
Toward Automating Airspace Management 

Abstract—Military airspace is increasingly crowded with 
traditional aircraft competing with new loitering munitions and 
UAVs. Managing the airspace is therefore more challenging, 
requiring closer coordination among all the stakeholders. In this 
paper, we describe the motivation and design of a knowledge-
based system that attempts to automate aspects of airspace 
management, including the detection and resolution of airspace 
conflicts. We then describe a formative evaluation of the system 
as compared to human performance of the same task, the 
evaluation setup, results, and analysis. 

Index Terms—Airspace Management, Air Traffic Services, 
Intelligent Agents, Knowledge-Based Systems  

I. INTRODUCTION

HE US military and other airspace control authorities are 
facing a growing problem of overcrowded airspace as 

more users make increasing demands on a limited resource. In 
the modern battlespace, traditional aircraft have always 
competed with traditional artillery for airspace, but now they 
also compete with modern weapons such as persistent air 
munitions (PAMs), loitering air munitions (LAMs), and a 
wide variety of UAVs, many of which are not under the direct 
control of the airspace authority. One function of Army 
Aviation is Airspace Management, which has to do with “the 
coordination, integration, and regulation of the use of airspace 
of defined dimensions” [1]. The Army continues to look at 
simulation-based exploration of Army Airspace Command 
and Control (A2C2) processes and policies in order to more 
efficiently use the airspace and improve mission execution 
overall. 

This paper describes an effort to automate the Air Traffic 
Services (ATS) component of A2C2, which deals, in part, 
with ensuring that aircraft work within their assigned spaces 
and do not conflict with each other. The general hypothesis 
guiding this work is that we can automate the ATS elements 

   This work was supported in part by the U.S. Army under Grant W911W6-
05-C-0035. Gratitude to Mr. Jeff Maddox, Mr. Tim McKelvy, and others at 
AMRDEC, for support on this program.  

Glenn Taylor is with Soar Technology, Inc., Ann Arbor, MI 48103 (phone: 
734-327-8000; fax 734-913-8537; glenn@soartech.com); Cory Dunham a 
Software Engineer with Soar Technology’s Ann Arbor office 
(duhnam@soartech.com); Echo Harger is a Project Manager with Soar 
Technology’s Ann Arbor office. (echo.harger@soartech.com) 

Brian Stensrud, PhD, and Susan Eitelman are with Soar Technology’s 
Orlando, FL office. (stensrud@soartech.com, susan.eitelman@soartech.com) 

of Airspace Management to a level equal to or surpassing 
human performance, reducing the costs of employing ATS 
within simulation environments. 

II. DESCRIPTION OF THE PROBLEM SPACE

The Air Traffic Services (ATS) element of Airspace 
Management includes keeping track of where aircraft are at 
any given time (flight following), maintaining situational 
awareness (SA) of the airspace, providing SA to aircraft in the 
airspace, and detecting and resolving conflicts. (ATS is 
distinct from more typical Air Traffic Control, which is often 
more narrowly focused on terminal operations around airports. 
We will use the term ‘controller’ to refer to any person, in 
ATS or ATC, who is giving direction to an aircraft while it is 
flying.) 

For both ATS and ATC, the controller’s job is a 
knowledge-intensive task requiring constant updates to the 
“mental picture” the controller maintains in order to properly 
manage the airspace. The controller knows which aircraft are 
currently, or will soon be, flying through his or her assigned 
airspace, the particulars of the mission each aircraft is flying, 
all the routes and corridors (called Airspace Control 
Measures, or ACMs) of interest within the airspace, the 
current air picture, the standard operating procedures of the 
airspace (such as minimum separation rules), and basic 
doctrine of airspace management, command and control, and 
airborne operations (aircraft types and restrictions).  

Our focus in this paper is scoped to the detection and 
resolution of airspace conflicts. There are two basic types of 
conflict of interest: 

Air-to-Air conflicts – when two aircraft do not maintain the 
minimum separation rules, or seem to be on trajectories 
that will violate minimum separation rules in the near 
future.

