

A Cognitive Approach to Intrusion Detection

D. Paul Benjamin

Computer Science Department, Pace University
1 Pace Plaza, New York, NY 10038

benjamin@pace.edu (212) 346-1012 fax: (212) 3246-1863

Abstract - The VMSoar project at Pace University is

building a cognitive agent for cybersecurity. The project's
objective is to create an intelligent agent that can model and
understand the activities of users who are on the network, and
that can communicate with network administrators in English
to alert them to illegal or suspicious activities. VMSoar can
understand users' activities because it is capable of performing
these activities itself. It knows how to perform both legal and
illegal activities, and uses this knowledge to explore simulations
of the activity on a network. It can also probe information
stored on a machine to assess the legality of past activity.
Research in cybersecurity is difficult is due to the extremely
large amount of data that must be analyzed to detect illegal
activities. In addition, new exploits are developed frequently.
Most current projects in this area are attempting to build some
level of intelligence into their systems; however, those projects
are focusing primarily on statistical data mining approaches.
The VMSoar project is unique in its approach to building an
intelligent security agent. The VMSoar agent is based on Soar,
a mature cognitive architecture that is used in universities and
corporations around the world.

I. INTRODUCTION

Modern computer systems are complex and composed of

a variety of processing platforms and network technologies.
In addition, systems change continually; both their hardware
and software configurations can change on a daily basis.
This complexity and change help to make it extremely
difficult to distinguish legal changes from illegal changes.
In addition, intruders are extremely good at covering their
tracks, so that effective defense requires both the ability to
understand how various activities affect a computer or
network, and a large base of practical experience with actual
intrusions and their effects. In short, cybersecurity requires
human-level analytical ability.

Our research project is implementing a cognitive agent
for cybersecurity. Our goal is to create a comprehensive
intelligent agent that can understand a wide range of legal
and illegal activities because it can perform these activities
itself, and that can learn from experience with actual
intrusions. Such an agent can function as an intelligent
assistant for human experts, or potentially could function
autonomously when no human expert is available.

Automatic vulnerability assessment and intrusion
detection are complex and time-consuming tasks.

Vulnerability assessment usually consists of testing of a
machine’s profile against a database of known
vulnerabilities to ensure that patches have been applied.
This approach lacks the ability to discover weaknesses in
the configuration of a specific machine or network. Human
vulnerability assessment experts can tailor their
investigations to a specific configuration, but automatic
assessments cannot.

Intrusion detection is often compared to finding a needle
in a haystack. Extremely large amounts of data are
generated by network monitoring utilities, and the goal of
the intrusion detection system is to identify illegal activities
that often are identifiable only by a few anomalous packets.

Researchers have begun to try to apply artificial
intelligence techniques to them. For example, expert system
and machine learning approaches in intrusion detection have
been attempted with some success [3,8,11], but although a
wide variety of approaches have been tried [2,14], there has
been no comprehensive effort that we know of that uses
human-level reasoning and learning capabilities to construct
intelligent vulnerability assessment or intrusion detection
systems.

Our approach is to use a general cognitive architecture
that has exhibited human-level performance on a wide range
of tasks. Over the past twenty years, the cognitive science
community has developed a number of successful unified
cognitive models, including Soar, ACT-R, and EPIC. These
models represent comprehensive theories of cognitive
structures based on decades of psychological
experimentation, and have been developed specifically to
model human performance on a wide range of tasks. The
models are evaluated based on the degree to which they fit
human performance data on these tasks, and have been
successful on a wide range of tasks, including mathematical
problem solving, spatial reasoning and navigation, language
learning, visual search, driving vehicles and game playing.
This successful track record demonstrates the power of the
cognitive structures in these models. The VMSoar project is
using these cognitive structures to construct an agent with
human-like reasoning and communication abilities.

The cognitive architecture that we use is Soar [10],
originally developed at Carnegie-Mellon University and
now in use at many universities and corporations. Soar
integrates a number of cognitive capabilities, including

161

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

1-4244-0700-1/07/$20.00 ©2007 IEEE

natural language [12], learning [10], real-time response [16],
emotion [13] and concept learning [15]. It has been applied
to such diverse tasks as tactical air warfare [18] and robotics
[4], both of which are real-time tasks involving large
amounts of data, similar to network intrusion detection.

