
Abstract-A mimicry attack is a type of attack where the basic

steps of a minimalist ‘core’ attack are used to design multiple

attacks achieving the same objective from the same application.

Research in mimicry attacks is valuable in determining and

eliminating weaknesses of detectors. In this work, we provide a

genetic programming based automated process for designing all

components of a mimicry attack relative to the Stide detector

under a vulnerable Traceroute application. Results indicate that

the automatic process is able to generate mimicry attacks that

reduce the alarm rate from ~65% of the original attack, to

~2.7%, effectively making the attack indistinguishable from

normal behaviors.

I. INTRODUCTION

Intrusion detection system (IDS) developers and Black hat

attackers continually play a game of point-counterpoint when

it comes to IDS technology. Black hat attackers continually

develop methods to evade or bypass IDSs while IDS

developers and system administrators continually counteract

these methods with patches and new releases. Penetration

testing for IDSs is a relatively new area compared with

similar tests on cryptographic protocols. The main idea

behind penetration testing is to locate vulnerabilities and

holes in a system before attackers exploit them. Thus,

administrators can test their IDSs to establish the robustness

of such systems in real world situations by using the same

tools and methodologies as used by attackers. In a way,

administrators start acting as white hat attackers to evade

their own systems in order to identify the vulnerabilities.

Due to the inherent complexities involved in capturing,

analyzing and understanding network/host traffic there are

several common techniques that can be used to exploit IDSs:

detector string matching weaknesses, session assembly

weaknesses and denial of service techniques. In this work, we

are interested in automating evasion by making use of string

matching weaknesses. The approach employed is based on

the automatic generation of mimicry attacks to perform

evasion. A mimicry attack is defined in the literature as an

attack crafted by producing a legitimate sequence of system

calls while performing malicious actions [1]. In this work, we

investigate the possibility of evolving mimicry attacks using

genetic programming in order to evade an anomaly host

based detection system. We automate a white hat attacker

against an anomaly host based detection system, Stide [2] for

penetration testing. Several researchers have previously

identified a number of evasion attacks on network based IDSs

with misuse detection [3-6], and host based IDSs with

anomaly detection [1, 7-9].

However, this work addresses two important issues that

have not been considered in the related research: (i) Results

used for characterizing the success of mimicry attacks in

compromising detectors to date have only reported

performance after the attacker gains control of the application

[1, 7-9]. They therefore overlook the actions of the attacker

before control is obtained, where this should also be reflected

in the anomaly rate returned by the detector. We demonstrate

that this provides anomaly rates unreflective of the true

detection rate. (ii) Results to date generally omit the

parameters of system calls for the development of mimicry

attacks [1, 7-9]. We believe this is unrealistic since opening a

password file is generally more significant than opening a

JPG image. The typical argument for ignoring such

information is that IDSs generally do not use arguments

during detection. However, this rather curtails the

development of detectors [10] that would be able to make

performance gains by making use of this information.

Our approach for developing mimicry attacks not only

automates the design of appropriate system call sequences

but also provides the corresponding parameters. That is to

say, system call parameters convey crucial information about

the nature of a session and should therefore be incorporated

into the design process. In addition, in our approach, the

anomaly rates used to characterize malicious code reflect the

entire session of the attacker gaining the control of the system

and the attack itself.

The remainder of the paper is organized as follows.

Section 2 establishes the position of this work, relative to

earlier research on mimicry attack design. The methodology

for automating malicious code design within a buffer

overflow context is discussed in Section 3. Experimental

results are presented in Section 4, and a discussion presented

in Section 5. Conclusions are drawn in Section 6.

II. RELATED WORK

Previous work in evading anomaly host based detectors

can be divided into two categories: research on detectors and

research on mimicry attacks.

In terms of research on detectors, Forrest et al. [11]

employ a methodology based on immune systems, which

aims to distinguish ‘self’ from ‘non-self’. To do so, the

authors employed a sliding window over the sequence of

system calls that the application makes during normal use.

Automatically Evading IDS Using GP Authored

Attacks

H. Güne Kayacık, A. Nur Zincir-Heywood, Malcolm I. Heywood

Dalhousie University, Faculty of Computer Science,

6050 University Avenue, Halifax, Nova Scotia. B3H 1W5

153

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

1-4244-0700-1/07/$20.00 ©2007 IEEE

The patterns formed by the sliding window are stored in a

table, which establish the normal behavior model. During the

detection phase, if the pattern from the sliding window is not

in the normal behavior it is considered as a mismatch. This

approach was implemented as the Stide detector [2]. Various

improvements to the original scheme have been proposed in

[12-15]. To the best of our knowledge, none of these

improvements where made open source, unlike Stide [2].

