan 
was created in the first column. The second column indicates 

w1 = w2 

w1 = w3 

w1<w3<w2 

w3<w1<w2 

w3<w2<w1 

w2<w3<w1 
w2<w1<w3 

w1<w2<w3 

w2 = w3 
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the state of combat objects against which the plan was scored. 
The next four columns give degrees of achievement for fuel, 
damage, platform (survival), and atBase (returning safely to 
base). The final column gives the overall weighted score. The 
top row gives the names of the non-zero parameters and the 
value assigned in the VSS. The second row gives the 
normalized values of the VSS. For simplified reference in text, 
we will refer to scoring a particular plan against a particular 
set of combat objects as (state of combat objects when the plan 
was created, state of combat objects used for scoring). For 
example, “2 Threat, 3 CombObj” achieved an overall score of 
0.791476. 

The process of introducing combat objects at points in 
time is intended to generate a persistence of excitation 
condition sufficient for identifying the relative importance 
weights. A starting state of combat objects was introduced and 
the enemy degrees of achievement were observed. More 
combat objects were then revealed and changes to the degrees 
of achievement of the altered enemy plans were observed. 
With constant intent, the enemy would not change plans 
unless the new plans were better, i.e., the new degrees of 
achievement resulted in a higher score than the previous 
degrees of achievement for the new combat object setup. This 
condition is verified in Table 1. When scored against the new 
combat object setup, the score for the plan is higher than the 
score for any previous plan. Had a previous plan resulted in a 
higher score for the new combat object setup, it would have 
been readopted instead of a new plan. This means that 
score(n, n) > score(n − m, n) for all n, and 0 < m < n − 1. This 
provides many precedence relationships between plans when 
determining enemy intent. 

Constraints were taken from relationships with score(n, n) 
> score(n − m, n) to determine the set of weight vectors that 
would satisfy these constraints. Fig. 8 depicts the evolved 
population of candidate weight sets plotted on all possible wiwj 
axes, at generation 10. By this point, the population had 
converged to the appropriate region in the 4-D simplex. 

Fig. 8 does not present any clear ordering for the weights 
in this experiment. However, if each population member is 
considered a vote for the actual relationship between the 
weights, then at generation 10, the population voted for w2 > 
w3 > w4 > w1. The actual weight ordering was w3 = w4 > w2 > 
w1. The population correctly determined w3 > w1, w4 > w1, and 
w2 > w1 (thus, that w1 was the least important parameter of the 
four). The remaining relationships were incorrectly 
determined by voting. The following matrix shows the number 
of population members voting in each category (e.g., 30 
means 30 of 100 population elements determined w1 > w2). 
  w1  w2  w3  w4   
w1  100     30     42     44 
w2     70     100     67     68 
w3     58     33     100     58 
w4     56     32     42     100 
 

It is evident that obtaining enemy plans by observing changes 
in response to new combat objects does not produce the 
desired persistence of excitation; more observations are 
needed. 

 

 
Fig. 7a. Evolved plan for one combat 
object (target and co-located threat). 

 
Fig. 7b. Evolved plan when second 
combat object revealed (target and 
co-located threat). 

 
Fig. 7c. Evolved plan when third 
combat object revealed (target and 
co-located threat). 

 
Fig. 7d. Evolved plan when fourth 
combat object revealed (threat only). 

 
Fig. 7e. Evolved plan when fifth 
combat object revealed (threat only). 

 

 
TABLE 1. 

DEGREES OF ACHIEVEMENT OF EACH PLAN WITH RESPECT TO THE WEIGHTED 
PARAMETERS OF CONCERN AT EACH STAGE IN THE SCENARIO OF EXPERIMENT 1.  
  Weights Fuel  

(5) 
Damage 
(7) 

Platform 
(10) 

AtBase 
(10) 

Total 
Score 

  0.156250 0.218750 0.312500 0.312500   
Plan CombObj           
1 Threat 1 CombObj 0.888296 1.000000 1.000000 1.000000 0.982546
              
1 Threat 2 CombObj 0.888296 0.333333 1.000000 1.000000 0.836713
2 Threat 2 CombObj 0.776111 0.994713 0.796520 1.000000 0.900273
              
1 Threat 3 CombObj 0.888296 0.166667 1.000000 1.000000 0.800255
2 Threat 3 CombObj 0.776111 0.497356 0.796520 1.000000 0.791476
3 Threat 3 CombObj 0.740963 0.998977 0.624702 1.000000 0.842021
              
1 Threat 4 CombObj 0.888296 0.166667 0.096369 1.000000 0.517870
2 Threat 4 CombObj 0.776111 0.497356 0.049736 1.000000 0.558106
3 Threat 4 CombObj 0.740963 0.998977 0.084823 1.000000 0.673309
4 Threat 4 CombObj 0.806926 0.662701 0.796313 1.000000 0.832396
              
