
 
 

 

  

Abstract—A novel approach to visual self-localization in 
completely unknown environment with a fully unsupervised and 
computationally efficient algorithm is proposed in this paper. It 
is based on the recently developed evolving fuzzy classifier 
(eClass). The problem of self localization and landmark 
recognition is of extreme importance for designing efficient and 
flexible land-based autonomous uninhabited vehicles (AUV). 
The availability of global coordinates, a GPS link, and 
unrestricted communication is often compromised by a number 
of factors, such as interference, weather, and mission objectives. 
The ability to self-localize and recognize landmarks is vital in 
such cases for an AUV to survive and function effectively. The 
self-organizing classifier (eClass) is designed by automatic 
labeling and grouping the landmarks that are detected in 
real-time based on the image data (video stream grabbed by the 
camera mounted on the mobile robot, AUV). The proposed 
approach makes possible autonomous joint landmark detection 
and recognition without the use of absolute coordinates, any 
communication link or any pre-training. The proposed 
algorithm is recursive, non-iterative, one pass and thus 
computationally inexpensive and suitable for real-time 
applications. A set of new formulae for on-line data 
normalization of the data are introduced in the paper. Real-life 
tests has been carried out in outdoor environment at the 
Lancaster University campus using Pioneer3 DX mobile robots 
equipped with a pan-tilt zoom camera and an on-board PC. The 
results illustrate the viability and flexibility of the proposed 
approach. Further investigations will be directed towards teams 
of mobile robots (AUV) performing a task in completely 
unknown environment. 

I. INTRODUCTION 
ERRAIN navigation requires the use of a map and absolute 
coordinates, or landmarks. In case when absolute 

coordinates are unavailable or unreliable the obvious choice 
is to use the surrounding environment to extract knowledge 
and self-localize by selecting trees, rocks, terrain contours or 
other objects as landmarks [1]. Navigation in an outdoor 
environment is substantially more complex than navigation in 
an indoor environment due to the lack of well defined features 
such as corners, walls, corridors etc. Even more, one can not 
afford to build a map at such a detailed level as required by a 
successful navigation in an outdoor terrain describing a priori 
the location and orientation of natural features, such as trees, 
rocks, cliffs etc. [1]. One obvious obstacle is the huge 

 
 

dimensionality of such a hypothetical task. Another, less 
obvious, reason is the fact that natural landmarks (such as 
trees, rocks etc.) are subject to weather exposure, seasonal 
changes etc. [1]. Therefore, successful terrain navigation, and 
thus operation, in an outdoor environment strongly requires 
an on-line autonomous self-localization and map-building 
[1]. In terms of learning method, the autonomy requires the 
use of unsupervised learning approaches. This capability 
should also have an evolving aspect in the sense that the 
number of landmarks can not be pre-specified and fixed a 
priori. This requires capability to design on-line evolving 
maps (sets of landmarks) in an understandable for the AUV 
form. Additionally, this should be computationally 
inexpensive and fast in order to be suitable for real-time 
implementations. 
 A newly introduced approach for joint landmark 
recognition and classifier design [2] is taken further in this 
paper and a set of realistic outdoor experiments were 
performed to validate it. It is based on the recently introduced 
evolving fuzzy rule-based classifier that will be presented in a 
parallel paper [3].  

Unsupervised landmark recognition (and thus 
self-localization) schemes are possible using, for example, 
self-organizing maps (SOM) [4]. They are computationally 
less expensive and has been developed further into eSOM 
(evolving SOM) for the case when the cluster centers 
‘evolve’ [5]. However, they, as well as a number of other 
evolving and self-organizing neural networks such as 
growing cell structures [6], adaptive resonance theory 
mapping [7], dynamic evolving neuro-fuzzy inference 
systems [8], resource allocation networks [9] and their 
applications [12-17], do not take into account data density 
and are prone to generating too many classes (pseudo 
landmarks) and thus they require pruning. All these 
approaches are not prototype-based in the sense that the 
centre of the clusters is not necessarily and is often not 
located at a feasible point in the data space. It is usually 
located at the mean or its location is a result of an adaptation. 
Thus, its location in the data space is an abstraction and may 
not be a feasible data point. Additional disadvantage of these 
approaches is that new data point is compared to the cluster 
centers only, not to all previous data because the real-time 
nature precludes memorizing the data history. In this way 
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important information is usually lost. 
Recently, a novel approach to real-time fuzzy rule-based 