Moreover, none of these methods included system arguments

in the detector. However, Mutz et al. [10] recently proposed a

host-based anomaly detection system where multiple

detection models are applied to system call arguments and an

overall aggregate score of these models is introduced to

determine if an event is an attack or not.

On the other hand, in terms of mimicry attack research,

Wagner et al. [7], investigated an approach to alter the

system call sequence of an attack in order to render it

undetectable to a specific (host based) IDS. Given a

minimum sequence of malicious system calls able to support

execution of a successful attack – the core attack – their goal

was to find other sequences of system calls that avoid

detection by the target IDS yet still achieves the objective of

the original attack. This was achieved by manually adding

system calls that have no effect on the success of the attack.

Similarly, Tan et al. [8], aimed to undermine the anomaly

based IDS Stide [2] by identifying weaknesses and modifying

the malicious system call sequences to exploit these

limitations. To do so, they first modified the attack by hand

to change the ownership of a critical file. Secondly, they

inserted system calls from data characterizing normal

behavior into the malicious system call sequence. Vigna et al.

[3] described a methodology to generate variations of an

attack to test the quality of detection signatures. Stochastic

modification of attack code was employed to generate

variants of attacks to render the attack undetectable.

Techniques such as packet splitting, evasion and polymorphic

shellcode were discussed. In [1], the authors developed a

static analysis tool for Intel x86 binaries in order to

automatically identify instructions that can be used to redirect

control flow. They use symbolic execution to achieve this. To

date [1], [5] and [6] are the only works in mimicry attack

research that automate the development of mimicry attacks. It

should be noted here that in [5] the automation is performed

against a misuse network based IDS, namely SNORT, and in

[1] automation is done using a static tool at the Intel x86

assembly level against anomaly host based detection systems.

Finally, a virtual vulnerability is considered in [6] and

exploits evolved under the Genetic Programming paradigm

using the Intel x86 assembly language. Validation of the

exploits is again performed using the SNORT signature based

detector.

In this work, we are using a similar approach to [5], [6],

i.e. employing evolutionary computation techniques to evolve

mimicry attacks, but this time against an anomaly host based

detector as opposed to a misuse network based detector.

Moreover, the system developed here works at the system

call level as opposed to the approach taken in [1], [6], i.e.

Intel x86 assembly level. In addition, all of the cases

discussed above assume a methodology in which anomaly

rates used to justify mimicry attacks do not include

supporting code necessary to correctly set up the target

application exploit. As such, detectors that recognized this

behavior (i.e. before the attack was even launched) would be

penalized, whereas detecting the latter behavior would enable

preemption of an attack.

III. METHODOLOGY

Our objective is to develop an automated process for

building “white-hat” attackers within a mimicry attack

context. By ‘mimicry’ we assume the availability of the

‘core’ attack, where this establishes a series of behavioral

objectives associated with the exploit. The goal of the

automated white hat attacker will therefore be to establish as

many specific attacks corresponding to the exploit associated

with the ‘core’ attack. Candidate mimicry attacks will take

the form of system call sequences that can avoid detection or

at least minimize the anomaly rate at the corresponding

detector, in this case Stide. By “white hat,” we imply that the

underlying objective is to use the attacks to improve the

design of corresponding detectors via penetration testing.

Previous research has established the suitability of the

evolutionary computation (EC) machine learning paradigm as

an appropriate process for automating specific processes

associated with the design of buffer overflow attacks [5], [6].

In this work, we extend the approach to a general framework

for mimicry attack generation, based on the evolution of

system call sequences rather than generic parameters of an

attack. The general motivations for using GP within this

context are as follows,

• Goal Based Objectives: All machine-learning algorithms

require a method for expressing the suitability of the

current solution. This typically takes the form of a

distance metric (e.g. sum square error) evaluated over a

set of training exemplars. Such an approach implies that

it is possible to define the behavior relative to a set of

exemplars describing input and desired output behaviors.