1 Threat 5 CombObj 0.888296 0.166667 0.096369 1.000000 0.517870
2 Threat 5 CombObj 0.776111 0.497356 0.003471 1.000000 0.543649
3 Threat 5 CombObj 0.740963 0.998977 0.084823 1.000000 0.673309
4 Threat 5 CombObj 0.806926 0.232729 0.032373 1.000000 0.499608
5 Threat 5 CombObj 0.748185 0.988184 0.623654 1.000000 0.840461
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B. Use All Evolved Plans 
Rather than focusing only on the best-evolved plans at 

each step in the scenarios, attention was given to all plans in 
the population, which could be rank ordered. When evolving a 
population of, say, 20 plans at each step, as new combat 
objects were added, the number of available observed 
precedence relationships increased considerably as compared 
to the previously described experiments. Only plans within the 
same generation were compared. 

A complex, campaign-level scenario and set of combat 
objects were created and tested with several sets of importance 
weights. Fig. 9a shows the scenario with evolved plans; Table 
II shows the weights and results. 

Degrees of achievement and corresponding scores were 
extracted from the data file for non-zero parameter weights 
and a selected generation. Then, the data were sorted by score. 
"Duplicate" members of the population were eliminated, 
where "duplicate" means members of the population with 
identical degrees of achievement (and hence identical scores), 
but not necessarily the same plan. Note that it is possible to 
have the same score with different degrees of achievement, so 
the precedence ordering is assumed to be "better than or the 
same as" instead of strictly "better than." 

For a test case, there were 320 potential distinct 
population members (plans to compare). Typically after 
elimination of duplicate population members, this number was 
reduced to less than 200. Accuracy could be sacrificed to 
further reduce the number of comparisons and the 
computational complexity by sampling randomly from those 
remaining. In ad hoc experimentation, it was determined that 
anywhere from 25-50 population members were needed to 
obtain reasonable results. The variation stems from the 
particular choice of population members and in the choice of 
random potential weight vectors used in the inverse problem.  

Each set of weights considered had between 4 and 7 
parameters of importance (non-zero weights), as shown in 
Table II. The forward simulation was run with each of these 
sets of weights to obtain the best plan. Degrees of achievement 
for intermediate plans were collected as well, to allow for 
adequate information in estimating the parameter weights. 
Table II shows the values input to the VSS, the normalized 
values for each parameter, and the resulting estimated values 
(center of mass of the evolved population of potential weights) 
for the parameters based on the degrees of achievement of 
evolved plans. In the table, only the non-zero parameter 
weights were evolved. The estimated values listed in the tables 
are those found after 500 generations of evolving the 
estimated weights for various groups of degrees of 
achievements considered. The error, measured as Euclidean 
distance, is also shown, and is small in each case. 

Additionally, using the weights labeled "A", the algorithm 
was tested while including an unimportant parameter, one 
whose true weighted value was zero. The algorithm performed 
well, with an error of 0.0018616 after 500 generations. The 
actual normalized weights were: 

ammo: 0.0000     fuel: 0.1563   damage: 0.3125    plat. 
surv.: 0.2188   base: 0.3125 

The estimated evolved weights were: 
ammo: 0.016557 fuel:  0.1530  damage: 0.30878  plat. 

surv.: 0.21496  base: 0.3067 
indicating close agreement. 

Better performance was observed when estimating the 
actual weights when using more plans. This suggests that (1) 
better performance in identifying the purpose is observed with 
increasing samples and (2) better performance is observed 
when degrees of achievement for comparatively bad plans are 
taken into account. 

Fig. 9a-d shows the original evolved plans for the set of 
weights "A" and, for comparison, plans evolved using the 
estimated weights. Additionally, the error in estimated weight 
values is plotted as a function of the generation in the inverse 
problem. The weights were evolved based on plans considered 
in a specific generation during the forward evolution. Each 
graph shows the estimated weight evolved with two different 
seeds to the random function. Typically, the error in estimated 
weight stabilizes by generation 100. 

In the graphs, the error in the estimated weights actually 
increases before decreasing again. A plausible explanation for 
this behavior is based on the geometry of the divided simplex. 
Some region that is "closer" in terms of the number of 
precedence relationships may actually be an oddly shaped 
region that contains some points that are further in a Euclidean 
sense than all points contained in a region that is "further" in 
terms of number of precedence relationships. For example, in 
Fig. 10, the desired region to find is labeled 1. All regions that 
are one precedence relationship away are labeled 2; regions 
that are two precedence relationships away are labeled 3, etc. 
The region labeled 4 that is diagonally adjacent to the desired 
region is actually closer in a Euclidean sense than the region in 
the lower-left corner, which is labeled 3. However, the region 
labeled 3 is closer in a precedence relationship sense than the 
region labeled 4. A progression of population members from 
the described region 4 to the described region 3 would actually 
result in an increase in error of the estimated weights; further 
progression to the regions labeled 2 and then 1 would result in 
the desired reduction of error again.  
 
