
 

Abstract—Detecting unknown worms is a challenging task. 
Extant solutions, such as anti-virus tools, rely mainly on prior 
explicit knowledge of specific worm signatures. As a result, 
after the appearance of a new worm on the Web there is a 
significant delay until an update carrying the worm’s signature 
is distributed to anti-virus tools. During this time interval a new 
worm can infect many computers and create significant 
damage. We propose an innovative technique for detecting the 
presence of an unknown worm, not necessarily by recognizing 
specific instances of the worm, but rather based on the 
computer measurements. We designed an experiment to test the 
new technique employing several computer configurations and 
background applications activity. During the experiments 323 
computer features were monitored. Four feature selection 
techniques were used to reduce the amount of features and four 
classification algorithms were applied on the resulting feature 
subsets. Our results indicate that using this approach resulted, 
in above 90% average accuracy, and for specific unknown 
worms accuracy reached above 99%, using just 20 features 
while maintaining a low level of false positive rate.

I. INTRODUCTION

HE detection of malicious code (malcode) transmitted 
over computer networks has been researched intensively 
in recent years. One type of abundant malcode are 

worms, which proactively propagate across networks while 
exploiting vulnerabilities in operating systems or in installed 
programs. Other types of malcodes include computer viruses, 
Trojan horses, spyware, and adware. In this study we focus 
on worms, though we plan to expand the approach to other 
malcodes. 
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Nowadays, excellent technology (i.e., antivirus software 
packages) exists for detecting known malicious code. 
Typically, antivirus software packages inspect each file that 
enters the system, looking for known signs (signatures) 
uniquely identifying an instance of malcode. Nevertheless, 
antivirus technology is based on prior explicit knowledge of 
malcode signatures and cannot be used for detecting 
unknown malcode. Following the appearance of a new worm 
instance, a patch is provided by the operating system 
provider and the antivirus vendors update their signatures-
base accordingly. This solution is not perfect, however, since 
worms propagate very rapidly. By the time the antivirus 
software has been notified about the new worm, a very 
expensive damage has already been inflicted [1]. 

Intrusion detection, commonly made at the network level, 
called network based intrusion detection (NIDS), was 
researched substantionally [2]. However, NIDS are limited in 
their detection capabilities (like any detection system). In 
order to detect malcodes which slipped through the NIDS at 
the network level, detection operations are performed locally 
at the host level, called Host Based Intrusion Detection
(HIDS). HIDS are detection systems consist on monitoring 
activities at a host. HIDS, commonly, consist on comparing 
the states of the computer in several aspects, such as the 
changes in the file system using checksum comparisons. The 
main drawback of this approach is the ability of malcodes to 
disable antiviruses, and other technical limitations such as 
the fast change in the file system. The main problem is the 
detection knowledge maintenance, which is acquired 
commonly manually by the domain expert. 

Recent studies have proposed methods for detecting 
unknown malcode using Machine Learning techniques. 
Given a training set of malicious and benign executables 
binary code, a classifier is trained and learns to identify and 
classify unknown malicious executables as being malicious 
[3,4,5]. While this approach is a potentially good solution, it 
is not complete since it can detect only executable files, and 
malcodes located entirely in the memory, such as the 
Slammer worm [6], cannot be detected using this technique. 
Moreover, any technique can be sabotaged by a malcode. 

Our suggested approach can be classified under HIDS, but 
the novelty here is that it is based on the computer 
measurements and that the knowledge is acquired 
automatically using inductive learning, given a dataset of 
known worms. This approach avoids the need in manual 
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knowledge acquisition, which is sometimes unavailable, 
especially in such approach, as well as the knowledge 
maintenance. While this approach doesn’t prevent the 
infection it enables a fast detection of the infection which 
may result in alert, which can be further reasoned at the 
network level. Further reasoning based on the network-
topology can be performed by a network administration 
function, and relevant decisions and policies, such as 
disconnecting a single computer or a cluster, can be further 
implemented. In this study, we focus on a proposed 
technique that enables the detection of unknown worms 
based on a single computer's (host) behavior. 