We have connected Soar to VMWare
(http://www.vmware.com) so that it can create virtual copies
of an actual network and explore how different events
would cause the network to evolve. For example, Soar can
perceive activity on the network, hypothesize that an
attacker is in the system, simulate possible actions of the
attacker, then compare the actual network to the predicted
network to verify or reject the hypothesis. As it gains
experience, Soar’s learning mechanism enables it to predict
the presence of intruders with greater speed and accuracy.

We are currently teaching Soar how to attack networks
and individual machines. We are porting known attacks into
Soar, so that it can learn to attack a server and break into a
network. This is necessary for Soar to be able to learn to
assess the vulnerabilities of the target machine, and also for
Soar to generate network packets that identify illegal
network use, so that it can learn to detect intruders. Soar is
connected to tcpdump so that it can examine the network
activity and learn concepts that describe illegal activities.

Our research objective is for VMSoar to be able to
understand a variety of attacks, so that it can both probe
machines to detect anomalies and infer the attacks
associated with these attacks. VMSoar must be able to
identify, retrieve and organize the relevant data for an
attack, which may comprise millions of files and log entries.
To accomplish this objective, we are working to extend
VMSoar's knowledge of both legal and illegal activities.

This objective is a significant one, as it opens a
completely new avenue of research into network security.
Current systems consist of individual tools that can perform
some of the relevant tasks, e.g. collecting data from disks.
But they do not combine the ability to reason about activity
on the computer with the ability to learn and the ability to
communicate and explain what they see and do. By using a
mature cognitive architecture as the basis for our network
agent, we are leveraging its comprehensive cognitive
abilities to reason, learn and communicate. These abilities
will permit VMSoar to potentially achieve a level of
performance far superior to existing systems, and provide a
much higher level of security.

Another advantage of the VMSoar approach is that it can
potentially investigate incidents that combine multiple
attacks. Soar's searching capability enables it to search
among possible ways to combine legal and illegal activities,
comparing each combination's effects to the observed
effects to find the closest fit.

II. PREVIOUS WORK

A great deal of research and development is currently

focused on intrusion detection systems [2,14]. Most of these

systems are based on misuse detection: matching packets
against a set of patterns that correspond to illegal activities.
If a pattern matches, then an alert is signaled to the system
administrator. Most deployed systems are based on patterns
that are hand crafted; the Snort system is an excellent
example of this approach. Very few systems attempt
anomaly detection, in which normal behavior is
characterized so that deviations from that behavior are
flagged.

Another approach is to use data mining techniques to
learn patterns from data [11]. This requires someone to
generate packet streams that are labeled by a human to be
either legal or illegal. These streams are analyzed by
machine learning algorithms to produce patterns that
classify new packets. This approach has had some success
on a very small class of intrusions.

One problem that both approaches face is that attackers
have intrusion detection systems for testing their attacks.
They craft their attacks to appear as indistinguishable as
possible from legitimate activities. Thus, it is extremely
difficult to find patterns that discriminate between legitimate
activities and illegitimate ones. This is true both of hand-
written patterns and those learned by machine learning
algorithms. And these patterns are brittle, i.e. even a small
variation in an attack can render the patterns inapplicable.
Designers of intrusion detection systems have chosen to err
on the side of caution, so they make their patterns overly
general to catch all intruders; however, this generates a high
number of false positives. False positives are detrimental to
system operation, and a high number of them undermines
the security process by wasting system resources examining
legal activities.

Also, these intrusion detection systems cannot handle
novel attacks, which leads to false negatives. If an attacker
devises a new attack, which may be just a minor variant of
an existing attack, it is unlikely that deployed intrusion
detection systems will detect the attack. A significant delay
occurs, during which the attack succeeds on a number of
computing systems, is subsequently detected by humans,
and new patterns are added to the intrusion detection
systems. This process is time consuming, and thus
condemns a large number of computers to fall victim to the
novel attack.