This mode of operation has lead to the widespread use of

machine learning methods within the context of IDS

detectors. However, in the case of mimicry attack

generation the goal is to discover programs (of system

calls) that mimic the behavior of a predefined ‘core’

(buffer overflow) attack. Learning is therefore directed

by information supplied following an interaction with an

environment. The environment in this case takes two

forms, the anomaly rate returned by Stide for the

candidate attack (suggested by GP in this case) and the

degree to which generic goals associated with achieving

the ‘core’ attack are reached. Such a mode of operation

precludes the vast majority of machine learning

paradigms as they make explicit assumptions regarding

the relationship between representation (the components

from which a solution is built) and how the objective is

specified [16]. Typical examples include the smoothness

constraint associated with neural networks or kernel

154

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

methods. Conversely, GP has no limitation on the

formulation of objectives.

• Representation: Given that the objective is to design

mimicry attacks, it follows that the representation

utilized by the machine learning methodology must take

the form of the system call sequences that explicitly

correspond to the attack. This requirement precludes the

utility of any other machine learning technique. For

example, kernel and neural network models are based on

an abstract connectionist representation, broadly

applicable to data driven classification, regression, and

clustering problem domains. Decision tree methods

provide solutions that take the form of a set of

partitioning rules. In essence all these methods utilize a

representation motivated by a bias to a data driven model

of learning.

• Intron Code: Solutions from GP take the form of a

program in a predefined language. However, not all

instructions comprising a solution necessarily contribute

to the underlying operation of the individual, where this

artifact is synonymous with ‘introns’ of biological

genomes. Such introns result from the stochastic action

of the search operators (crossover and mutation) and

might account for as much as 80% of the instructions in

an individual. Typically, instructions corresponding to

intron behavior are removed post learning, as they make

no contribution to the (functional) operation of the

individual. In the context of this work, however, intron

code aids the obfuscation of the real intent of the code.

Thus, although not contributing to the design of a valid

exploit, code corresponding to intron behavior will aid

the minimization of detector anomaly rates.

In the following, we introduce the characteristics of the

detector and application before detailing the GP framework

utilized for automating mimicry attack generation under a

core buffer overflow attack.

A. Anomaly Detector

Anomaly detection systems attempt to build models of

normal user behavior and use this as the basis for detecting

suspicious activities. This way, known and unknown (i.e.

new) attacks can be detected as long as the attack behavior

deviates sufficiently from the normal behavior. Needless to

say, if the attack is sufficiently similar to the normal

behavior, it may not be detected. However, user behavior

itself is not constant, thus even the normal activities of a user

may start raising alarms.

In this work, Stide [2] is used as the target anomaly

detector, since it is the only anomaly host based detector that

is currently available as open source. It is

installed/configured using the same parameters as previous

mimicry attack research [1, 7-9]. Moreover, a wide range of

related research performed in vulnerability or penetration

testing employ Stide as discussed in Section 2.

B. Vulnerable Application

In the following, Traceroute is employed as the vulnerable

application. Traceroute is used to determine the routing path

between a source and destination by sending a set of control

packets to the destination with increasing time-to-live values.

A typical use of traceroute involves providing the destination

IP, whereas the application returns information on the route

taken between source and destination.

Redhat 6.2 is shipped with Traceroute version 1.4a5,

where this is susceptible to a local buffer overflow exploit

that provides a local user with super-user access [17]. The

attack exploits vulnerability in malloc chunk, and then uses a

debugger to determine the correct return address to take

control of the program.

When anomaly detectors such as Stide [2] are being

developed in real-world conditions an acceptable anomaly

rate should be established to minimize the false positive rate.

Therefore the objective of the attacker is to reduce the

anomaly rate below an acceptable limit. Although such

acceptable limits vary between applications, it is reasonable

to assume that it is non-zero (i.e. in practice, normal behavior

model of the detector cannot cover all possible user

scenarios, as training is only conducted over a subset of

behaviors).

In previous work [1, 7-9], the only normal condition used

in order to analyze the traceroute behavior was one normal

use case scenario as follows:

Traceroute nis.nsf.net

In other words, in all of the previous work Stide was trained

on only the above use case scenario. The argument was that

if a mimicry attack could be developed for such a constrained

case, then it was only natural to think that it could be

developed for more general cases, i.e. Stide configured under

a more representative set of more training use cases. In this

work, we consider a different approach and developed 6 use

cases (first 5 are all normal whereas the sixth denotes the

original attack), Table I. In doing so, our objective is not to

create an exhaustive list of normal use cases, but rather just to

investigate how anomaly rates changes in a bigger training

set as opposed to the one used in previous work.