Generally speaking, malcode within the same category 
(e.g., worms, Trojans, spyware, adware) share similar 
characteristics and behavior patterns. These patterns are 
reflected by the infected computer's behavior as represented 
by its measurements. Based on these common characteristics, 
we suggest that an unknown worm can be detected based on 
the computer's behavior using Data Mining techniques. In 
the proposed approach, a classifier is trained on computer 
measurements of known worm and non-worm behaviors. 
Based on the generalization capability of the classification 
algorithm, we argue that a classifier can further detect 
previously unknown worm activity. Nevertheless, this 
approach may be affected by the variation of computer and 
application configurations as well as user behavior on each 
computer. In this study, we investigate whether an unknown 
worm activity can be detected, at a high level of accuracy, 
given the variation in hardware and software environmental 
conditions on individual computers, while minimizing the set 
of features required. 

The rest of the article is structured as follows: in section 2, 
a survey of the relevant background for this work is 
presented. The methods used in this study are described in 
section 3, followed by the research questions and the 
corresponding experimental plan in section 4. Finally, results 
are presented, followed by a discussion and conclusions. 

II. BACKGROUND AND RELATED WORK

A. Malicious Code and Worms 

The term 'malicious code' (malcode) refers to a piece of 
code, not necessarily an executable file, intended to harm, 
whether generally or in particular, a specific owner (host). 
The approach suggested in this study aims at detecting any 
malcode activity, whether known or unknown. However, 
since we originated our research on worms, we will focus on 
them in this section. 

Kienzle and Elder [7], define a worm by several aspects 
through which can be distinguished from other types of 
malcode: 1) Malicious code – worms are considered 
malicious in nature. 2) Network propagation or Human 
intervention - a commonly agreed upon aspect, that is, 
worms propagate actively over a network, while other types 
of malicious codes, such as viruses, commonly require 

human activity to propagate. 3) Standalone or file infecting – 
while viruses infect a file (its host), a worm does not require 
a host file, and sometimes does not even require an 
executable file, residing entirely in the memory, as did the 
Code Red [8] worm. Different purposes and motivations 
stand behind worms developers [9] including: Experimental 
curiosity which can lead any person to create a worm, such 
as the ILoveYou worm [10]. Pride and power leading 
programmers to show-off their knowledge and skill exhibited 
through the harm caused by the worm; commercial 
advantage, extortion and criminal gain, random and 
political protest, and terrorism and cyber warfare. The 
existence of all these types of motivation indicates that 
computer worms are here to stay as a network vehicle 
serving different purposes and implemented in different 
ways. To effectively address the challenge posed by worms, 
meaningful experience and knowledge should extracted by 
analyzing known worms. Current days given the known 
worms we have a great opportunity to learn from these 
examples in order to generalize. We argue that data mining 
methods can be a very useful to learn and generalize from 
previous see worms, in order to classify effectively unknown 
worms, as a last detection method. 

B. Detecting Malicious Code Using Data Mining 

Data mining, commonly considered as the application of 
machine learning to huge data sets, has already been used in 
efforts to detect and protect against malicious codes.  

A recent survey on intrusion detection [2] summarizes 
recent proposed application of data mining in recognizing 
malcodes in single computers and in computer networks. Lee 
et al. proposed a framework consisting of data mining 
algorithms for the extraction of anomalies of user normal 
behavior for the use in anomaly detection [11], in which a 
normal behavior is learned and any abnormal activity is 
considered as intrusive. The authors suggest several 
techniques, such as classification, meta-learning, association 
rules, and frequent episodes, to extract knowledge for further 
implemented in intrusion detection systems. They evaluated 
their approach on the DARPA98 [12] benchmark test 
collection, which is a standard benchmark of network data 
for intrusion detection research.  