Air-to-ACM conflicts – when one aircraft goes outside its 
assigned Airspace Control Measure (ACM), or wanders 
into an ACM for which it is not cleared. 

For our purposes here, ACMs are subdivisions of the 
physical space that are used to coordinate movement within 
the airspace. These include boundaries, corridors, routes, 
control points, areas or zones, etc. The Airspace Control 
Order (ACO) defines the approved ACMs for a period of 
time, which are in turn used in the Air Tasking Order (ATO) 
for each individual aircraft to define which routes or control 

Glenn Taylor, Brian Stensrud, Susan Eitelman, Cory Dunham, Echo Harger 
Soar Technology, Inc.  

3600 Green Court, Suite 600 
Ann Arbor, MI 481051

T

124

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Security and Defense Applications (CISDA 2007)

1-4244-0700-1/07/$20.00 ©2007 IEEE



points will be included in a particular mission.  
Upon detection of an Air-to-Air or Air-to-ACM conflict, 

the ATS element issues an advisory to the relevant aircraft, 
and the aircraft (presumably) responds both verbally and by 
adjusting its flight profile. For rotary-wing aircraft (RWA) 
operations (i.e., helicopters), much of the work of situational 
awareness is up to the pilots, in a kind of “see and be seen” 
mode of operation. Conflict resolution often takes the form of 
simply notifying the helicopter pilot of where nearby aircraft 
are flying, providing enough awareness to the pilot to take 
corrective actions within the bounds of his flight constraints. 
With human controllers and human pilots, an advisory would 
take the form of a radio message. An example might be 
“Foxtrot95, this is Adam15, you are left of course … correct 
heading is 090.” 

III. APPROACH

To automate conflict detection and resolution tasks, we have 
taken a knowledge-based systems approach that integrates the 
various kinds of knowledge required to perform these tasks. 
Specifically, we have adopted the knowledge-intensive agents 
(or “heavy agents”) approach, such as described in [2], in 
which our agent has goals and beliefs about its environment, 
and commits resources in terms of attention and appropriate 
knowledge to achieve its goals. A second guiding principle of 
the design was inspired by Endsley’s notions of Situation 
Awareness (SA) [3], which guided the content, organization 
and processing of knowledge. Both of these are described in 
more detail below. 

A. Situation Awareness 

Endsley’s theory of Situation Awareness [3] is a guiding 
principle for the design of this system. Endsley [4] defines SA 
as the perception of the elements in the environment within a 
volume of time and space, the compression of their meaning, 
and the projection of their status in the near future.” SA (i.e., a 
set of knowledge) is the product of a process called Situation 
Assessment, which is the information processing necessary for 
decision-making. 

Endsley proposes three levels of Situation Awareness. The 
first level of SA involves the current situation: “…the 
perception of the elements in the environment within a volume 
of time and space.” [1] For our system, this level of awareness 
is maintained by processing and storing up-to-date spatial 
information about relevant object in the battlespace – in this 
case, aircraft and ACMs. The second level – “the compression 
of their meaning” – relates current perceptual awareness to 
one’s goals. Working toward the primary goal of avoiding 
conflicts, the system must determine whether conflicts exist 
between aircraft and ACMs by inferring relationships among 
these objects as they exist in space. For example, the system 
must be able to compute the spatial distance between two 
aircraft in order to assert if they are complying with or 
deviating from separation rules. The third level of SA pertains 
to projecting the status of the aircraft into the immediate 
future, and making determinations of whether conflicts will 

exist within that projection. For instance, if two aircraft are a 
safe distance apart but are on a collision course, it is important 
that the system be able to identify that future conflict and 
work to correct the situation. 