Table II summarizes the significance of training Stide on

each of the five ‘use cases’ denoting normal behavior, with

testing performed over the remaining four normal use cases

and one attack. The last column ‘All 5’ represents the case in

which Stide training is conducted over all five use cases

associated with normal behavior. The last row ‘6’ represents

the case in which original attack is tested on Stide trained

with each of the five use cases indicated in the columns. All

of the test results are given in terms of percentages where 0%

indicates normal and 100% indicates attack behavior. Thus,

the aim of the attacker is to raise as low an anomaly rate as

possible, i.e. closer to 0%, to minimize the alarms.

155

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

TABLE I

USE CASES

Use Case Command

1. Target Google Traceroute google.com

2. Target FCS Traceroute cs.dal.ca

3. Target a non existent

host

Traceroute

[randomcharacters].com

4. Target localhost Traceroute localhost

5. Help screen Traceroute –h

6. Original Attack ./traceroot 2 0x0804c7c4

TABLE II

ANOMALY RATE REPORTED BY STIDE UNDER DIFFERENT

COMBINATIONS OF TEST AND TRAINING USE CASES

Training Sets

1 2 3 4 5 All 5

1 0.0% 56.0% 78.1% 73.9% 94.3% 0.0%

2 2.8% 0.0% 40.4% 31.3% 83.5% 0.0%

3 7.4% 7.4% 0.0% 35.1% 71.6% 0.0%

4 9.5% 7.3% 48.9% 0.0% 84.7% 0.0%

5 15.8% 15.8% 15.8% 15.8% 0.0% 0.0%T
es

t
S

e
ts

6 62.8% 62.8% 64.8% 66.1% 76.6% 62.8%

Naturally, anomaly rate is sensitive to a wide range of

behavioral properties. For example in the case of host name

(use case 2), Stide produces a 56% anomaly rate when it is

trained on the ‘google’ trace (use case 1). On instances of

Stide trained with a single trace file anomaly rates on normal

use cases varies between 2.8% to 94.3%. Needless to say,

training Stide over all the normal uses cases (normal

behavior), resulted in a zero anomaly rate on normal use

cases, see “All 5” column in Table II. The attack produces a

62.8% anomaly rate under this Stide model, where this also

happens to be the joint minimum anomaly rate for the

original attack. This establishes the minimum performance

target for the mimicry Traceroute attack under the Stide

detector. That is to say, any mimicry attack developed with

an anomaly rate less than 62.8% will be considered as an

improvement over the original attack. However, in order to

be effective in practice we require anomaly rates of attacks to

approach that of those returned by Stide under normal use

cases. This precludes the use of thresholds to distinguish

anomalous behaviours from attacks. Moreover, unlike

previous work [1, 7-9], we also recognize that this anomaly

rate should include actions of both the attack script and the

execution of the shellcode after the script gains control of the

traceroute application.

Table III details the occurrence of system calls in the
normal data. It is apparent that 8 system calls can cover over
82% of the normal data set, thus the proposed scheme for
automating mimicry attack generation will evolve system call
sequences using the same system calls. We also observe that
the application frequently executed memory allocation and
I/O system calls where these are also appropriate for
obfuscation of mimicry attacks.

TABLE III

SYSTEM CALL FREQUENCY OF THE TRACEROUTE APPLICATION

System Call Occurrence Percentage

gettimeofday 190 25.85%

write 123 16.73%

select 90 12.24%

sendto 90 12.24%

old_mmap 33 4.49%

close 30 4.08%

open 27 3.67%

read 24 3.27%

fstat 23 3.13%

munmap 15 2.04%

recvfrom 13 1.77%

socket 11 1.50%

fcntl 10 1.36%

mprotect 9 1.22%

connect 8 1.09%

C. Linear Genetic Programming

As indicated above, the process for designing mimicry

attacks is automated using Genetic Programming (GP). GP

differs from most machine learning methodologies in that a

‘population’ of candidate solutions are maintained

concurrently throughout the search process. Each candidate

solution, or individual, takes the form of a program.