A Naïve Bayesian classifier was suggested in [2] referring 
to its implementation within the ADAM system developed 
by Barbara et al. [13]. The ADAM system had three main 
parts: (a) monitoring network data through listening to 
TCP/IP protocol; (b) a data mining engine which enables 
acquiring the association rules from the network data; and (c) 
a classification module which classifies the nature of the 
traffic in two possible classes: normal and abnormal which 
can later be linked to specific attacks. Other machine 
learning algorithms techniques proposed are Artificial 
Neural Networks (ANN) [14,15,16], Self Organizing Maps 
(SOM) [17] and fuzzy logic [18,19,20]. 
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III. METHODS

The general goal of this study is to assess the viability of 
employing Data Mining techniques in detecting the existence 
of unknown worms in an individual computer host based on 
it's behavior (measurements). In order to create a testing 
environment, we have built a local network of computers, 
which enabled us to inject worms into a controlled 
environment, while monitoring the computers and collecting 
measurements. Preliminary results were very encouraging, 
but we wanted to estimate the influence of the environment 
in which the training set was produced on the detection 
accuracy in another environment. In an extensive experiment 
we had showed elsewhere [21] that there is no significant 
influence. Moreover, when a classifier trained on an old 
computer it had better detection accuracy then the opposite. 
In this study we want to further investigate the capability of 
detecting unknown malicious code. 

A. DataSet Creation 

Since there is no benchmark dataset which could be used 
for this study, we created our own dataset. A network with 
various computers (configurations) was deployed, into which 
we could inject worms. The network was a controlled 
environment, in which we could monitor the computer 
features and document the measurements into log files. 
1) Environment Description 

The lab network consisted of 7 computers, which 
contained heterogenic hardware, and a server computer 
simulating the internet. We used the windows performance
counters1, which enable monitoring system features that 
appear in these main categories (The amount of features in 
each category appear in parenthesis) : Internet Control 
Message Protocol (27), Internet Protocol (17), Memory
(29), Network Interface (17), Physical Disk (21), Process 
(27), Processor (15), System (17), Transport Control 
Protocol (9), Thread(12), User Datagram Protocol (5). In 
addition we used VTrace [22]. A software tool which can be 
installed on a PC running Windows for monitoring purposes. 
VTrace collects traces of the file system, the network, the 
disk drive, processes, threads, interprocess communication, 
waitable objects, cursor changes, windows, and the 
keyboard. The data from the windows performance were 
configured to measure the features every second and store 
them in a log file as vector. VTrace stored time-stamped 
events, which were aggregated into the same fixed intervals, 
and merged with the windows performance log files. These 
eventually included a vector of 323 features for every 
second. 
2) Injected Worms 

While selecting worms from the wild, our goal was 
choosing worms that differ in their behavior, within the 
available worms. Some of the worms have a heavy payload 
of Trojans to install in parallel to the distribution process 

1http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/counter/counters2_lbfc.asp 

upon the network, other focus only on distribution. Another 
aspect is having different strategies for IP scanning which 
results in varying communication behavior, CPU 
consumption and network usage. While all the worms are 
different we wanted to find common characteristics to be 
able to detect an unknown worm. We briefly describe here 
the main characteristics, relevant to this study, of each worm 
included in this study. The information is based on the virus 
libraries on the web234. We briefly describe the five worms 
we used: 

(1) W32.Dabber.A scans IP addresses randomly. It uses 
the W32.Sasser.D worm to propagate and opens the FTP 
server to upload itself to the victim computer. Registering 
itself enables its execution on the next user log in (human 
based activation). It drops a backdoor, which listens on a 
predefined port. This worm is distinguished by its use of an 
external worm in order to propagate. 

(2) W32.Deborm.Y is a self-carried worm, which prefers 
local IP addresses,. This worm registers itself as an MS 
Windows service and is being executed upon user login 
(human based activation). This worm contains three Trojans 
as a payload: Backdoor.Sdbot, Backdoor.Litmus, and 
Trojan.KillAV, and executes all of them. We chose this 
worm because of its heavy payload. 