From the perspective of developing a model of human 
behavior, the three levels of Situation Awareness defined by 
Endsley provide us a clear methodology by which to organize 
the knowledge needed to make these decisions, as well as the 
basic processes of perception, comprehension, and projection.
In the case of this system, the decisions include the 
determination of when aircraft are in conflict with each other 
and with specific ACMs in the battlespace.

B. Knowledge-Based Systems  

Since decision-making in this arena involves perceiving and 
analyzing several types and sources of knowledge, it was 
natural to construct the system as a knowledge-based system 
that brings to bear knowledge to solve problems. A 
knowledge-intensive agent [2], which embodies a knowledge-
based system into an agent framework, exists in a dynamic 
environment, has desires, goals, justified beliefs and 
assumptions, and can make plans to achieve goals based on its 
current beliefs about the environment. Additionally, a 
knowledge-intensive agent constantly manages its beliefs and 
goals while executing plans to achieve its goals.  

From earlier analyses of Air Traffic Control [5, 6], a 
controller uses a great deal of static and dynamic knowledge 
to maintain situational awareness and make decisions. Static 
knowledge includes background knowledge about particular 
aircraft (e.g., flight dynamics and weight class), local terrain, 
military airspace doctrine, and standard operating procedures 
for a local area. Dynamic knowledge includes the current and 
projected air picture, a particular aircraft’s mission, 
environmental conditions, and any outstanding requests by 
aircraft or by the controller. The controller must constantly 
update his or her “mental picture” with current knowledge to 
control the airspace. Given the knowledge requirements of 
ATS and the processes for maintaining Situational Awareness 
the knowledge-intensive agent approach is very fitting. 

IV. AUTOATS SYSTEM

In earlier work [7], we developed a prototype automated air 
traffic controller that could interact with pilots via a voice 
interface to perform flight following and minimal terminal 
operations. AutoATS builds on that implementation to 
incorporate capabilities for conflict detection and resolution. 
The AutoATS architecture consists of four major pieces: 

A. A knowledge-based decision-making component 

The knowledge-based decision making component is 
embodied in a Soar agent that combines knowledge about 
aircraft missions, routes, current and future situations to detect 
and assess conflicts and issue advisories. Soar is a cognitive 
architecture designed for building knowledge-intensive agents 
[8]. Soar provides a uniform knowledge representation 
scheme for long-term knowledge in the form of forward-
chaining production rules. Soar agents also possess a graph-

125

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Security and Defense Applications (CISDA 2007)



based working memory that contains symbolic representations 
of the agent’s current beliefs and assumptions about its 
situation. Production rules operate on working memory to 
generate new assertions or retract old ones as part of 
managing beliefs, goals, and plans. In terms of the three levels 
of SA, the AutoATS agent uses working memory to maintain 
first level information about airspace elements (ACMs and 
aircraft) as well as assertions at the second and third levels. 
The logic required to generate the assertions, including the 
identification of conflicts, lies within productions. 

B. Spatial Computer 

While the Soar agent stores and reasons over qualitative 
symbolic-level information about the airspace, quantitative 
calculations about elements in the airspace are offloaded to a 
Spatial Computer.  As elements appear and move around in 
the battlespace, the Soar agent publishes and updates their 
position and heading information to the spatial computer.  
When the agent must determine a relationship between 
elements, it does so by making the necessary query.  For 
instance, to determine whether two aircraft are in conflict, the 
agent must first determine their separation. That computation 
is made by the spatial computer then returned to the agent for 
analysis. The return to the agent may be in a qualitative form 
(e.g., aircraft Eagle13 is within Corridor34). The actual 
location in three-dimensional space is typically not important 
to the AutoATS agent, only whether the aircraft is inside or 
outside the ACM of interest.  

C. A Situation Awareness Console 

The Situation Awareness Console (shown in Fig. 1) displays 
both the state of the battlespace (e.g., current aircraft position, 
details about their orientation and movement, current ACMs, 
etc.) and a list of conflicts identified by the AutoATS system. 
The console allows us one way to compare system 
performance to human performance data visually, in addition 
to log-based comparisons. In the future, this console will also 
provide deeper insight into the deliberation of the AutoATS 
agent in order to explain its actions in context. 