Programs are represented (in this case) as a sequence of

system calls, where the set of permitted system calls is

predefined by the user. The search process progresses

through the iterative application of a selection operator,

evaluation of performance associated with a subset of

individuals, and application of search operators. Specifically,

the selection operator in this work takes the form of a steady

state tournament. This means that an even number of

individuals (4 in this work) is selected from the population of

individuals with uniform probability. Performance (fitness)

of this subset of individuals is evaluated, ranking the

individuals participating in the tournament relative to each

other. Search operators are then applied to the better

performing half of the tournament, resulting in children. The

children overwrite the individuals of the worst half of the

tournament, taking their place in the population. Such a

scheme is inherently elitist with the best individuals always

surviving.

The specific representation utilized in this work defines

instructions as a 2-byte opcode with two operands (each 1-

byte) i.e. all instructions have the same number of bytes.

Table IV defines the instruction set architecture as per the

earlier analysis of application behavior; thus the instruction

set consists of the seven most frequently occurring system

calls characterizing normal behavior. That is to say, of the

eight most frequent cases, ‘old_mmap’ requires knowledge of

valid memory address ranges, thus artificially increasing the

complexity of designing valid exploits. Table V defines the

supporting parameter types.

156

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

Individuals are defined using a fixed length format. Search

operators take three forms: two point crossover, instruction

mutation, and instruction swap, Table VI. Crossover is

therefore constrained to exchanging an equal number of

instructions (a page) between two individuals. The number of

instructions per page is allowed to vary from 1 instruction to

“max instructions per page” as the fitness function reaches a

new plateau, as in the page-based GP framework [18].

Mutation selects a single instruction with uniform probability

and replaces it with a different instruction from the

instruction set, Table IV. The swap operator selects two

instructions from the same individual with equal probability

and interchanges their respective positions.

The details of the linear Genetic Programming

methodology itself is not particularly important for this

paper, however, previous work utilizing Grammatical

Evolution (GE) indicated that the linear representation

provides a more direct method for successfully evolving

buffer overflow attacks [5].

TABLE IV
LINEAR GP INSTRUCTION SET

System Call Parameter 1 Parameter 2

gettimeofday N/A N/A

select N/A N/A

sendto N/A N/A

open FILE N/A

close FILE N/A

read FILE ADDR

write FILE TEXT

TABLE V
INSTRUCTION PARAMETERIZATION

Parameter

Type

Options

FILE “/etc/passwd”, “/tmp/dummy”

ADDR Address of the 4 byte space allocated

within the shellcode.

TEXT “toor::0:0:root:/root:/bin/bash”,
1

“Hello, World!”

TABLE VI
GENERIC LINEAR GP PARAMETERS

Parameter Settings

Crossover 0.9

Mutation 0.5

Swap 0.5

Selection Tournament of 4 individuals

Stop Criteria At the end of 50,000 tournaments.

Population 500 individuals with different sizes.

D. Fitness Function

The original attack contains a standard shellcode, which

uses the execve
2

system call to spawn a UNIX shell upon the

successful execution. Since traceroute never uses an execve

1 This text creates a user “toor” with super-user privileges, who can connect

remotely without supplying a password.
2 Execve is a system call, which executes the program given as the first

argument.

system call (as shown in Table III), the original attack can be

easily detected, Table II. To this end, we employ a different

attack strategy by eliminating the need to spawn a UNIX

shell. Most programs typically perform I/O operations, in

particular open, write to / read from and close files. Table III

demonstrates that traceroute frequently uses open / write /

close system calls. We therefore recognize that performing

the following three steps mimics the behavior of the original

attack:

1. Open the UNIX password file (/etc/passwd).

2. Write a line, which provides the attacker a super-user

account that can login without a password.

3. Close the file.

Therefore, the objective of our GP based automatic attack

development system is to discover a sequence of system calls

that perform the above three steps in the correct order (i.e. the

attack cannot write to a file that it has not opened) while

minimizing the anomaly rate of Stide. Hence the fitness

function has two objectives: evolving successful as well as

undetectable attacks. In particular, the shellcode must contain

the following sequence of ‘core’ components in order to

conduct the attack:

1. Contain open (“/etc/passwd”).

2. Contain write (“toor::0:0:root:/root:/bin/bash”).

3. Contain close (“/etc/passwd”).

4. Execute close after write and open before write

5. When the system call sequence is fed to Stide,

anomaly rate should be as low as possible.