Furthermore, existing intrusion detection systems cannot
provide explanations of the packet stream to the system
administrators. The patterns either match or don't match.
There is no possibility of a dialogue between the human and
the intrusion detection system about the network activity,
because the intrusion detection system possesses no
understanding of that activity; it has no models of the
humans using the network. It just matches patterns, and the
human administrator must dig into the entire packet stream
at a very low level to try to unearth the relevant details and
come to an understanding of the network activity. This is

162

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

also very time consuming, and makes it very difficult to
catch intruders in real time.

Other approaches in the security research community
include automatic patch generation [5,6], automatic
detection of exploits [1,9,20], and "inoculation" of systems
against exploits [19]. These approaches are interesting and
promising; however, each of them is designed to focus on a
single type of exploit, such as network worms or buffer
overflow exploits, and tend to be limited to protection
against known exploits. Given that new exploits are
designed very quickly after vulnerabilities are found, and
that there is a delay between the spread of an exploit and the
design of a patch for it, there is a pressing need for a real-
time intrusion detection tool that can handle a wide range of
exploits, and that has the potential to find new exploits on
its own.

VMSoar does something completely new: it learns to
understand and distinguish legal and illegal activities by
knowing how to carry them out. It possesses knowledge
about activities on computer systems, and can use that
knowledge to build models of user activities in real time.
This permits an integrated approach to both misuse
detection and anomaly detection, and allows the possibility
of discovering new exploits before they are known to the
hacker community. This is a completely new research
project; we have received no prior funding support from the
NSF or other agencies for VMSoar.

VMSoar is based on the Soar cognitive architecture. In
the next section, we give a basic exposition of Soar. In the
subsequent sections, we describe the structure of VMSoar,
and its application to vulnerability assessment and intrusion
detection in Windows NT and XP.

III. THE SOAR COGNITIVE ARCHITECTURE

Soar is a unified cognitive architecture [17] originally
developed at Carnegie-Mellon University and undergoing
continuing development at a number of locations, including
the University of Michigan and the Information Sciences
Institute at the University of Southern California, as well as
multiple locations in Europe. As a unified cognitive
architecture, Soar exhibits a wide range of capabilities,
including learning to solve problems from experience,
concept learning, use of natural language, and the ability to
handle complex tasks.

Declarative knowledge in Soar resides in its working
memory, which contains all the facts Soar knows at any
instant. Procedural knowledge in Soar is represented as
operators, which are organized into problem spaces. Each
problem space contains the operators relevant to interacting
with some aspect of the system's environment. In our
system, some problem spaces contain operators describing
the actions of VMSoar, such as executing a particular
exploit. Other problem spaces contain operators that interact
with the network, or analyze packets to construct user plans,

or classify plans according to user goals. At each step, Soar
must choose one operator to execute. This operator will alter
VMSoar’s memory or interact with the network.

The problem-solving mechanism in Soar is universal
subgoaling: every time there is choice of two or more
operators, Soar creates a subgoal of deciding which to
select, and brings the entire knowledge of the system to bear
on solving this subgoal by selecting a problem space and
beginning to search. This search can itself encounter
situations in which two or more operators can fire, which in
turn causes subgoals to be created, etc. When an operator is
chosen, the corresponding subgoal has been solved and the
entire solution process is summarized in a new operator,
called a chunk, which contains the general conditions
necessary for that operator to be chosen. This operator is
added to the system, so that in similar future situations the
search can be avoided. In this way, Soar learns.

The Soar publications extensively document how this
learning method speeds up the system's response time in a
manner that accurately models the speedup of human
subjects on the same tasks.

IV. LEARNING TO DETECT INTRUDERS BY LEARNING TO
ATTACK VULNERABILITIES

VMSoar’s approach to network security is based on the

work of Green & Lehman [7], who used Soar to model
discourse planning in natural language. Their goal was a
computational model of discourse, in which Soar would
interact with a human using English. In their task, Soar had
to do two things: construct an explanation of an incoming
utterance and generate an appropriate response. Their
approach was to use “explanation based on generation”, in
which Soar would construct an explanation for the incoming
utterance by attempting to generate a similar utterance on its
own. Soar would search among possible combinations of
goals, knowledge and expectations to try to generate this
utterance, and when it succeeded in matching the utterance
it assumed the human’s goals, knowledge and expectations
were those it had found. This gave Soar an understanding of
the person it was conversing with, so that Soar could choose
appropriate goals for generating a response. Soar also
formed a chunk for this search, so that a similar utterance in
the future would be understood in one step.

