

Abstract—Detecting unknown worms is a challenging task.
Extant solutions, such as anti-virus tools, rely mainly on prior
explicit knowledge of specific worm signatures. As a result,
after the appearance of a new worm on the Web there is a
significant delay until an update carrying the worm’s signature
is distributed to anti-virus tools. During this time interval a new
worm can infect many computers and create significant
damage. We propose an innovative technique for detecting the
presence of an unknown worm, not necessarily by recognizing
specific instances of the worm, but rather based on the
computer measurements. We designed an experiment to test the
new technique employing several computer configurations and
background applications activity. During the experiments 323
computer features were monitored. Four feature selection
techniques were used to reduce the amount of features and four
classification algorithms were applied on the resulting feature
subsets. Our results indicate that using this approach resulted,
in above 90% average accuracy, and for specific unknown
worms accuracy reached above 99%, using just 20 features
while maintaining a low level of false positive rate.

I. INTRODUCTION

HE detection of malicious code (malcode) transmitted
over computer networks has been researched intensively
in recent years. One type of abundant malcode are

worms, which proactively propagate across networks while
exploiting vulnerabilities in operating systems or in installed
programs. Other types of malcodes include computer viruses,
Trojan horses, spyware, and adware. In this study we focus
on worms, though we plan to expand the approach to other
malcodes.

Manuscript received October 31, 2006. This work was supported by
Deutsche Telekom Co.

Robert Moskovitch (corresponding author) is a PhD student, Deutsche
Telekom Laboratories at Ben-Gurion University, Be’er Sheva, 84105 Israel.
Phone: +972-52-2668071; email: robertmo@bgu.ac.il.

Ido Gus and Shay Pluderman were undergraduate students at the
Deutsche Telekom Laboratories at Ben-Gurion University, Ben-Gurion
University of the Negev, Be’er Sheva, 84105 Israel; email: gus@bgu..ac.il,
shaipl@gbgu.ac.il.

Dima Stopel is an M.Sc student, Deutsche Telekom Laboratories at Ben-
Gurion University, Be’er Sheva, 84105 Israel. email: stopel@cs.bgu.ac.il.

Chanan Glezer is with Deutsche Telekom Laboratories at Ben-Gurion
University, Ben-Gurion University of the Negev, Be’er Sheva, 84105 Israel;
email: chanan@bgu.ac.il.

Yuval Shahar, is the Head of the Department of Information Systems
Engineering, Deutsche Telekom Laboratories at Ben-Gurion University,
Ben-Gurion University of the Negev, Be’er Sheva, 84105 Israel; email:
yshahar@bgu.ac.il.

Yuval Elovici, is the Head of the the Deutsche Telekom Laboratories at
Ben-Gurion University, Ben-Gurion University of the Negev, Be’er Sheva,
84105 Israel; email: elovici@bgu.ac.il.

Nowadays, excellent technology (i.e., antivirus software
packages) exists for detecting known malicious code.
Typically, antivirus software packages inspect each file that
enters the system, looking for known signs (signatures)
uniquely identifying an instance of malcode. Nevertheless,
antivirus technology is based on prior explicit knowledge of
malcode signatures and cannot be used for detecting
unknown malcode. Following the appearance of a new worm
instance, a patch is provided by the operating system
provider and the antivirus vendors update their signatures-
base accordingly. This solution is not perfect, however, since
worms propagate very rapidly. By the time the antivirus
software has been notified about the new worm, a very
expensive damage has already been inflicted [1].

Intrusion detection, commonly made at the network level,
called network based intrusion detection (NIDS), was
researched substantionally [2]. However, NIDS are limited in
their detection capabilities (like any detection system). In
order to detect malcodes which slipped through the NIDS at
the network level, detection operations are performed locally
at the host level, called Host Based Intrusion Detection
(HIDS). HIDS are detection systems consist on monitoring
activities at a host. HIDS, commonly, consist on comparing
the states of the computer in several aspects, such as the
changes in the file system using checksum comparisons. The
main drawback of this approach is the ability of malcodes to
disable antiviruses, and other technical limitations such as
the fast change in the file system. The main problem is the
detection knowledge maintenance, which is acquired
commonly manually by the domain expert.

Recent studies have proposed methods for detecting
unknown malcode using Machine Learning techniques.
Given a training set of malicious and benign executables
binary code, a classifier is trained and learns to identify and
classify unknown malicious executables as being malicious
[3,4,5]. While this approach is a potentially good solution, it
is not complete since it can detect only executable files, and
malcodes located entirely in the memory, such as the
Slammer worm [6], cannot be detected using this technique.
Moreover, any technique can be sabotaged by a malcode.