Two fitness functions are considered, incremental and

concurrent. Both award a total of 5 ‘points’ for establishing

the above components of the ‘core’ attack and minimizing the

anomaly rate. A perfect individual would therefore have a

fitness of ‘10’.

• Incremental Fitness Function (Algorithm 1): Assumes a

step-by-step approach to designing an attack, thus fitness

is first awarded for steps associated with building a

successful attacks, Steps (a) to (e). Only when all the

components associated with designing the ‘core’ attack

are present is the individual rewarded for minimizing the

anomaly rate, Step (f).

• Concurrent Fitness Function (Algorithm 2): In this case

both objectives are evaluated independently. That is to

say, individuals are rewarded for minimizing the

anomaly rate at the same time as being rewarded for

building a successful attack.

Algorithm 1. Incremental fitness function

Fitness = 0

(a) IF the sequence contains open (“/etc/passwd”) THEN

Fitness += 1

(b) IF the sequence contains write

(“toor::0:0:root:/root:/bin/bash”) THEN Fitness += 1

(c) IF the sequence contains close (“/etc/passwd”) THEN

Fitness += 1

(d) IF open precedes write THEN Fitness += 1

(e) IF write precedes close THEN Fitness += 1

(f) If (Fitness == 5) Fitness += (100 AnomRate) 20

157

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

Algorithm 2. Concurrent fitness function

Fitness = 0

(a) IF the sequence contains open (“/etc/passwd”) THEN

Fitness += 1

(b) IF the sequence contains write

(“toor::0:0:root:/root:/bin/bash”) THEN Fitness += 1

(c) IF the sequence contains close (“/etc/passwd”) THEN

Fitness += 1

(d) IF open precedes write THEN Fitness += 1

(e) IF write precedes close THEN Fitness += 1

(f) Fitness += (100 AnomRate) 20

IV. RESULTS

Previous research employing the same vulnerable

application, i.e. Traceroute v1.4a5, configures Stide with only

one normal use case (Section 3) [1, 7-9]. Thus, the

performance of the detector when trained under different use

cases was not reported. Furthermore, results in [1, 7-9] were

not expressed in terms of anomaly rates. The approach taken

in those work was to analyze the attack by determining

whether an attack provides a match in the normal

(configuration) database or not. On the other hand, in this

work, we run each attack through the detector and obtain the

corresponding anomaly rate. We believe this way of checking

the validity of the attack is more representative of the

behavior of an attacker given that it is more likely that the

attacker will not be able to know all the details of the detector

under attack. Thus, results given in Tables VII and VIII show

the anomaly rates of the best attacks generated by different

GP parameterizations.

The principle free parameters of GP take the form of the

program length limit and population initialization. Results are

therefore reported using best individual returned over 20

initializations per program length limit, where the process is

repeated over each Fitness Function, Tables VII and VIII.

Anomaly rate is obtained by testing the attack designed by

GP against Stide, where this is equivalent to previous practice

in mimicry attack evaluation [1, 7-9].

We also report adjusted anomaly rate where this includes

activities targeted at obtaining the control of the program as

well. What we mean here is that, since previous work only

analyzed the attacked developed for a match or no match,

they implicitly assume that the attacker has already gained

control on the victim system. As such although the attack,

they developed, does not raise an alarm (no match means

zero anomaly rate), no consideration is given as to whether

the combination of the attacked developed and the process of

attacker gaining control will increase the anomaly rate. We

call measuring the anomaly rate over the process of gaining

control and the attack itself, as the “Adjusted Anomaly Rate”;

whereas the anomaly rate associated with the exploit alone is

denoted by “Anomaly Rate”. We believe that the “Adjusted

anomaly Rate” reflects the condition in practice more. As

seen from the results, Tables VII and VIII, indeed the

adjusted anomaly rate is greater than measuring/analyzing the

anomaly rate just over the attack developed. This implies

that while developing mimicry attacks automatically, the

evasion system should consider the conditions under which

an attacker gains control of the victim system.

Moreover, the results indicate that as the attack gets longer

GP becomes increasingly effective at hiding the attack,

resulting in an anomaly rate down to 1.69% (adjusted

anomaly rate of 2.97%). The second most significant GP

parameter appears to be the ‘page size’ where as long as the

page size is six or more instructions; anomaly rates are lower

than five per cent.