D. Network Interface Layer 

One integral component of the AutoATS system is a 
network interface layer that reads in simulation data and uses 
it to populate the agent’s beliefs about the airspace. Using 
Mak’s VR-Link product, AutoATS is capable of operating 
using both HLA or DIS simulation protocols. VR-Link works 
out of the box with basic HLA RPR-FOM and DIS5.0, but, as 
with this exercise, may need to be tailored to alternate 
protocols. 

Generally speaking, the AutoATS system operates by 1) 
receiving input about simulated aircraft, 2) updating the 
agent’s Situational Awareness in each of the three levels, 3) 
determining if there are any conflicts based on the situation, 
and 4) issuing advisories where needed. 

Fig. 1. Situation Awareness Console 

Of particular interest to our work here is the corridor and 
the Airspace Control Point. An ACM corridor is defined as a 
sequence of connected 3D boxes in space that have width 
extents (distance from a centerline) and height extends 
(minimum and maximum altitude in the airspace). Deviation 
outside this corridor may constitute a kind of conflict. An 
Airspace Control Point (ACP) is simply a point on the ground 
(usually referring to an easily identified landmark in the 
terrain). Corridors and waypoints were the primary means of 
coordination of flights within the experiment described later.  

Aircraft are thought of as existing within a minimum 
separation bubble. The bubbles are defined in the AutoATS 
system as oblong volumes extending forward in space to an 
extent based on the speed and direction of travel of the 
aircraft. If the bubbles of two aircraft overlap, those aircraft 
are in conflict. Air-to-Air conflicts may not exist in the current 
situation, but may potentially exist in the near future. The 
AutoATS agent estimates where the aircraft will be in the near 
future (5 and 10 seconds forward) based on their velocity and 
bearing, then computes whether their projected positions (their 
surrounding bubbles) overlap to cause a conflict. 

The notion of conflict is not based solely on geometry – for 
example, an aircraft going outside the bounds of a corridor is 
not by itself a conflict. The aircraft may be leaving the ACM 
to transition to another phase in the mission (e.g., to land) or 
in response to a directive from the controller to avert another 
conflict (e.g., change altitude to avoid other aircraft of higher 
priority). Extra mission information is needed to determine 
whether or not an advisory needs to be generated. Kinds of 
extra mission information might include: 

126

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Security and Defense Applications (CISDA 2007)



Dialogue between pilot and controller that has 
established new goals or new expectations about the 
aircraft’s mission 
Recognized intent based on knowledge about the 
aircraft’s movement toward or away from ACMs. 
Mission changes, including changes to assigned 
routes or generation of new ACMs 

Prior SA studies of Air Traffic Control [5, 6] indicate the 
goals of the controller, and relate those goals to the knowledge 
required to achieve them. In the AutoATS system, there are 
three broad types of goals: those that help maintain SA, those 
that respond to conditions in the battlespace by identifying 
conflicts, and those that manage generating and issuing 
advisories.  By maintaining the three levels of SA, the agent is 
able to detect when conditions exist for a potential conflict.  
When this is the case, the agent generates a new goal for 
examining that condition and determining whether it is a 
conflict.  If it is, the agent constructs an advisory that is 
displayed on the Situation Awareness Console. Advisories are 
generated using a simple template-based approach to natural 
language generation, which for now capture only the basic 
information of who-what-when-where. 

V. EVALUATION

A recent exercise conducted by the Army Aviation and 
Missile Research, Development, and Engineering Center 
(AMRDEC), called Joint Aviation Missile and Unmanned 
Systems 2006 (JAMUS2006), provided an opportunity for us 
to evaluate AutoATS against human data in a simulated 
environment. While the core experiment was not focused on 
interaction with aircraft, the experiment included a set of 
excursions that allowed us to use the same experiment setup to 
gather data regarding aircraft conflicts and controller-aircraft 
interaction. 