clustering [18] was proposed that can be seen as an on-line 
and evolving extension of the well-known Mountain and 
subtractive clustering approaches [19] and the recently 
introduced concept of evolving fuzzy rule-based systems 
[20,21]. It has also been used for objects [22] and mobile 
robot tracking [23]. It is fully unsupervised in the sense that 
not only the cluster labels/outputs but also the number of 
clusters is not pre-defined but is determined based on the data 
density. This approach has been extended to classification in 
a parallel paper [3] and called eClass when the class labels are 
assigned automatically and again the class number is not 
pre-defined. In the present paper, the prototypes are extracted 
from images and are selected as landmarks using eClass. The 
data (color intensity of pre-defined bins of the image) are 
normalized using a newly introduced procedure for on-line 
normalization suitable for the eClass algorithm. Landmarks 
are automatically labeled and further data are classified into 
classes associated with the most similar landmark detected so 
far in real-time. The number of classes (respectively 
landmarks) is not pre-specified. Instead it evolves starting 
‘from scratch’ with the very first landmark detected while 
exploring previously unseen environment. By associating 
location data a simple map of the environment based on the 
automatically detected landmarks can be build.  

The evolving fuzzy rule-based classifier, eClass is formed 
by real-time detection of landmarks and labeling them. It is 
then used to classify in real-time the data produced by the 
camera mounted on the AUV (a mobile robotic platform 
Pioneer3-DX). In the experiment carried out in an outdoor 
environment at the campus of Lancaster University, 
Lancaster, UK an AUV (mobile robot) collects images while 
traveling in the campus. The algorithm identifies 
automatically landmarks and if the robot passes again near the 
same landmark it already knows that it has been there without 
any pre-training. Note that by using fuzzy classifier the 
second time the AUV gets a similar image it does not need to 
be exactly the same. Instead a degree of similarity is required 
(measured by Euclidean or cosine distance). This contributes 
to the flexibility and robustness in recognition of previously 
seen scenes. 

Future investigations will be directed towards development 
of team-oriented methods for self-localization, novelty 
detection, and landmark and target recognition and improved 
feature selection. 

II. VISION-BASED LANDMARK RECOGNITION  

A. Visual-based novelty detection and landmark 
recognition 
As the robot travels in previously unseen environment it 

generates a video stream using its on-board camera. In a 
scenario when the AUV can not rely on absolute localization 
such as GPS, on pre-specified maps and when the 

communication is band-limited an ability to extract 
knowledge and use this to improve navigation can be vital for 
survivability and efficiency of the AUV [14-17,25,26]. The 
ability to differentiate between common background and 
patterns never met before which is called ‘novelty detection’ 
[17] is a very useful competence for a mobile robot (AUV) 
operating in a real dynamic unexplored environment. Using 
such ability the robot can select which aspects of the 
environment are unusual, differ from the contextual 
background and use them as ‘landmarks’. By differ from 
‘dead reckoning’, which is prone to drifting errors [14-17], 
landmark-based navigation does not suffer from this 
disadvantage [1]. Thus it can effectively be used for adaptive 
navigation and route planning.  

At the same time the limited computational resources 
available to an autonomous mobile robot often present 
challenge for applications that demand real-time processing 
of large amounts of sensory data, therefore, a recursive 
algorithm is highly desirable to cope with the memory and 
time limitations. This is especially important for designing 
agile compact autonomous devices [22] where the 
computational and energy requirements are usually very 
restrictive. Another important requirement to such an 
algorithm is to be open or flexible that means the number of 
landmarks not to be pre-specified in advance. This leads to 
the necessity of evolving structures to realize such an 
algorithm. 

B. Feature selection and image processing 
The inputs to the eClass are formed by the pre-processed 

image in real-time. Preprocessing is simple and includes 
grabbing the bitmap image and segmenting it into bins 
(column-wise and row-wise) similarly to the approach 
adopted in [27]. The visual information that is contained in a 
frame of size M x N pixels can be decomposed into a grid of 
smaller     (m x n) local images. In our experiments we have 
segmented images of size 640 x 480 pixels into twelve 160 x 

160 pixel areas (bins) as illustrated in Figure 1.  
In each bin, the mean value of the color intensity of all 

pixels that form that area/bin is calculated for each of the 3 

Fig. 1 An example of image segmentation into twelve bins
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color channels, namely R (red), G (green), and B (blue): 
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where R
ijI denotes the intensity of the Red of the ith 

column; jth row of the bin; 
R
pqµ denotes the mean value of the Red in the bin formed 

by the pth vertical and qth horizontal of the image 
(p=[1,3]; q=[1,4]). 