For example, if the discourse were about cooking and
the incoming utterance were, "Turn the flame down." then
Soar would try to generate that same sentence by
hypothesizing various combinations of goals and
knowledge. One combination that works is the knowledge
that a high flame cooks food faster and the goal is to cook it
slowly. If Soar found this combination, then it would
assume the speaker has this same combination of knowledge
and goal. This approach requires Soar to have knowledge
about cooking, so that it can search that knowledge.

VMSoar combines vulnerability assessment and
intrusion detection in the same way. The utterances are the

163

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

packets on a network. VMSoar constructs a model of the
behavior of the user generating these packets by trying to
generate the same packets itself. This approach requires
VMSoar to possess knowledge about network activities.

VMSoar performs vulnerability assessment by
generating attacks against virtual copies of machines, and
performs intrusion detection by generating possible attacks
against a simulated copy of itself. While performing
vulnerability assessment, VMSoar learns how to generate
various behaviors on the network. These learned behaviors
are then used during intrusion detection to try to model the
goals of network users.

VMSoar has problem spaces that model normal user
behaviors such as viewing a webpage or downloading a file,
and problem spaces that model abnormal behaviors such as
performing a port scan or executing an exploit. VMSoar is
connected both to a physical local area network (which it
monitors using tcpdump) and to VMWare, a software
product that can create a virtual network consisting of
virtual computers. VMSoar monitors the traffic on the actual
network and attempts to find an operator that can explain
the packets it sees originating from a particular remote site
in terms of a user acting in a particular way. If VMSoar
succeeds, it adds the user and activity to its model of the
network (which resides in its working memory). If VMSoar
fails to find an appropriate operator, then it subgoals. In its
subgoal, VMSoar creates a virtual copy of the local network
and repeatedly attempts to replicate the observed activity by
firing sequences of operators from problem spaces that
model various user behaviors. VMSoar searches as long as
it takes to identify an acceptable explanation for the
observations. This search can be extremely long, but once it
has found an explanation, VMSoar forms a chunk
containing the general conditions necessary for this
explanation, so that in the future this explanation will be
made in a single step.

VMSoar thus models intrusion detection as plan
recognition, by attempting to recognize users’ plans and
goals so that it can generate expectations about future user
behavior. This approach is completely different than
previous attempts to automate learning about intrusion
detection, e.g. Lee, Park & Stolfo [11], which perform data
mining and classification of network data without any
capability to generate alternative data and compare it.

One of the strengths of this approach is the reduction of
false positives, which plague typical intrusion detection
approaches. By actively modeling and reproducing user
behavior, VMSoar can explain legal network activity that it
has never seen before, instead of flagging it as illegal.

V. VMSOAR FRAMEWORK DESCRIPTION

VMSoar attempts to define an architecture that is
scaleable and flexible and can be extended to achieve the
above vision.

At a high level, the VMSoar framework can be thought
of as broken into three major components (see Figure 1
below).

• VMware WorkStation Network
• VMSoar Java Engine
• VMSoar Rules Engine

Figure 1. VMSoar Architecture

VI. EXAMPLE: EXPLOITING WINDOWS NT

The VMware WorkStation Network comprises the set of

virtual machines that make up the virtual network. VMSoar
will run network commands and attempt to stage an attack
on this virtual network.

The VMSoar Java Engine acts as the glue between the
VMware WorkStation Network and the VMSoar Rules
Engine. This component comprises the classes that do the
following major operations:

• Create and start the VMware machines.
• Start a VMSoar session and create the VMSoar

agent.
• Perform a command on the VMware WorkStation

Network requested by the agent.
• Pass data from the VMware WorkStation Network

back to the agent.
The VMSoar Rules Engine comprises the Tcl Interpreter,

Tcl scripts and all the rules that make up the VMSoar agent.
We describe an exploit that VMSoar is capable of

launching, and how this capability is also used for intrusion
detection. The exploit described in this section is based on a
known vulnerability of Windows NT, the IIS Unicode Bug,
(http://screamer.mobrien.com/manuals/MPRM_Group/testin
g2.html)

The VMSoar implementation used in this example
possesses a number of problem spaces that perform different
tasks including viewing a webpage, downloading a file and
launching an exploit against Windows NT.