AutoATS is one component within the larger JAMUS2006 
simulation federation. Other components include the 
MATREX/HLA server, the IDEEAS constructive simulation 
system, data collectors, and an Airspace Management Console 
(ASM Console) operated by a human ATS controller. Each 

component is an HLA federate, running within the MATREX 
HLA federation. The JAMUS2006 architecture is illustrated in 

Fig. For our evaluation, the AutoATS system is swapped for 
ASM and the human ATS controller. The experiment is 
somewhat ahead of current fielded technology in a few areas, 
not least of which is the information available to the controller 
regarding aircraft awareness in the battlespace. In current 
Army operations, a controller would only rarely have 
continuous real-time updates about aircraft position; in 
JAMUS2006, the controller receives constant situation 
updates that indicate the position and orientation of aircraft. 

A. Experiment design 

In this formative study, we separated the experiment into 
two cases: 1) human playing role of ATS; 2) AutoATS system 
playing role of ATS. In both cases, the ATS element’s role 
was to detect conflicts and generate advisories to the relevant 
aircraft. We did not include artillery or other air munitions in 
these exercises (for example, no advisories were given relative 
to artillery passing through defined air corridors), but 
advisories would be generated for conflicts between aircraft 
and ACMs, and between multiple aircraft. In the first case, the 
human controller used the ASM Console that displayed 
aircraft position and orientation, airspace control measures 
(ACMs and ACPs) and, when an aircraft left an assigned 
corridor (the ASM did not detect air-to-air conflicts). The 
human controller used information available through the ASM 
console to generate advisories (such as which aircraft and 
which ACM), which were then spoken aloud and recorded. 
The ASM display was also recorded on video, to give later 
context in coding an analysis as to why an advisory was given. 
The simulation network data describing the flights of aircraft 
was also recorded.

In the second case, we used the recorded simulation 
network data to re-generate the situation, this time using the 
AutoATS system to detect conflicts and generate advisories. 
Because the aircraft behavior was entirely scripted, and the 
aircraft do not actually respond to advisories given by the 
human ATS player or AutoATS, the recording is no different 
than the live run exercise, and allowed us to use the recorded 
network traffic to run against the AutoATS system, and to 
perform other post-run analysis.  The experiment setup is 
illustrated in Fig. 3.

We distinguish two important types of knowledge in each 
setup illustrated in Fig. 3: spatial knowledge (aircraft 
positions, separation bubbles, ACM locations and extents) and 
mission/situation knowledge (e.g., understanding of aircraft 
intent, prior interactions with aircraft, etc.). In the Human 
ATS setup, this knowledge is split across the human and the 
ASM console. The ASM handles spatial knowledge (and 
detects conflicts), and the human controller uses other 
knowledge to determine when an advisory should be given 
based on a conflict detected by ASM. In the case of AutoATS, 
both of these kinds of knowledge and processes are included 
in the single AutoATS system. 

Fig. 2. JAMUS2006 System Architecture 

127

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Security and Defense Applications (CISDA 2007)



Fig. 3. AutoATS Evaluation Setup 

There were two scenarios lasting 45 and 50 minutes 
respectively, with three primary missions in each scenario: a 
troop insertion by a flight of UH-60s, a mobile strike by a 
flight of AH-60s, and a MEDEVAC flight consisting of a 
single UH-60. There was also secondary UAV traffic in 
certain areas, and in one scenario, a pair of fixed-wing F16s 
fly through the airspace. In each of the scenarios, the aircraft 
were scripted to follow a set route, with varying amounts of 
maneuvering within and outside the assigned mission ACMs 
that would typically cause advisories to be generated. The 
maneuvering was inserted specifically to generate advisories – 
in the basic execution of the mission for JAMUS2006, the 
aircraft flew perfectly within the corridors, generating no 
advisories. For our purposes, we were less interested in 
perfect flights than in creating the conditions under which 
advisories might be generated. 