Having 12 bins in the image and for each channel (Red, 
Green or Blue) we form 36 features for each frame. These 36 
features form a frame that represents the area/bin of the image 
that is further processed by the evolving fuzzy classifier. 

Note that better results can be expected if use HUV (hue, 
saturation, and value of brightness) as described in [28]. 

III. EVOLVING FUZZY RULE-BASED CLASSIFIER (ECLASS) 

A. Structure of the evolving classifier eClass 
eClass can be described as a set of fuzzy rules of the 

following form: 
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where i
lR  denotes the ith fuzzy rule; i=[1,N]; N is the 

number of fuzzy rules; the consequent lLM  is the lth 
class/landmark label; l=[1,L]; L is the number of classes 
(note that L≤N which means there is at least one fuzzy rule per 

landmark); T
nxxxx ],...,,[ 21=  is the features vector that is 
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denotes the jth fuzzy set of the ith prototype (fuzzy rule), 
j=[1,n]; *ix is the prototype of the ith

  rule antecedent. 

The membership function that describes the closeness to 
the prototype is assumed to be of Gaussian type. The overall 
firing level, τ of the ith fuzzy rule of the lth class (landmark) is 
given as a product of the membership functions of the fuzzy 
sets for that rule [19] and results again in a Gaussian:  
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where ijd is the dissimilarity between a frame and the 

prototype of the ith landmark (the focal point of the fuzzy 
rule); i

jσ  is the spread of the membership function.  

Note that this representation resembles the normal 
distribution used widely in statistics and the spread of the 
membership function can also be represented by the standard 
deviation. The spread of the membership function σ can be 
determined recursively as [3]:  
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where i=[1,n] is the number of classes/landmarks; )( *
, j
i xxd  

denotes the dissimilarity between the prototype and the new 
frame assigned into this class.  

Since we assume an evolving classifier, new landmarks 
(classes/rules) will be formed on-line. When a new rule is 
formed, N←N+1, its spread is initialized by [3]: 
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The overall classification is produced by an inference from 
the fuzzy rule base using so called ‘winner-takes-all’ 
defuzzification approach [3,19] (the label of the winning rule 
forms the output of the fuzzy rule base): 
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The eClass method (as the name suggests) assumes an 
unspecified number of classes that gradually evolve. Their 
labels are automatically assigned. The approach also assumes 
joint classification and classifier generation similarly to the 
joint adaptation and prediction used in conventional (linear) 
adaptive systems [29]. eClass starts with an empty rule-base 
until a landmark is detected. The images are processed in 
real-time and a vector of features is formed based on each 
frame. Each feature vector can be represented as a data point 

in the data space, [ ]Tn
kkkk xxxx ,...,, 21= where k is the 

current time instant (in a real-time application the time is 
open-ended and stops when a stop condition that is external to 
this algorithm is reached, thus k=1,2,…).  

The structure of the proposed classifier is thus formed by 
sets of fuzzy rules of type (1) in such a way that there is at 
least one fuzzy rule per class associated to a landmark. The 
prototypes around which the fuzzy rules are formed are 
frames selected by unsupervised learning (eClustering).  

eClass, similarly to eClustering, is based on the concept of 
data spatial density measured by so called ‘potential’ [18-21]: 
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As a measure of dissimilarity, d one can use Euclidean 
[18-21]: 
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or cosine distance [3]:  
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Note that the expression for the potential (6) is suitable for 
off-line (batch) calculation only since the summation over all 
previous data points is needed to determine the data density. 
To use potential in a real-time algorithm where memorizing 
the previous history is prohibitive, a recursive version is 
needed. For Euclidean distance it was given as [18]: 

kkk
kk cbak

kzP
2)1)(1(

1)(
−++−

−
=  (8a) 

Where the following notations has been used:  

( )∑
=

=
n

j

j
kk xa

1

2

;
( )∑∑

−

= =

=
1

1 1

2k

i

n

j

j
ik xb

; 

j
k

n

j

j
kk fxc ∑

=

=
1 ; 