164

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

VMSoar launches this exploit from a linux machine. In
the example below, we use the IP address 192.168.1.15 for
the NT machine. The exploit consists of five overall steps:

Step 1. VMSoar executes an operator that pings
192.168.1.15 to determine if a machine is alive at that
address. If it gets a reply, it creates a working memory
element saying the IP address is alive.

Step 2. If the IP is alive, then VMSoar executes an operator
that performs the command:

nmap -O 192.168.1.15

This does a portscan of the NT machine and returns a list of
open ports. VMSoar stores these in working memory and
notices that http port 80 is open, so perhaps it is running a
websever. VMSoar notices that a netbios port is open, and
based on the open ports, VMSoar stores a prediction that the
target OS is a version of Windows.

Step 3. VMSoar executes an operator that performs the
following command:

netcat -v -n 192.168.1.15 80
GET HTTP

This returns the following....

HTTP/1.1 400 Bad Request
Server: Microsoft-IIS/4.0
Date: Thu, 4 Apr 2004 23:23:22 GMT
Content-Type: text/html
Content-Length: 87
<html><head><title>Error</title></head><body>The
parameter is incorrect. </body></html> sent 2, rcvd 224

VMSoar stores this in working memory. This causes
operators to fire that recognize Windows NT as the
operating system, and also that it is running IIS/4.0 on port
80.

Step 4. VMSoar tries to get a directory listing of the C:
drive of the NT machine, by executing an operator that
performs the following command:

nc -v -n 192.168.1.15 80
GET
http://192.168.1.15/scripts/..%255c../winnt/system32
/cmd.exe?/c+dir+c:\

This returns a directory listing of the C: drive on the NT
machine. VMSoar executes operators that recognize a
successful directory listing, and VMSoar stores this fact in
its working memory.

Step 5. VMSoar executes an operator that performs the
following command:

nc -v -n 192.168.1.15 80
GET
http://192.168.1.15/scripts/..%255c../winnt/system32/cm
d.exe?//c+nc+-L+-p+10001+-d+-e+cmd.exe

This complex command executes the following command
on the NT IIS server:

nc -L -p 10001 -d -e cmd.exe

This command starts up netcat on the IIS server, with flags
that tell Windows not to close netcat, but to wait for
connections on port 10001, and to run cmd.exe when port
10001 is connected to.

Step 6. Finally, VMSoar executes an operator that performs
the following command:

nc -v -n 192.168.1.15 10001

which returns an NT prompt to VMSoar, which can then
perform any command on the NT box.

Once VMSoar has a problem space to launch this
exploit, it can detect this vulnerability on NT servers on a
network. Furthermore, it can use this knowledge to detect
when an intruder is executing any portion of this exploit.

For instance, suppose VMSoar is protecting
192.168.1.15 (the NT machine) and an intruder is attacking
from another machine, which in the code below will be
192.168.1.14. When the intruder is executing a SYN port
scan as part of the above exploit, the following packets can
appear on the network (this output is from tcpdump):

01:10:23.445709 192.168.1.14.38931 > 192.168.1.15.711: S
1354789686:1354789686(0) win 5840 <mss
1460,sackOK,timestamp 8958340 0,nop,wscale 0> (DF)
01:10:23.445709 192.168.1.14.38932 > 192.168.1.15.3005:
S 358598610:1358598610(0) win 5840 <mss
1460,sackOK,timestamp 8958340 0,nop,wscale 0> (DF)
01:10:23.445709 192.168.1.14.38933 > 192.168.1.15.4500:
S 359735835:1359735835(0) win 5840 <mss
1460,sackOK,timestamp 8958340 0,nop,wscale 0> (DF)
01:10:23.445709 192.168.1.14.38934 > 192.168.1.15.1353:
S 363526429:1363526429(0) win 5840 <mss
1460,sackOK,timestamp 8958340 0,nop,wscale 0> (DF)
01:10:23.445709 192.168.1.15.711 > 192.168.1.14.38931:
R 0:0(0) ack 1354789687 win 0
01:10:23.445709 192.168.1.15.3005 > 192.168.1.14.38932:
R 0:0(0) ack 1358598611 win 0
01:10:23.445709 192.168.1.15.4500 > 192.168.1.14.38933:
R 0:0(0) ack 1359735836 win 0
01:10:23.445709 192.168.1.15.1353 > 192.168.1.14.38934:
R 0:0(0) ack 1363526430 win 0