(3) W32.Korgo.X is a self carrying worm which uses 
totally random method for IP addresses scanning. It is self-
activated and tries to inject itself as a function to MS Internet 
Explorer as a new thread. It contains a payload code which 
enables to connect predefined websites in order to receive 
orders or download newer worm versions.  

(4) W32.Sasser.D uses a preference for local addresses 
optimization while scanning the network. It scans about half 
of the time local addresses and in the other half random 
addresses. In particular it opens 128 threads for scanning the 
netwrok, which requires a heavy CPU consumption, as well 
as significant network traffic. It is a self carried worm uses a 
shell to connect to the infected computer’s FTP server and to 
upload itself.  

(5) W32.Slackor.A is a self-carried worm exploits MS 
Windows sharing vulnerability to propagate. The worm 
registers itself to be executed upon user login. It contains a 
Trojan payload and opens an IRC server on the infected 
computer in order to receive orders. 

All the worms perform port scanning and possess different 
characteristics. Further information about these worms can 
be accessed through libraries on the web567. 
3) Dataset Description 

In order to examine the influence of a computer hardware 
configuration, background running applications, and user 

2 Symantec – www.symantec.com 
3 Kasparsky www.viruslist.com 
4Macfee http://vil.nai.com 
5 Symantec – www.symantec.com 
6 Kasparsky www.viruslist.com 
7Macfee http://vil.nai.com 
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activity, we considered three major aspects: computer 
hardware configuration, constant background application
consuming extreme computational resources, and user 
activity, being binary variables. (1) Computer hardware 
configuration: Both computers ran on Windows XP, which 
considered the most widely used operation system, having 
two configuration types: an "old", having Pentium 3 800Mhz 
CPU, bus speed 133Mhz and memory 512 Mb, and a "new", 
having Pentium 4 3Ghz CPU, bus speed 800Mhz and 
memory 1 Gb. (2) Background application: We ran an 
application affecting mainly the following features: 
Processor object, Processor Time (usage of 100%); Page 
Faults/sec; Physical Disk object, Avg Disk Bytes/Transfer, 
Avg Disk Bytes/Write, and Disk Writes/sec. (3) User activity: 
several applications, including browsing, downloading and 
streaming operations through Internet Explorer, Word, 
Excel, chat through MSN messenger, and Windows Media 
Player, were executed to imitate user activity in a scheduled 
order. The two options in the Background Application and 
User Activity were presence or absence of the user activity. 

Each dataset contained monitored samples of each one of 
the five injected worms separately, and samples of a normal
computer behavior, without any injected worm. Each worm 
was monitored for a period of 20 minutes in resolution of 
seconds. Thus, each record, containing a vector of 
measurements and a label, presented a second and labeled by 
the specific worm activity, or none activity label. Each 
dataset contained few thousands (labeled samples) of each 
worm or none activity. We therefore had three binary 
aspects, which resulted in 8 possible combinations 
representing a variety of dynamic computer configurations 
and usage patterns. Each dataset contained monitored 
samples for each of the five worms injected separately, and 
samples of a normal computer behavior without any injected 
worm. Each sample (record) was labeled with the relevant 
worm (class), or 'none' for "clean" samples. 

B. Feature Selection 

In Data Mining applications, the large number of features 
in many domains presents a huge challenge. Typically, some 
of the features do not contribute to the accuracy of the 
classification task and may even hamper it. Moreover, in our 
approach reducing the amount of features, while maintaining 
a high level of detection accuracy, is crucial for meeting 
computer performance and resource consumption. Ideally, 
we would like to minimize the self-consumption of computer 
resources required for the monitoring operations 
(measurements) and the classifier computations. This can be 
achieved through reduction of the classified features using 
the feature selection technique. Since this is not the focus of 
this paper, we will describe the feature selection 
preprocessing very briefly. In order to compare the 
performance of the classification algorithms, we used the 
filters approach, which is applied on the dataset and is 
independent of any classification algorithm (unlike wrappers, 

in which the best subset is chosen upon an iterative 
evaluation experiment). Under filters, a measure is calculated 
to quantify the correlation of each feature with the class (in 
our case, the presence or absence of a worm activity). Each 
feature receives a rank representing its expected contribution 
in the classification task. Eventually, the top ranked features 
were selected. 