∑
−

=

=
1

1

k

i

j
i

j
k xf

 (8b) 
Values ka and kc  can be calculated based on the 

availability of the current frame, xk only. The values bk and 
j

kf  require accumulation of past information. This can be 

stored in two auxiliary variables only (the scalar, 1−kb and the 

n-dimensional vector-column ( )Tn
kkkk ffff ,...,, 21= ). One can 

recursively update these n values by: 
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Alternatively, if we use cosine distance/dissimilarity we 

arrive at the following formula for recursive calculation of the 
potential [3]: 
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In this way, the spatial density at each new frame, Pk in 
respect to all previous frames can be recursively calculated 
using n accumulated values in the two auxiliary variables 
only. This makes possible real-time applications of the 
algorithm while keeping the information of spatial data 
density regarding the whole previous history which is the 
distinctive feature of the proposed algorithm. 

Each time a new frame is grabbed and its features extracted 
it affects the data density of the global data space, therefore 
the potentials of all existing prototype frames needs to be 
updated. This update is also done in a recursive way for both 
Euclidean and cosine distance cases respectively, and no 
extra variable needs to be memorized, apart from the current 
potential of the existing prototypes (focal points):  
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B. Online normalization 
For off-line problems the normalization or standardization 

is a straightforward task [10]: 
a) normalization: 
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b) standardization: 
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Where X denote the dataset to be processed, and x denotes 
each data sample in X.  

For online, real-time implementations it requires special 
attention. In online mode, when the number of elements in X 
grows, the results of min(X) and max(X) changes, but this 
takes place only when the new element x exceed one of the 
existing lower or upper boundary of X. At the same time, in 
online mode mean(X) and std(X) change all the time when 
new element comes in, unless the new element equals exactly 
to existing mean(X). Therefore, the online standardization 
requires updating all the parameters for every new data 
sample, while the normalization requires update only when 
new data exceeds one of the boundaries (note that a single 
data sample can not exceed both boundaries at the same time). 
This is an argument in favor of the normalization for on-line 
cases. 

The proposed online normalization starts with the third 
data point, xk. We first check if x is within current boundaries: 

c
k

c xxx maxmin ≤≤  (13) 

where ( )i

k

i

c xx
1

1max max
−

=
= denotes the current upper 

boundary of xk;  

( )i

k

i

c xx
1

1min min
−

=
= denotes the lower boundary of xk. 

If (13) is satisfied then xk is normalized by the current 
cxmin and cxmax  by applying: 
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If (15) is not satisfied then we first update the boundaries, 
cxmin and cxmax  used for normalization and afterwards we 

normalize xk.  
When an update of the boundaries is required, the new 

lower and upper boundaries are determined by: 
),min( minmin k
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Let us denote the current and the new range respectively by 
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that when c
k xx max>  we have nc xx minmin = thus δ=0. 

Each time the normalization boundaries change we need to 
update all the parameters used by the algorithm as follows:  
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Note that the superscript ‘c’ denotes the ‘current’ value 
(before the update). The derivation of the transformations 
(16) is given in the Appendix.  

Once all these parameters are updated the old boundaries 
are replaced with the new ones: 

ncnc xxxx maxmaxminmin ; ==  (17) 

And only after that, xk is updated by (14). 

C. Learning eClass (generating fuzzy rules)  
The proposed evolving fuzzy rule-based classifier starts 

‘from scratch’ (with an empty rule-base). Each new frame 
can be used to upgrade the rule base. From the second frame 
onwards its potential, Pk(xk) is updated recursively by (8)-(9) 
or by (10). Then the potential of each of the previously 
existing prototypes, )( *xPk  is also updated using (11). 
Comparing the potential of the new data sample with the 
potential of each of the existing prototypes the following 
outcomes are possible: 

a) iPi ∀<∆ ;0 ;               (18a) 
b) otherwise                 (18b) 

where )()( *i
kkki xPxPP −=∆ is called ‘potential difference’. 

If condition (18a) occurs that means that we have a 
distinctive frame that can be used as a prototype for a 
landmark. Thus we evolve the rule base by adding a new 
fuzzy rule formed around the features of this frame. 
Otherwise, (18b), we do not change the overall structure of 
the classifier and proceed further.  