165

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

In this kind of port scan, the attacker finds which ports are
available (i.e. being listened to by a service). A SYN packet
is sent (as if we are going to open a connection), and the
target host responds with a SYN+ACK, this indicates the
port is listening, and an RST indicates a non-listener.
Subsequent scan results show that "http" port and "netbios"
port are listening.
01:10:23.325709 192.168.1.14.38834 > 192.168.1.15.https:
S 1354605482:1354605482(0) win 5840 <mss
1460,sackOK,timestamp 8958328 0,nop,wscale 0> (DF)
01:10:23.325709 192.168.1.15.https > 192.168.1.14.38834:
S 1147031:1147031(0) ack 1354605483 win 8760 <mss
1460> (DF)
01:10:23.325709 192.168.1.14.38834 > 192.168.1.15.https:
. ack 1 win 5840 (DF)
01:10:22.365709 192.168.1.14.38105 >
192.168.1.15.netbios-ssn: S 1351688221:1351688221(0)
win 5840 <mss 1460,sackOK,timestamp 8958232
0,nop,wscale 0> (DF)
01:10:22.365709 192.168.1.15.netbios-ssn >
192.168.1.14.38105: S 1146180:1146180(0) ack
1351688222 win 8760 <mss 1460> (DF)
01:10:22.365709 192.168.1.14.38105 >
192.168.1.15.netbios-ssn: . ack 1 win 5840 (DF)

VMSoar must explain this sequence of packets between
192.168.1.14 and 192.168.1.15, but initially it has no
explanation that matches, so it subgoals and attempts to
recreate this sequence of packets. In the subgoal, VMSoar
uses VMWare to construct a virtual copy of 192.168.1.15,
with the same basic (virtual) hardware and the same OS and
services. In practice, this is done by storing a virtual image
of every machine on the local network that VMSoar is
protecting. VMWare just loads the stored image, which is
considerably faster than creating a new one.

VMSoar then selects a problem space and executes
operators in that space. Suppose it selects operators that
connect legally to a webpage and download it. The packets
generated will not match the pattern of requests and
acknowledgements in the above trace, so this problem space
does not satisfy the subgoal, and a new problem space must
be selected.

Figure 2. Subgoal tree in Soar.

In this way, VMSoar searches through its stock of
problem spaces, attempting to generate the observed pattern
of packets.

Eventually, it will use a problem space that executes a
port scan. It could be the space containing the above exploit,
or any other space for an exploit that executes a similar port
scan. When the operator that executes the port scan is
chosen, it will generate the same pattern of requests and
VMSoar will conclude that 192.168.1.14 is executing a port
scan.

VMSoar learns at this point by constructing a chunk (a
new rule) that summarizes the search that it performed and
the result. Briefly, Soar forms chunks by tracing back
through all the facts it examined in the process of its search
and finding those that led to the result. Soar puts all these
facts on the left-hand side of a new rule, and puts the result
of the search on the right-hand side of the new rule. This
new rule will match any future situation that contains these
same facts, which in this case will be any situation with the
same pattern of requests and acknowledgements from one
machine. Soar will not have to search, but will immediately
fire this rule and assert that the remote machine is executing
a port scan. Over time, VMSoar will learn to recognize a
wide range of user behaviors.