 

 
 

 
Fig. 8. The evolved weight relationships at generation 10 based on the 
precedence ordering of the best-evolved plans when encountering five combat 
objects in experiment 1. 
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Table II 
Importance weights used in the scenario in Fig. 9. Each set of weights lists the actual numbers input to the VSS, the normalized values for each parameter, and the estimated values for the parameters based on the 
degrees of achievement of evolved plans. Additionally, the error between the estimated and actual weights is listed. The evolved estimate of the weights only took into consideration the non-zero-weighted  parameters.  

Weight/ Parameter Ammo Fuel Damage Done Sensing BDA
Platform 
Survival

Return to Base Reconn Error

A 0 5 10 0 0 7 10 0
A (normalized) 0 0.15625 0.31250 0 0 0.21875 0.31250 0
A (estimated) 0 0.15633 0.31257 0 0 0.21874 0.31236 0 0.00018023

B 2 5 20 3 0 7 10 0
B (normalized) 0.04255 0.10638 0.42553 0.06383 0 0.14894 0.21277 0
B (estimated) 0.041818 0.1058 0.42189 0.065999 0 0.14709 0.2174 0.0066079

C 5 3 15 2 1 10 7 0
C (normalized) 0.11628 0.06977 0.34884 0.04651 0.02326 0.23256 0.16279 0
C (estimated) 0.11923 0.07085 0.34542 0.04718 0.023324 0.23216 0.16184 0 0.00480

D 5 1 0 10 0 15 7 20
D (normalized) 0.08621 0.01724 0 0.17241 0 0.25862 0.12069 0.34483
D (estimated) 0.08645 0.01726 0 0.17247 0 0.25876 0.12127 0.34379 0.0012274  

 
 

 

IV. CONCLUSION 
 

This paper explored the use of evolutionary algorithms to 
accomplish a form of system identification on the weighted 
parameters of importance guiding an enemy force. The 
experiments showed that with sufficient knowledge of the 
preference of enemy plans, particularly when including the 
rank ordering of all models available in an evolving 
population of plans, an evolutionary algorithm can determine 
the enemy’s intent as a normalized VSS with high accuracy 
and yield prospective eCOAs. This may provide an 
opportunity to gain valuable insight into anticipating eCOAs 
in more realistic settings. The experiments also showed that 
when only a small sample size of observed plans is available, 
the evolutionary method was not capable of identifying the 
relative importance of the weighted parameters reliably. 
Further experimentation is warranted to determine the 

 

  
a. Plan generated from original 
weights "A". 

 
b. Plan generated from estimated 
weights. 

 
c. Error between estimated and actual 
weights from generation 10 of cycle 
15 of the simulation, shown for 500 
generations. 

 
d. Error zoomed to 100 generations. 

Fig. 9a-d. Scenario and combat objects with actual and estimated evolved 
plans; error of estimated weights. A "wall" of co-located targets and threats 
separates three platforms from returning to base via a direct path; an 
additional platform starting near the base is also available for planning 
purposes. The evolutionary algorithm generates good agreement between the 
estimated and true weights. For more results, see www.natural-
selection.com/CISDA07.html. 

 
Fig. 10. Region 1 is the desired target region. All regions that are one 
precedence relationship away are labeled 2; regions that are two precedence 
relationships away are labeled 3, etc. The region labeled 4 that is diagonally 
adjacent to the desired region is actually closer in a Euclidean sense than the 
region in the lower-left corner, which is labeled 3. However, the region 
labeled 3 is closer in a precedence relationship sense than the region labeled 4. 
A progression of population members from the described region 4 to the 
described region 3 would actually result in an increase in error of the 
estimated weights; further progression to the regions labeled 2 and then 1 
would result in the desired reduction of error again. 
 

computational requirements as a trade off to the degree of 
accuracy of weight parameter estimation. 

The research and development focused on scenarios that 
were in some cases simple and in other cases more complex. 
The SAM player did not have the freedom to move assets in 
response to the evolving aircraft plans. Future research could 
offer both players freedom to adjust and adapt plans on the fly 
as conditions change. It would be of interest to determine the 
effectiveness of identifying the weighted parameters of 
interest of both players, iteratively. 
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