When adding a new fuzzy rule around the prototype, we 
check whether any of the already existing prototypes for the 
landmark Cl are described well by the newly added fuzzy 
rule. By well we mean [3] that the value of the membership 
function satisfies: 

],1[,3/1];,1[, njjNii j
i =∀>=∃ τ  (19) 

If (19) holds then the newly formed fuzzy rule is assigned 

to the sub rule-base for the latest landmark; otherwise, the 
new fuzzy rule describes a new landmark and, thus, forms a 
new sub rule-base (Figure 2). The procedure for automatic 
landmark detection and recognition using eClass can be 
represented by the following pseudo-code: 

 
BEGIN eClass  
Initialize (grab first frame, F1 and 
extract its features); 
DO for any next frame, Fk, k=2,3,…  

  Extract features xk; 
  /*---Classify xk---*/ 

Classify xk to one of existing 
Landmarks (LMl)using the rule-base 
Check (13)and re-normalize if needed 
/*---Evolve Rule-base---*/ 
Calculate Pk(xk)using (8)(9)or(10); 

  Update P(x*) using (11) 
  Calculate the potential difference 

IF (18a)AND(19) THEN add a new fuzzy 
rule around xk used as a prototype; 
IF (18a)BUT NOT(19)THEN form a new 
new landmark (LMN+1) and a new 
sub-rule using xk as a prototype; 

WHILE video stream exists 
END DO 

  
Fig.2  Network diagram of eClass for landmark recognition 
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IV. EXPERIMENT 

A. Experiment outline 
The experiment is carried out with a Pioneer3 DX mobile 

robot [11] equipped with an onboard PC and pan-tilt-zoom 
camera. There is no external links such as GPS and the 
wireless data connection is disabled. Thus, the task is 
performed fully unsupervised by the AUV (mobile robot).  

eClass runs on the onboard computer in real-time with no 
pre-defined rules for the landmark recognition task when 
exploring an unknown outdoor environment. The camera 
shots a video and grabs and sends images back to the onboard 
computer at the rate of 11.6 frames per second. The images 
are pre-processed as described in session II. As a result an 
input 36-element vector containing the colour information for 
12 sub-areas in the frame is prepared. Each time a frame is 
received and pre-processed, the input vector is then fed to 
eClass for joint landmark detection and recognition.  

When the mobile robot explores the unknown 
environment, meaningful novel images are detected and they 
are used as prototypes that form the rule base which 
represents the landmarks. If  the input is similar to an existing 
prototype (and a fuzzy rule is fired, which means the received 
frame is similar to the previously seen scene, eClass classifies 
this frame to the nearest class/landmark applying so called by 
“winner-take-all” strategy.  

The inputs are discarded after they are used by eClass to 
evolve the rule-base in each step. 

B. Experimental settings 
The experiment was conducted outdoor, on the campus of 

Lancaster University, UK. The AUV travels along a 
pre-defined route for two rounds. The route consists of 4 
significant locations (denoted by A, B, C, D in Figure 4). 
They are identified subjectively and are only used to verify 

and analyze the result produced by the proposed scheme.  
The whole experiment lasts about 6 minutes. Real-time 

video was produced by the camera mounted on the AUV with 
the frame rate at 25fps. During the experiment, 11.6 frames 
per second were grabbed and sent to the on board computer 
for landmark detection and recognition.  The objective is to 
first correctly classify each frame to the nearest landmark 
(class) and relate to the location using compass or odometer 
data. The second objective is to detect the significant 
landmarks for the locations, generate one class for each 
location it detected. 

C. Results and analysis 
In the experiment 107 prototype frames were selected and 

fuzzy rules of the type (1) were identified ‘on the fly’ by 
eClass running autonomously during the first lap along the 
1-mile route we chose for the experiment in the campus: 
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 Note that the values of the mean RGB intensity per area/bin 
are normalized. The 107 fuzzy rules were grouped in 10 
different classes representing 10 different landmarks It is 
interesting to note that the identified landmarks extracted 
autonomously represent very well the four locations defined 
subjectively (location A, B, C, D). The noise frames caused by 
novel objects in front of the camera are successfully identified 
by eClass and classified into a separate class (see the bottom 
row in Table I). 

During the second lap, no more landmarks are identified, 
as the environment does not change comparing to the first 
round. In real-time, the frames received from the camera are 

Fig. 4 The route of the mobile robot during the experiment.