At this point, VMSoar will know only that 192.168.1.14
is scanning the ports. As the input from tcpdump continues,
VMSoar will see the following packets:

01:10:23.485709 192.168.1.14.57996 > 192.168.1.15.http:
SE 1210652233:1210652233(0) win 2048 <wscale
10,nop,mss 265,timestamp 1061109567 0,eol>
01:10:23.485709 192.168.1.14.57997 > 192.168.1.15.http: .
win 2048 <wscale 10,nop,mss 265,timestamp 1061109567
0,eol>
01:10:23.485709 192.168.1.14.57998 > 192.168.1.15.http:
SFP 1210652233:1210652233(0) win 2048 urg 0 <wscale
10,nop,mss 265,timestamp 1061109567 0,eol>

This part of the log reflects an invalid combination of
flags. According to rfc-3186 there are certain combination
of TCP flags that are considered invalid. In the log there are
two invalid combinations, such as “SE”, “SFP”. A host must
not set ECT on SYN or SYN-ACK packets.

VMSoar is deliberately not programmed with
knowledge about specific combinations of invalid flags,
which is the typical approach to intrusion detection, but
rather must generate the behavior to explain it. As above,
VMSoar does not initially possess any matching pattern for
this illegal combination of flags, and performs a search just
as before through all its problem spaces to find one whose
operators will generate this pattern. The IIS Unicode exploit
problem space will eventually be used, and will generate the
pattern of SE and SFP occurring at exactly the same
timestamp, and VMSoar will conclude that a user at
192.168.1.14 is executing this exploit, and notify the system

. .

.

Goal: explain packets
01:10:23.445709 192.168.1.14.38931
> 192.168.1.15.71
01:10:23.445709 192.168.1.14.38932
> 192.168.1.15.3005:
. . .

Subgoal:
try
download
ing
webpage

Subgoal:
try
connecting
to mail
server

Subgoal:
try
limewire
peer-to-
peer

Subgoal:
try IIS
Unicode
exploit

166

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

administrator of the attack. VMSoar will also learn a chunk
summarizing this pattern.

VII. CURRENT AND FUTURE WORK

The previous section provides an example of how

VMSoar can attack a Windows NT machine. VMSoar
possesses a number of such exploits for NT, as well as a
number of problem spaces describing legal activities. We
have used this platform for developing and testing VMSoar
because a wide variety of simple exploits are available for
NT. This work has met with success, as VMSoar can both
launch exploits and detect these exploits with no false
positives or negatives. Now that the initial phase of
development is complete, we are turning our attention to
Windows XP.

We are focusing on buffer overflow attacks in XP
(Service Pack 2). Buffer overflow attacks are an important
class of exploits, and serve as an excellent test of VMSoar's
power. We are writing VMSoar problem spaces describing
the steps that comprise buffer overflow attacks, so that it
will have general knowledge about buffer overflow attacks.
Using this knowledge, VMSoar will be able to search for
new buffer overflow exploits in XP. Our goal is for VMSoar
both to discover new exploits and to use this knowledge to
detect attackers launching such exploits.

VIII. SUMMARY

VMSoar is a network security agent that combines
vulnerability assessment and intrusion detection by
generating attacks against virtual copies of machines, and
learns how to associate patterns of network activity with
illegal user actions.

VMSoar possesses knowledge about how to carry out
both legal and illegal activities, and can use this knowledge
to probe the vulnerabilities of system configurations. This
vulnerability assessment capability can be used to find flaws
in operating systems and server software before it is
shipped, and also used to find flaws in existing system
configurations, especially as they evolve over time.

The knowledge that VMSoar possesses about network
activities also gives it the ability to monitor networks for
intruders in realtime, by creating a virtual copy of the local
network and recreating the observed packets. VMSoar's
learning capability speeds its recognition process, so that it
can recognize learned attacks in realtime on small local
networks. We are testing the ability of VMSoar to scale up
to larger networks.

REFERENCES

[1] K. Avijit, P. Gupta, and D. Gupta. "Tied, libsafeplus: Tools

for runtime buffer overflow protection", in USENIX Security
Symposium, August 2004.

[2] Axelsson, Stefan, Intrusion Detection Systems: A Survey and
Taxonomy, Technical Report No 99-15, Dept. of Computer
Engineering, Chalmers University of Technology, Sweden,
2000.