TABLE VII

CHARACTERISTICS OF BEST INDIVIDUALS UNDER THE

INCREMENTAL FITNESS FUNCTION

Page Count

Page Size Fitness

Anomaly

Rate

Adjusted Anomaly

Rate

40 6 9.92 1.69% 2.51%

20 12 9.92 1.69% 2.51%

20 6 9.83 3.45% 4.40%

10 12 9.83 3.45% 4.40%

40 3 9.74 5.17% 5.66%

20 3 9.73 5.36% 6.06%

10 6 9.64 7.14% 7.07%

5 12 9.64 7.14% 7.07%

80 3 9.32 13.56% 12.54%

TABLE VIII

CHARACTERISTICS OF BEST INDIVIDUALS UNDER THE

CONCURRENT FITNESS FUNCTION

Page Count

Page Size Fitness

Anomaly

Rate

Adjusted

Anomaly Rate

40 6 9.92 1.69% 2.51%

20 12 9.92 1.69% 2.51%

20 6 9.83 3.45% 4.40%

10 12 9.83 3.45% 4.40%

40 3 9.78 4.31% 5.03%

20 3 9.73 5.36% 6.06%

10 6 9.73 5.36% 6.06%

5 12 9.64 7.14% 7.07%

80 3 9.30 13.98% 12.90%

Figure 1 details a successful 240-system call attack with

the minimum anomaly rate. System calls that are related to

the attack are printed in bold. The block of 6 underlined

system calls is repeated 38 times in the attack, hence is

truncated in the figure for eligibility. The attack indicates that

GP found a “blind spot” in Stide’s normal behavior database.

Specifically, GP discovered a sequence in the Stide database

that both minimized the anomaly rate and represented a

“NOP” sequence from the perspective of the attack. The

sequence is naturally repeated through the action of the GP

crossover operator under a (maximum) page size of six or

more.

Given the significance of such repeating sequences, we

also note that from the attacker’s perspective, it might make

158

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

more sense to deploy such a strategy using a loop. Thus,

rather than explicitly encoding 240 (480) system calls

individually, an instruction loop would be utilized, reducing

the code length by over 95%, and making the attack both

difficult to detect and very concise.

open(1) gettimeofday() select()

write(1,r) write(2,r) gettimeofday() sendto() gettimeofday()

select()

write(1,r) write(2,r) gettimeofday() sendto() gettimeofday()

select()

write(1,r) close(1) open(2) exit()

Fig. 1. An attack of 240 system calls with the minimum anomaly

rate (underlined block of 6 system calls is repeated 38 times in the

attack).

V. CONCLUSION

In this work, we employed a mimicry attack approach to

perform penetration testing on the well-known Stide host

based anomaly detector. The mimicry attacks are evolved not

manually but automatically, in this case using a linear genetic

programming based approach. Our work differs in two ways

from the pervious research in the area: (i) the anomaly rate is

measured not only after the attacker gains control but over

the entire attack, (ii) not only system call sequences but also

all the associated parameters are evolved automatically.

A central theme in the approach is the utilization of GP to

actually automate the process of malicious code design. To

do so, a framework is utilized in which specific emphasis is

placed on the: (i) Identification of an appropriate set of

system calls from which attacks are built, in this case

informed by the most frequently executed instructions from

the vulnerable application. (ii) Identification of appropriate

goals, where these take two basic forms, minimization of

detector anomaly rate, whilst matching key steps in

establishing the ‘core’ attack. (iii) Support for copying

(duplicating) key instruction sequences once discovered, such

that their utility may be investigated under different

conditions by the learning algorithm. (iv) Support for

obfuscation, where in this case this is a direct side effect of

the stochastic search operators inherent in GP.

Results show that our approach can discover suitable rules

for mimicry attacks where the anomaly rate is reduced to

~2.97% for the entire attack (and ~1.69% for the part after

the attacker gains control). Moreover, in these experiments,

the use of different fitness functions, the implications of the

length of the system call sequences, and the impact of the

page sizes to anomaly detection rates are investigated. In

summary both fitness functions provide sequences with low

anomaly rates but the concurrent fitness function provides

sequences with lower anomaly rates. In general, increasing

the system call length provides lower anomaly rates provided

that crossover works on sequences of 6 or more instructions.

This observation is related to the need to provide an efficient

mechanism for duplicating ‘NOP’ sequences (from the attack

behavior perspective). Such sequences, however, are

identified within the context of conforming to normal

behavior profiles as characterized by the Stide database.