TABLE I 
RESULTS FOR LANDMARK RECOGNITION FOR A CAMPUS ROUTE 

Location Landmarks 
per location 

Prototypes 
per 

Location 

Lap when 
Generated 

Frame when a new 
Landmark is 

Identified  
A 4 62 1 1, 92, 155, 174 
B 2 17 1 267, 375 
C 1 11 1 1539 
D 3 16 1 1594,1534,1736 

Noise  1 1 2 2828 

 
Fig.3 Flow chart of the of landmarks recongition
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classified into the classes representing the most matching 
(similar) landmarks. One new class was generated; due to 
several frames that are not related to a previous landmark (we 
treat them as a noise). Comparing to the classification which 
would be done by a human in a batch mode, the result is 
around 82% (3287 frames) out of 4050 frames correct 
classification.  

It is interesting to notice that the three landmarks generated 
at location C, are well describing the entrance, interior and the 
exit of the underpass on the campus (Figure 5).  

This illustrates the ability of eClass to detect meaningful 
prototypes and the important, significant changes in the 
frames and thus to extract meaningful representation of the 
environment that if linked to the location information can be 
used for mapping and navigation, can be transmitted to 
another AUV (if performing a cooperative task) or to a 
human. 

When a landmark was visited for second time the classifier 
was able to recognize this fact and information was displayed 
on the screen of the on-board computer of the mobile robot 
(AUV) which can optionally be send wirelessly to another 
robot or to a monitoring desktop workstation. 

The proposed approach demonstrates its advantages: high 
recognition rate, high degree of autonomy, high flexibility 
(eClass structure is not fixed and can accommodate more 
classes if the environment changes) and high computational 
efficiency. Additional important advantage of the proposed 
approach is that the information extracted from the video 
stream in real-time and summarized in the rule base is fully 
linguistically transparent and interpretable. 

V. CONCLUSION 
A novel approach to self-localization in completely 

unknown environment with a fully unsupervised and 
computationally efficient algorithm is proposed in this paper. 
By using eClass, a transparent, compact and accurate fuzzy 
rule-based classifier can be evolved in real-time based on 
experimental data only. It is interesting to note that the rate of 
generating new classes and fuzzy rules representing a distinct 
landmark does not lead to an excessively large rule base. The 
reason for this is that the condition (12a) is practically very 
strong and gets stronger the more the data because it concerns 
all previously seen data. Additionally, the possible proximity 
of a candidate prototype to the already existing landmarks 
(condition (13)) leads to just a replacement of the existing 
landmark, and thus to the rule-base size. 

The self-organizing classifier (eClass) is designed by 
automatic labeling and grouping the landmarks that are 
detected in real-time based on the image data from a camera 
mounted on the mobile robot (AUV). The proposed approach 
makes possible fully autonomous and unsupervised joint 
landmark detection and recognition without the use of 
absolute coordinates, any communication link or any 
pre-training. The proposed algorithm is recursive, 
non-iterative, one pass and thus computationally inexpensive 
and suitable for real-time applications.  

Real-life tests has been carried out in outdoor environment 
at the Lancaster University campus using Pioneer3 DX 
mobile robot (AUV) equipped with a pan-tilt zoom camera 
and an on-board PC. The results illustrate the viability and 
flexibility of the proposed approach. Further investigations 
will be directed towards development of a cooperative 

scheme when a team of mobile robots (AUV) cooperate in the 
same environment. 
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VI. APPENDIX 
All the data, x processed in real-time are being normalized 

by current cxmin and cr  : 
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From (A1) we get: 
ccc xrxx min+=  (A2) 

When the boundary of the data space is updated, x is than 
normalized by the new (updated) boundary, nxmin and the new 

range, and nr : 
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Expressing x in (A3) by (A2), we get: 
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where ρ and δ are defined in section III B.  
Therefore, the existing prototypes and 1−kx are updated by 

(16a) and (16b).  

By definition, (9b) we have:  
c
k

cc
k xxxf 1111 −− +++= L  (A5a) 
Normalizing it using the new range we get: 
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By reorganizing we arrive at (16c). 
From (A4), we can have: 
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One can express (9a) as: 
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Normalizing by the new range and taking (A6) into account 
we get: 
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Combining (A5a), (A7) and (A8), (16d) is obvious. 
Let us denote: 
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From definition of potential for prototype, we have: 
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By rearranging (A10), we have: 
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Updating the normalization of 
cD  using (A2) we get: 
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Therefore, the update of the potential of the previously 
existing prototypes can be expressed as: 
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Substitute (A11) into (A13), we finally reach (16e).  
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