We used three feature selection measures which resulted 
in a list of ranks for each feature selection measure and an 
ensemble incorporating all three of them. We used Chi-
Square (CS), Gain Ratio (GR), ReliefF implemented in the 
Weka environment [23] and their ensemble, based on a 
simple average of the three ranks. We took the highest 
ranked (top) features 5, 10, 20 and 30 from each feature 
selection measure ranked list. Finally we had four subsets 
and the full features set, for whom we had eight datasets each 
resulting in 17 datasets. While the feature selection isn’t the 
focus of this study, but its application we briefly describe the 
measures we used. 

Chi-Square measures the lack of independence between a 
feature f and a class ci and can be compared to the chi-square 
distribution with one degree of freedom to judge 
extremeness. Equation 1 shows how the chi-square measure 
is defined and computed, where N is the total number of 
documents and f refers to the presence of the feature (and 

f its absence), and ci refers to its membership in ci. 
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Gain Ratio originally presented by Quinlan in the context 
of decision trees [24], which was designed to overcome a 
bias in the Information Gain (IG) measure [25], which 
measures the expected reduction of entropy caused by 
partitioning the examples according to a chosen feature. 
Given entropy E(S) as a measure of the impurity in a 
collection of items, it is possible to quantify the effectiveness 
of a feature in classifying the training data. Equation 3 
presents the formula of the entropy of a set of items S, based 
on C subsets of S (for example, classes of the items), 
presented by Sc. Information Gain measure the expected 
reduction of entropy caused by portioning the examples 
according to attribute A, in which V is the set of possible 
values of A, as shown in equation 2. These equations refer to 
discrete values; however, it is possible to extend it to 
continuous values attribute. 
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The IG measure favors features having a high variety of 
values over those with only a few. GR overcomes this 
problem by considering how the feature splits the data 
(Equations 4 and 5). Si are d subsets of examples resulting 
from portioning S by the d-valued feature A.  
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ReslifF [26] estimates the quality of the features according 
to how well their values distinguish between instances that 
are near each other. Given a randomly selected instance x, 
from a dataset s with k features, Relief searches the data set 
for its two nearest neighbors. From the same class, called 
nearest hit H and from different class, called nearest miss M. 
The quality estimation W[Ai] is stored in a vector of the 
features Ai, based on the values of a difference function diff() 
given x, H and M as shown in equation 6..  
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C. Classification Algorithms 

One of the goals of this study was to pinpoint the 
classification algorithm which provides the highest level of 
detection accuracy. We employed four commonly used 
Machine Learning algorithms: Decision Trees, Naïve Bayes, 
Bayesian Networks and Artificial Neural Networks, in a 
supervised learning approach, in which the classification 
algorithm learns from a provided training set, containing 
labeled examples. 

While the focus of this paper is not on classification
algorithm techniques, but on their application in the task of 
detecting worm activity, we briefly describe the 
classification algorithms we used in this study. 
1) Decision Trees 

Decision tree learners [24] are a well-established family of 
learning algorithms. Classifiers are represented as trees 
whose internal nodes are tests on individual features and 
leaves are classification decisions. Typically, a greedy 
heuristic search method is used to find a small decision tree 
that correctly classifies the training data. The decision tree is 
induced from the dataset by splitting the variables based on 
the expected information gain. Modern implementations 
include pruning which avoids over fitting. In this study we 
evaluated J48, the Weka version of the commonly used C4.5 
algorithm [24]. An important characteristic of Decision 
Trees is the explicit form of their knowledge which can be 
easily represented as a set of rules. 
2) Naïve Bayes 