As mentioned earlier, in no case were the aircraft responsive 
to controller communication, so the (lack of) effects of 
advisories are unrealistic. In real operations, if an aircraft flies 
outside a corridor unexpectedly, an advisory is typically 
generated, and the pilot would respond at least verbally, if not 
also by changing the flight path. However, the aircraft in the 
experiment do not change behavior in response to advisories, 
but instead fly according to the scripted flight plan. As such, 
the aircraft might in fact behave in a way that would normally 
cause another advisory to be generated. While perhaps 
unrealistic, considering the goals of the experiment, 
repeatability was a core feature of JAMUS2006. Furthermore, 
this condition was constant in both the human and AutoATS 
controller iterations, so the input data are the same. Because of 
this simulation artifact, we classify interactions according to 
‘first infraction’ and ‘follow-up’ to note that some may be 
artifacts of the aircraft not responding to the controllers.   

B. Experiment Results and Analysis 

Tables 2 and 3 below summarize the ASM/human versus 
AutoATS results for detecting conflicts and generating 
advisories in Scenario 1. “Detected Events” refers to potential 
conflicts that were detected by the respective systems. For 
some of these, advisories were generated. 

TABLE 1
SCENARIO 1 RESULTS: HUMAN VS. AUTOATS

ASM/
Human 

Controller
AutoATS

Detected Events 6 5
Advisories 
Generated 

5 5

Advisory 
Difference 

1 1

Errors in 
generated 
advisories 

0 0

As shown in Table 2, we classify two types of accountings 
for deviating from ‘ground truth’: misses are non-deliberate 
errors when an advisory should have been generated 
according to the operating rules; omissions are deliberate 
decisions not to generate an advisory.  

TABLE 2
SCENARIO 1 MISSES AND OMISSIONS

Misses Omissions 

Cause Human 
Auto
ATS Human 

Auto
ATS

Perception 1 0 0 0

Geometry 0 1 0 0

Knowledge 0 0 0 0

Unknown 0 0 0 0

In the case of Scenario 1, the same miss occurred for both 
the human and the AutoATS, though for different reasons. 
The human controller did not see the conflict because he had 
scrolled to another area of the screen. In the case of AutoATS, 
there was a difference in size of one corridor between how the 
human’s system and the AutoATS, resulting in the miss. 
Essentially, this is an inconsistency between the ASM Console 
and AutoATS corridor data. 

Tables 3, 4 and 5 below summarize the ASM/human versus 
AutoATS results for Scenario 2 in detecting conflicts and 
generating advisories. Scenario 2 included much more 
variation in the behavior of the air entities, thus more events. 

TABLE 3
SCENARIO 2 RESULTS: HUMAN VS. AUTOATS

ASM/
Human 

Controller
AutoATS

Events 25 24
Advisories 
Generated 

21 21

Advisory 
Difference 

4 3

Errors in 
advisories 

2 8

128

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Security and Defense Applications (CISDA 2007)



TABLE 4
SCENARIO 2 MISSES AND OMISSIONS

Misses Omissions 

Cause Human 
Auto
ATS Human 

Auto
ATS

Perception 3 0 1 0

Geometry 0 1 0 0

Knowledge 0 0 0 4

Unknown 0 0 0 0

In the case of Scenario 2, there were a number of misses 
and errors as shown in Table 4. The human controller had a 
number of perceptual misses where he was simply looking 
elsewhere in the battlespace, and did not catch the conflict. In 
one case (the human perception omission), the human 
operator saw the conflict but did not respond in time before 
the situation resolved itself (aircraft flew back into corridor). 
As with Scenario 1, in the case of AutoATS, there was a 
difference in size of one corridor between how the human’s 
system and the AutoATS, resulting in the one geometry miss. 
The four knowledge-based omissions by AutoATS were due 
to particular rules that made it hold off generating an advisory 
if another advisory had already been issued to the aircraft in 
the recent past (60 seconds). This might occur if an aircraft 
had gone outside a corridor laterally then had an altitude 
violation in the same corridor – only one advisory would be 
generated. The human controller generated distinct advisories 
for both conditions. 