Our suggested approach can be classified under HIDS, but
the novelty here is that it is based on the computer
measurements and that the knowledge is acquired
automatically using inductive learning, given a dataset of
known worms. This approach avoids the need in manual

Detection of Unknown Computer Worms Activity Based on
Computer Behavior using Data Mining

Robert Moskovitch, Ido Gus, Shay Pluderman, Dima Stopel, Chanan Glezer, Yuval Shahar and Yuval
Elovici

T

169

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

1-4244-0700-1/07/$20.00 ©2007 IEEE

knowledge acquisition, which is sometimes unavailable,
especially in such approach, as well as the knowledge
maintenance. While this approach doesn’t prevent the
infection it enables a fast detection of the infection which
may result in alert, which can be further reasoned at the
network level. Further reasoning based on the network-
topology can be performed by a network administration
function, and relevant decisions and policies, such as
disconnecting a single computer or a cluster, can be further
implemented. In this study, we focus on a proposed
technique that enables the detection of unknown worms
based on a single computer's (host) behavior.

Generally speaking, malcode within the same category
(e.g., worms, Trojans, spyware, adware) share similar
characteristics and behavior patterns. These patterns are
reflected by the infected computer's behavior as represented
by its measurements. Based on these common characteristics,
we suggest that an unknown worm can be detected based on
the computer's behavior using Data Mining techniques. In
the proposed approach, a classifier is trained on computer
measurements of known worm and non-worm behaviors.
Based on the generalization capability of the classification
algorithm, we argue that a classifier can further detect
previously unknown worm activity. Nevertheless, this
approach may be affected by the variation of computer and
application configurations as well as user behavior on each
computer. In this study, we investigate whether an unknown
worm activity can be detected, at a high level of accuracy,
given the variation in hardware and software environmental
conditions on individual computers, while minimizing the set
of features required.

The rest of the article is structured as follows: in section 2,
a survey of the relevant background for this work is
presented. The methods used in this study are described in
section 3, followed by the research questions and the
corresponding experimental plan in section 4. Finally, results
are presented, followed by a discussion and conclusions.

II. BACKGROUND AND RELATED WORK

A. Malicious Code and Worms

The term 'malicious code' (malcode) refers to a piece of
code, not necessarily an executable file, intended to harm,
whether generally or in particular, a specific owner (host).
The approach suggested in this study aims at detecting any
malcode activity, whether known or unknown. However,
since we originated our research on worms, we will focus on
them in this section.

Kienzle and Elder [7], define a worm by several aspects
through which can be distinguished from other types of
malcode: 1) Malicious code – worms are considered
malicious in nature. 2) Network propagation or Human
intervention - a commonly agreed upon aspect, that is,
worms propagate actively over a network, while other types
of malicious codes, such as viruses, commonly require

human activity to propagate. 3) Standalone or file infecting –
while viruses infect a file (its host), a worm does not require
a host file, and sometimes does not even require an
executable file, residing entirely in the memory, as did the
Code Red [8] worm. Different purposes and motivations
stand behind worms developers [9] including: Experimental
curiosity which can lead any person to create a worm, such
as the ILoveYou worm [10]. Pride and power leading
programmers to show-off their knowledge and skill exhibited
through the harm caused by the worm; commercial
advantage, extortion and criminal gain, random and
political protest, and terrorism and cyber warfare. The
existence of all these types of motivation indicates that
computer worms are here to stay as a network vehicle
serving different purposes and implemented in different
ways. To effectively address the challenge posed by worms,
meaningful experience and knowledge should extracted by
analyzing known worms. Current days given the known
worms we have a great opportunity to learn from these
examples in order to generalize. We argue that data mining
methods can be a very useful to learn and generalize from
previous see worms, in order to classify effectively unknown
worms, as a last detection method.

B. Detecting Malicious Code Using Data Mining

Data mining, commonly considered as the application of
machine learning to huge data sets, has already been used in
efforts to detect and protect against malicious codes.

A recent survey on intrusion detection [2] summarizes
recent proposed application of data mining in recognizing
malcodes in single computers and in computer networks. Lee
et al. proposed a framework consisting of data mining
algorithms for the extraction of anomalies of user normal
behavior for the use in anomaly detection [11], in which a
normal behavior is learned and any abnormal activity is
considered as intrusive. The authors suggest several
techniques, such as classification, meta-learning, association
rules, and frequent episodes, to extract knowledge for further
implemented in intrusion detection systems. They evaluated
their approach on the DARPA98 [12] benchmark test
collection, which is a standard benchmark of network data
for intrusion detection research.