The Naïve Bayes classifier is based on the Bayes theorem, 

which in the context of classification states that the posterior 
probability of a class is proportional to its prior probability 
as well as to the conditional likelihood of the features, given 
this class. If no independent assumptions are made, a 
Bayesian algorithm must estimate conditional probabilities 
for an exponential number of feature combinations. “Naive 
Bayes” simplifies this process by making the assumption that 
features are conditionally independent given the class, and 
requires that only a linear number of parameters be 
estimated. The prior probability of each class and the 
probability of each feature, given each class, is easily 
estimated from the training data and used to determine the 
posterior probability of each class, given a set of features. 
Naive Bayes has been shown empirically to produce good 
classification accuracy across a variety of problem domains 
[27]. In this study, we evaluated Naive Bayes, the standard 
version that comes with Weka. 
3) Bayesian Networks 

Bayesian networks is a form of the probabilistic graphical 
model [28]. Specifically, a Bayesian network is a directed 
acyclic graph of nodes with variables and arcs representing 
dependence among the variables. Like Naïve Bayes, 
Bayesian networks are based on the Bayes Theorem, 
however, unlike Naïve Bayes they do not assume that the 
variables are independent. Actually Bayesian Networks are 
known for their ability to represent conditional probabilities 
which are the relations between variables. A Bayesian 
network can thus be considered a mechanism for 
automatically constructing extensions of Bayes' theorem to 
more complex problems. Bayesian networks were used for 
modeling knowledge and implemented successfully in 
different domains. We evaluated the Bayesian Network 
standard version which comes with WEKA. 
4) Artificial Neural Networks 

An Artificial Neural Network (ANN) [29] is an 
information processing paradigm that is inspired by the way 
biological nervous systems (i.e., the brain) are modeled with 
regards to information processing. The key element of this 
paradigm is the structure of the information processing 
system. It is a network composed of a large number of highly 
interconnected processing elements, called neurons, working 
together in order to approximate a specific function. An 
ANN is configured for a specific application, such as pattern 
recognition or data classification, through a learning process
during which the weights of the inputs in each neuron are 
updated. The weights are updated by a training algorithm, 
such as back-propagation; according to the examples the 
network receives, in order to reduce the value of error 
function. The power and usefulness of ANN have been 
demonstrated in numerous applications including speech 
synthesis, medicine, finance and many other pattern 
recognition problems. For some application domains, neural 
models show more promise in achieving human-like 
performance than do more traditional artificial intelligence 
techniques. All ANN manipulations in this study have been 
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performed within a MATLAB(r) environment using Neural 
Network Toolbox [30].

IV. EXPERIMENTAL DESIGN

In the first part of the study, we wanted to identify the best 
feature selection measure, the best classification algorithm 
and the minimal features required to maintain a high level of 
accuracy. In the second part we wanted to measure the 
ability to classify unknown worms using a training set of 
known worms. In order to answer these questions we 
designed two experimental plans, based on seventeen sets of 
subsets resulted from the four feature selection measures, 
from which we extracted the Top 5, 10, 20 and 30, and the 
full feature set, in which each set appeared in eight created 
datasets (described earlier), for the evaluation. After 
evaluating all the classification algorithms on the sets of 
datasets, we selected the best feature selection and the top 
features to evaluate the unknown worms' detection. 

A. Experiment I – Best feature selection 

To determine which feature selection measure, top feature 
selection and classification algorithm are the best, we had a 
wide set of experiments, in which we evaluated each 
classification algorithm, feature selection and top selection 
combination. In this experiment, called e1, we trained each 
classifier on a single dataset i and tested on each one (j) of 
the eight datasets. Thus, we had a set of 8 iterations in which 
a dataset was used for training, and 8 corresponding 
evaluations which were done on each one of the datasets, 
resulting in 64 evaluation runs, for each one of the 
combination of classification algorithm, feature selection 
measure and top feature selection. When i = j, we used 10 
folded cross validation [31], in which the dataset is 
partitioned into 10 partitions and repeatedly the classifier is 
trained on 9 partitions and tested on the 10th. Note, that the 
task was to specifically classify the exact worm out of the 
five or a none (worm) activity, and not generally to a binary 
classification of “worm” or a “none” activity, which was our 
final goal in the context of an unknown worm detection. 
Such conditions while being more challenging were expected 
to bring more insights.