TABLE 5
TYPES OF ERRORS IN ADVISORY GENERATION

Error Type Human 
Auto
ATS

Extraneous Advisory 0 1

Wrong ACM in Advisory 1 3

No ACM in Advisory 0 4

Wrong Flight Group 1 0

It was only in Scenario 2 that we saw errors in the 
advisories that were generated, as shown in Table 5. In the 
case of the human operator, two such errors were made, and in 
the case of AutoATS, 8 such errors. In the human case, we 
can possibly attribute these errors to the increased burden in 
Scenario 2 – multiple conflicts would be detected at the same 
time, putting some stress on the controller to handle the next 
conflict. A few of the data points from AutoATS have not yet 
been accounted for, and for now can be attributed to a bug in 
programming. However, a few seem to be due to the aircraft 
flying out of one corridor near the intersection of another, but 
has not yet corrected back into the next one, so the advisory 
refers to the prior corridor. In the case of the human 
controller, these situations result in a correct advisory, and 
seem to be based on assumptions about the intent of the 
aircraft and knowledge about what the next new corridor 
should be. To account for this kind of reasoning would require 
more knowledge within the AutoATS agent to generate the 
right advisory, based on a few kinds of knowledge that it does 
not currently use. 

Advisories generated by the human controller were 
generally more forgiving than those derived algorithmically 
by AutoATS. For example, if the human controller saw the 
aircraft moving back toward the correct corridor, he would not 
issue a further advisory. AutoATS did not use this kind of 
inferred information. In a few cases, an aircraft deviated from 
its assigned corridor then returned to compliance before the 
human controller could generate an advisory. Strategy 
accounts for some of the remaining differences, such as with 
the re-generation of advisories for the same infraction. In 
some cases, the human controller would let the same 
infraction slide for a long period of time; AutoATS used a 
fixed 60-second window to make another request. Reaction 
time is also of some interest. The time for the human 
controller to generate an advisory averaged 16 seconds and 34 
seconds for Scenarios 1 and 2, respectively. Some of this is 
accounted for in visual search of the ASM console, and 
searching the display for information to construct the 
appropriate advisory. AutoATS reacts immediately. 

Many of the differences can be placed into the category of 
expectations and intent recognition. Once the controller issues 
an advisory, built-in expectations about the subsequent 
behavior of the aircraft guide further interactions. For 
example, if the controller tells the pilot he is off course, the 
controller gives the pilot some time to get back on course 
before issuing another advisory. If the controller judges that 
the pilot intends (by verbal response and visible behavior) to 
comply with the controller’s request, then the controller need 
not issue another advisory until the aircraft appears to be 
breaking request. An example is illustrated below in Fig. 2.
Intent estimation and recognition play a central role in 
matching a controller’s expectations to reality and finding 
where adjustments must be made, either in the controller’s 
mental model of the situation, or in the aircraft’s actions. 

VI. CONCLUSION

We have described a system that automates aspects of 
airspace management, modeling an Air Traffic Services task 
that to date has been performed by a human in a simulation 

Fig. 2. Knowledge Use in Conflict Detection  
(Blue icon is a helicopter moving north/northeast) 

129

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Security and Defense Applications (CISDA 2007)



environment. The results of the system are preliminary, given 
the limited scope of the experiment, but they point to the 
potential efficacy of automating these behaviors. The results 
have generated hypotheses regarding the kinds of knowledge 
required to effectively perform this task and indicate where 
we need further experimentation to test these hypotheses. 
Other capabilities of the system have not been evaluated, 
namely the quality, understandability, and correctness of the 
advisories that are generated by the system.  