Future work will consider attack obfuscation to generate

variant buffer overflows for IDS blind spot penetration

testing and the implementation of automatic buffer overflows

for other well-known service such as SSH or FTP. Moreover,

we anticipate being able to integrate the attack generation

component into a co-evolutionary context. The resulting arms

race between detectors and attacks will provide detectors that

incorporate parameter analysis as well as being able to

preempt ‘unseen’ attacks. That is to say, coevolution of

attack-detector pairs will enable attacks previously unseen in

the environment to be encountered and appropriate responses

designed.

ACKNOWLEDGEMENTS

This work was supported in part by Killam, NSERC,
MITACS and the CFI New Opportunities program. All
research was conducted at the Dalhousie NIMS Laboratory,
http://www.cs.dal.ca/projectx/.

REFERENCES

1. C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna,

Automating mimicry attacks using static binary analysis,

Proceedings of the USENIX Security Symposium, pp. 161-176,

2005.

2. Stide, http://www.cs.unm.edu/~immsec/data-sets.htm, Last

accessed May 2006.

3. Vigna, G., Robertson, W., Balzarotti D., Testing Network Based

Intrusion Detection Signatures Using Mutant Exploits, ACM

Conference on Computer Security, pp. 21-30, 2004.

4. T. H. Ptacek and T. N. Newsham, Insertion, Evasion and Denial

of Service: Eluding Network Intrusion Detection. Technical

Report, Secure Networks, January 1998.

5. H. G. Kayacik, A. N. Zincir-Heywood, M. I. Heywood,

Evolving Successful Stack Overflow Attacks for Vulnerability

Testing, 21st Annual Computer Security Applications

Conference, pp. 225-234, 2005.

6. H. G. Kayacik, M. I. Heywood, A. N. Zincir-Heywood, On

Evolving Buffer Overflow Attacks using Genetic Programming.

Proceedings of the Genetic and Evolutionary Computation

Conference, (GECCO’06). SIG EVO, ACM Press. pp. 1667-

1673, 2006.

7. D. Wagner and P. Soto, Mimicry attacks on host based intrusion

detection systems, ACM Conference on Computer and

Communications Security, pp. 255-264, 2002.

8. Tan, K. M. C., Killourhy, K. S., Maxion, R. A., Undermining an

Anomaly-based Intrusion Detection System using Common

Exploits, RAID’2002, LNCS 2516, pp 54-73, 2002.

9. K. M. C. Tan, J. McHugh, K. S. Killourhy, Hiding Intrusions:

From the Abnormal to the Normal and Beyond, Symposium on

Information Hiding, pp. 1-17, 2002.

10. D. Mutz, F. Valeur, G. Vigna, C. Kruegel, Anomalous System

Call Detection, ACM Transactions on Information system and

Security, 9(1), pp. 61-93, Feb 2006.

11. S. Forrest, S. A. Hofmeyr, A. Somayaji, and T.A. Longstaff. A

sense of self for unix processes. In Proceedings of the IEEE

Symposium on Security and Privacy, pp. 120--128, 1996,

12. R. Sekar, M. Bendre, D. Dhurjati & P. Bollineni, A Fast

Automation-based Method for Detecting Anomalous Program

Behavior, IEEE Symposium on Security and Privacy pp. 144-

155, 2001.

159

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

13. H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong,

Anomaly detection using call stack information, IEEE

Symposium on Security and Privacy, pp. 62-75, 2003.

14. D. Wagner and D. Dean, Intrusion detection via static analysis,

IEEE Symposium on Security and Privacy, pp. 156, 2001.

15. Wespi, A., Dacier, M., and Debar, H., Intrusion Detection Using

Variable-Length Audit Trail Patterns, RAID’2000, LNCS 1907,

pp. 110-129, 2000.

16. Banzhaf W., Nordin P., Keller R. E., Francone F. D., Genetic

Programming: An Introduction. Morgan Kaufmann, 1998.

17. Securiteam, Linux Traceroute Exploit Code Released,

http://www.securiteam.com/exploits/6A00A1F5QM.htm, Last

accessed May 2006.

18. M. I. Heywood, A. N. Zincir-Heywood, Dynamic Page Based

Crossover in Linear Genetic Programming, IEEE Transactions

on Systems, Man and Cybernetics - Part B, 32(3), pp 360-388,

2002.

160

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