B. Experiment II – Unknown worms detection 

To estimate the potential of the suggested approach in 
classifying an unknown worm activity, which was the main 
objective of this study, we designed an additional 
experiment, called e2, in which we trained classifiers based 
on part of the (five) worms and the none activity, and tested 
on the excluded worms (from the training set) and the none
activity, in order to measure the detection capability of an 
unknown worm and the none activity. 

In the first experiment (e21) the training set consisted on 
four worms and the testing set contained the fifth excluded 
worm, while the none activity  appeared in both datasets. 
This process repeated five times for each worm. 

To better estimate the generalization based on the amount 
of worm activity examples in the training set, we extended 
e21 to e22, in which we decreased the amount of worms in 
the training set and increased the amount of (unknown) 
worms in the test set. We did it for three options of one to 
three worms in the training set in addition to e21, in which 
there were four worms. The test set included only the 
excluded worms and not the worms presented in the training 
set since we wanted to measure the detection rate of the 
unknown specifically. Note, that in these experiments, unlike 
in e1, there were two classes: (generally) worm, for any type 
of worm, and none activity. This experiment was evaluated 
on each classification algorithm, using the outperforming top 
selected features from e1. 

C. Evaluation Measures 

For the purpose of evaluation we used the True 
Positive (TP) measure presenting the rate of instances 
classified as positive correctly, False Positive (FP)
presenting the rate of positive instances misclassified 
(Equation 7), and the Total Accuracy - the rate of the 
entire correctly classified instances, either positive or 
negative, divided by the entire number of instances, as 
shown in Equation 8. The actual (A) amount of 
classifications are represented by XYA, where Y
presents the classification (positive or negative) and X
presents the classification correctness (true or false).

AA

A

FNTP

TP
TP

+
= ;  

AA

A

TNFP

FP
FP

+
= ;   (7) 

AAAA

AA

FNTNFPTP

TNTP
AccuracyTotal

+++
+

= ; (8) 

We also measured a confusion matrix, which depicts the 
number of instances from each class which were classified in 
each one of the classes (ideally all the instances would be in 
their actual class). 

V. RESULTS

A. Experiment I 

Our objective in e1 was to determine the best feature 
selection measure, top feature subset size, and classification 
algorithms. We ran 68 (4 classification algorithms applied to 
17 data sets) evaluations (each includes 64 runs), summing 
up to 4352 evaluation runs. Figure 1 shows the mean 
performance achieved for each feature selection measure in 
each top selection. Based on the mean performance of the 
four classification algorithms GainRatio outperformed the 
other measures in most of the top features selection, while 
the ensemble outperformed at the Top5. Unlike the 
independent measures in which there was a monotonic 
growth when features added, in the ensemble a monotonic 
slight decrease was observed as more features used. The 

174

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Security and Defense Applications (CISDA 2007)



Top20 features outperformed in general (by averaging) and 
in GainRatio in particular. 

Figure 2 shows the same results but presenting the mean 
performance of the classification algorithms and the top 
feature subset size. Bayesian Networks outperforms for any 
amount of top selection, and in average the Top20
outperformed the other top selections. To emphasize the 
significant features types the Top5 of the GainRatio
included: A_1ICMP: Sent_Echo_sec, Messages_Sent_sec, 
Messages_sec, and A_1TCP: Connections_Passive and 
Connection_Failures, which are windows performance 
counters, related to ICMP and TCP, describing general 
communication properties. 

Fig. 1. The mean performance achieved by each feature selection measure, 
and the top ranked features. While Top20 outperforms for most of the 
measures, Top5 outperforms for the Ensemble. 