The capabilities described here – detecting and resolving 
airspace conflicts – are only a small slice of the capabilities 
required for full automation of Air Traffic Services or Air 
Traffic Control. There are obvious applications for a more 
complete system in training aviators or controllers. The 
limited capabilities might even be useful for on-board pilot 
assistance in navigation. In addition to automation or 
assistance, we can imagine using this tool for pre-mission 
analysis such as finding where pre-planned routes might 
conflict. 

VII. RELATION TO PRIOR WORK

A good deal of attention has been paid to automating aspects 
of air traffic control, including analyzing the impact on 
workload [9], the SA requirements of the task [6, 10], and the 
development of cognitive models to evaluate task performance 
under varying conditions [11]. Other modeling work has 
examined alternative airspace policies [12], planning and 
scheduling algorithms for traffic flow [13], etc. Our work here 
is aimed at a broad but practical implementation of an 
interactive controller that can engage human or synthetic 
pilots in positive control, for the purposes of experimentation 
or training in human-in-the-loop simulations.  

ACKNOWLEDGMENTS

Many thanks to the entire Soar Technology team for 
making this work possible, to AMRDEC for supporting this 

work and providing us a means to evaluate our effort to date, 
and to our volunteer human controller for putting up with our 
data collection requests. 

REFERENCES

[1] JP3-52, "Joint Pub -- Doctrine for Joint Airspace Control in a Combat 
Zone," 2002. 

[2] R. M. Jones and R. E. Wray, "Comparative Analysis of Frameworks for 
Knowledge-Intensive Intelligent Agents," AI Magazine, vol. 27, pp. 57-
70, 2006. 

[3] M. R. Endsley and D. G. Jones, "Situation awareness in air traffic 
control," presented at First International Conference on Applied 
Ergonomics, Instanbul, Turkey, 1996. 

[4] M. R. Endsley, "Design and Evaluation for Situation Awareness 
Enhancement," presented at Human Factors 32nd Annual Meeting, Santa 
Monica, CA, 1988. 

[5] M. R. Endsley and M. D. Rodgers, "Situation Awareness Information 
Requirements for En Route Air Traffic Control," Us Department of 
Transportation DOT/FAA/AM-94/27, 1994. 

[6] M. R. Endsley and D. G. Jones, "Situation awareness requirements 
analysis for TRACON air traffic control," Texas Tech University, 
Lubbock, TX TTU-IE-95-01, 1995. 

[7] G. Taylor, J. Miller, and J. Maddox, "Automating Simulation-Based Air 
Traffic Control," presented at IITSEC, Orlando, FL, 2005. 

[8] J. E. Laird, A. Newell, and P. S. Rosenbloom, "Soar: An architecture for 
general intelligence," Artificial Intelligence, vol. 33, pp. 1-64, 1987. 

[9] C. D. Wickens, Engineering Psychology and Human Performance. New 
York, NY: Harper Collins, 1992. 

[10] M. R. Endsley and M. D. Rodgers, "Situation awareness information 
requirements for en route air traffic control," presented at Human Factors 
and Ergonomics Society 38th Annual Meeting, Santa Monica, CA, 1994. 

[11] K. A. Gluck and R. Pew, "Modeling Human Behavior with Integrated 
Cognitive Architectures: Comparison, Evaluation," Lawrence Erlbaum 
Associates, 2006. 

[12] K. A. Harper, S. S. Mulgund, S. L. Guarino, A. V. Mehta, and G. L. 
Zacharias, "Agent-Based Performance Assessment Tool for General 
Aviation Operations Under Free Flight," presented at AIAA Guidance, 
Navigation and Control, Portland, OR, 1999. 

[13] W. C. Meilander, M. Jin, and J. W. Baker, "Tractable Real-Time Air 
Traffic Control Automation," presented at 14th IASTED International 
Conference on Parallel and Distributed Computing and Systems, 2002. 

130

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Security and Defense Applications (CISDA 2007)