[3] Balasubramanian, J. S., Garcia-Fernandez, J. O., Isacoff, D.,
Spafford, E., and Zamboni, D., An Architecture for Intrusion
Detection using Autonomous Agents, Proceedings of the
Fourteenth Annual Computer Security Applications
Conference, 1998.

[4] Benjamin, D. Paul, Lonsdale, Deryle, and Lyons, Damian,
Designing a Robot Cognitive Architecture with Concurrency
and Active Perception, Proceedings of the AAAI Fall
Symposium on the Intersection of Cognitive Science and
Robotics, Washington, D.C., October, 2004.

[5] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton. "Stack-Guard:
automatic adaptive detection and prevention of buffer-
overflow attacks", in Proceedings of the 7th USENIX
Security Symposium, January, 1998.

[6] C. Cowan, M. Barringer, S. Beattie, and G. Kroah-Hartman.
"FormatGuard: automatic protection from printf format
string vulnerabilities", in Proceedings of the 10th USENIX
Security Symposium, August 2001.

[7] Green, Nancy, and Lehman, Jill F., An Integrated Discourse
Recipe-Based Model for Task-Oriented Dialogue, Discourse
Processes, 33(2), pp.133-158, 2002.

[8] Kanlayasiri, U., Sanguanpong, S., and Jaratmanachot, W., A
Rule-based Approach for Port Scanning Detection, in
Proceedings of the 23rd Electrical Engineering Conference,
Chiang Mai Thailand, 2000.

[9] H.-A. Kim and B. Karp, "Autograph: toward automated,
distributed worm signature detection", in Proceedings of the
13th USENIX Security Symposium, August 2004.

[10] Laird, J.E., Newell, A. and Rosenbloom, P.S., Soar: An
Architecture for General Intelligence, Artificial Intelligence
33, pp.1-64, 1987.

[11] Lee, Wenke, Christopher T. Park , Salvatore J. Stolfo,
Automated Intrusion Detection Using NFR: Methods and
Experiences, in Proceedings of the Workshop on Intrusion
Detection and Network Monitoring, p.63-72, 1999.

[12] Lonsdale and C. Anton Rytting, Integrating WordNet with
NL-Soar, WordNet and other lexical resources: Applications,
extensions, and customizations; Proceedings of NAACL-
2001; Association for Computational Linguistics, 2001.

[13] Marsella, Stacy, Jonathan Gratch and Jeff Rickel, Expressive
Behaviors for Virtual Worlds, Life-like Characters Tools,
Affective Functions and Applications, Helmut Prendinger
and Mitsuru Ishizuka (Editors), Springer Cognitive
Technologies Series, 2003.

[14] Me, Ludovic, and Michel, Cedric, Intrusion Detection: A
Bibliography, In Technical Report SSIR-2001-01, Sup'elec,
Rennes, France, 2001.

[15] Miller, C. S., Modeling Concept Acquisition in the Context of
a Unified Theory of Cognition, EECS, Ann Arbor,
University of Michigan, 1993.

[16] Nelson, G., Lehman, J.F., and John, B.E., Integrating
cognitive capabilities in a real-time task, In Proceedings of
the Sixteenth Annual Conference of the Cognitive Science
Society. Atlanta, GA, August, 1994.

[17] Newell, Allen, Unified Theories of Cognition, Harvard
University Press, Cambridge, Massachusetts, 1990.

[18] Rosenbloom, P.S., Johnson, W.L., Jones, R.M., Koss, F.,
Laird, J.E., Lehman, J.F., Rubinoff, R., Schwamb, K.B., and
Tambe, M., Intelligent Automated Agents for Tactical Air

167

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

Simulation: A Progress Report, Proceedings of the Fourth
Conference on Computer Generated Forces and Behavioral
Representation, pp.69-78, 1994.

[19] S. Sidiroglou and A. D. Keromytis, "A network worm
vaccine architecture", in Proceedings of the IEEE
International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE),
Workshop on Enterprise Security, pages 220-225, June 2003.

[20] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier,
"Shield: Vulnerability-driven network filters for
preventingknown vulnerability exploits", In ACM
SIGCOMM, August, 2004.

168

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