B. Experiment II 

Based on the results achieved in e1, in which the Top20 from 
GainRatio outperformed on average, we used only this 
features subset in e2. Table 1 presents a detailed report on 
the results from e21. Each row presents the results achieved 
when worm i (see section III.A.2) was in the test set and the 
columns refer to the classification algorithms. On average, 
while the Decision Trees outperformed the other 
classification algorithms, each classification algorithm 
outperformed in detecting different unknown worms and the 
false positive rates in all the classification algorithms were 
low. 

Fig 2. The performance achieved by each classification algorithm and the 
top ranked selection. Bayesian Networks outperformed across all 
categories. While for most of the algorithms Top30 and Top20 achieved 
similar performance, in the Bayesian Networks the Top30 outperformed.

TABLE I 
THE RESULTS OF E21, SHOW A DIFFERENCE IN THE DETECTION ACCURACY OF EACH CLASSIFICATION ALGORITHM FOR EACH TYPE OF WORM. ON AVERAGE,

DECISION TREES OUTPERFORMED THE OTHER ALGORITHMS, WHILE MAINTAINING A VERY LOW LEVEL OF FALSE POSITIVE RATE.

ANN_20 BN_20 DT_20 NB_20 

Worm Acc TP FP Acc TP FP Acc TP FP Acc TP FP 

1 0.985 0.985 0.014 0.554 0.557 0.443 0.936 0.937 0.063 0.497 0.500 0.499 

2 0.494 0.499 0.500 0.992 0.992 0.007 0.999 0.999 0.0005 0.997 0.997 0.002 

3 0.952 0.952 0.047 0.992 0.993 0.007 0.680 0.678 0.3215 0.844 0.843 0.156 

4 0.994 0.994 0.005 0.998 0.998 0.002 0.968 0.968 0.032 0.998 0.998 0.002 

5 0.636 0.637 0.362 0.990 0.991 0.008 0.999 0.999 0.0005 0.975 0.974 0.026 

Avg. 0.81 0.81 0.19 0.91 0.91 0.09 0.92 0.92 0.08 0.86 0.86 0.14 

StdDev 0.05 0.05 0.05 0.04 0.04 0.04 0.02 0.02 0.02 0.05 0.05 0.05 
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Figure 3 presents the results of e22, in which a monotonic 
increase in the accuracy is shown. As more worms are in the 
training set the accuracy is higher. Note that the number of 
worms in the x axis refer to the number of excluded worms, 
which were in the test set.

Fig 3. The performance monotonically increases as fewer worms are 
excluded (and more worms appear in the training set) 

I. CONCLUSIONS AND FUTURE WORK

We presented the concept of detecting unknown computer 
worms based on a host behavior, using Data Mining 
algorithms. Based on the results shown in this study using 
Data Mining concepts, such as feature selection and 
classification algorithms, it is possible to identify the most 
important computer features in order to detect unknown 
worm activity, currently performed by human experts. Based 
on the initial experiment (e1), the GainRatio feature 
selection measure was most suitable in this task. In average 
the Top20 features produced the highest results. Bayesian 
Networks commonly outperformed other classification 
algorithms. In the detection of unknown worms (e2), the 
results shown that it is possible to achieve a high level of 
accuracy (above 90% in average), however, the detection of 
each worm varied and each classification algorithm seemed 
to classify better other unknown worms exceeding 99% 
accuracy. Thus, we are considering applying an ensemble of 
classifiers to achieve a unified level of accuracy in detecting 
a variety of worm instances. These results are highly 
encouraging and show that worms, which commonly spread 
intensively can be stopped from propagating in real time. 
The advantage of the suggested approach is the automatic 
acquisition and maintenance of knowledge, based on 
inductive learning. This avoids the need in a human expert 
who is not always available and familiar with the general 
rules. This is possible these days based on the existing 
amount of known worms, as well as the generalization 
capabilities of classification algorithms. 

We are currently in the process of extending the amount of 
worms in the dataset, as well as extending the suggested 

approach to other types of malicious code using temporal 
data mining. 
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