A Naïve Bayesian classifier was suggested in [2] referring
to its implementation within the ADAM system developed
by Barbara et al. [13]. The ADAM system had three main
parts: (a) monitoring network data through listening to
TCP/IP protocol; (b) a data mining engine which enables
acquiring the association rules from the network data; and (c)
a classification module which classifies the nature of the
traffic in two possible classes: normal and abnormal which
can later be linked to specific attacks. Other machine
learning algorithms techniques proposed are Artificial
Neural Networks (ANN) [14,15,16], Self Organizing Maps
(SOM) [17] and fuzzy logic [18,19,20].

170

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

III. METHODS

The general goal of this study is to assess the viability of
employing Data Mining techniques in detecting the existence
of unknown worms in an individual computer host based on
it's behavior (measurements). In order to create a testing
environment, we have built a local network of computers,
which enabled us to inject worms into a controlled
environment, while monitoring the computers and collecting
measurements. Preliminary results were very encouraging,
but we wanted to estimate the influence of the environment
in which the training set was produced on the detection
accuracy in another environment. In an extensive experiment
we had showed elsewhere [21] that there is no significant
influence. Moreover, when a classifier trained on an old
computer it had better detection accuracy then the opposite.
In this study we want to further investigate the capability of
detecting unknown malicious code.

A. DataSet Creation

Since there is no benchmark dataset which could be used
for this study, we created our own dataset. A network with
various computers (configurations) was deployed, into which
we could inject worms. The network was a controlled
environment, in which we could monitor the computer
features and document the measurements into log files.
1) Environment Description

The lab network consisted of 7 computers, which
contained heterogenic hardware, and a server computer
simulating the internet. We used the windows performance
counters1, which enable monitoring system features that
appear in these main categories (The amount of features in
each category appear in parenthesis) : Internet Control
Message Protocol (27), Internet Protocol (17), Memory
(29), Network Interface (17), Physical Disk (21), Process
(27), Processor (15), System (17), Transport Control
Protocol (9), Thread(12), User Datagram Protocol (5). In
addition we used VTrace [22]. A software tool which can be
installed on a PC running Windows for monitoring purposes.
VTrace collects traces of the file system, the network, the
disk drive, processes, threads, interprocess communication,
waitable objects, cursor changes, windows, and the
keyboard. The data from the windows performance were
configured to measure the features every second and store
them in a log file as vector. VTrace stored time-stamped
events, which were aggregated into the same fixed intervals,
and merged with the windows performance log files. These
eventually included a vector of 323 features for every
second.
2) Injected Worms

While selecting worms from the wild, our goal was
choosing worms that differ in their behavior, within the
available worms. Some of the worms have a heavy payload
of Trojans to install in parallel to the distribution process

1http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/counter/counters2_lbfc.asp

upon the network, other focus only on distribution. Another
aspect is having different strategies for IP scanning which
results in varying communication behavior, CPU
consumption and network usage. While all the worms are
different we wanted to find common characteristics to be
able to detect an unknown worm. We briefly describe here
the main characteristics, relevant to this study, of each worm
included in this study. The information is based on the virus
libraries on the web234. We briefly describe the five worms
we used:

(1) W32.Dabber.A scans IP addresses randomly. It uses
the W32.Sasser.D worm to propagate and opens the FTP
server to upload itself to the victim computer. Registering
itself enables its execution on the next user log in (human
based activation). It drops a backdoor, which listens on a
predefined port. This worm is distinguished by its use of an
external worm in order to propagate.

(2) W32.Deborm.Y is a self-carried worm, which prefers
local IP addresses,. This worm registers itself as an MS
Windows service and is being executed upon user login
(human based activation). This worm contains three Trojans
as a payload: Backdoor.Sdbot, Backdoor.Litmus, and
Trojan.KillAV, and executes all of them. We chose this
worm because of its heavy payload.

(3) W32.Korgo.X is a self carrying worm which uses
totally random method for IP addresses scanning. It is self-
activated and tries to inject itself as a function to MS Internet
Explorer as a new thread. It contains a payload code which
enables to connect predefined websites in order to receive
orders or download newer worm versions.

(4) W32.Sasser.D uses a preference for local addresses
optimization while scanning the network. It scans about half
of the time local addresses and in the other half random
addresses. In particular it opens 128 threads for scanning the
netwrok, which requires a heavy CPU consumption, as well
as significant network traffic. It is a self carried worm uses a
shell to connect to the infected computer’s FTP server and to
upload itself.

(5) W32.Slackor.A is a self-carried worm exploits MS
Windows sharing vulnerability to propagate. The worm
registers itself to be executed upon user login. It contains a
Trojan payload and opens an IRC server on the infected
computer in order to receive orders.

All the worms perform port scanning and possess different
characteristics. Further information about these worms can
be accessed through libraries on the web567.
3) Dataset Description

In order to examine the influence of a computer hardware
configuration, background running applications, and user

2 Symantec – www.symantec.com
3 Kasparsky www.viruslist.com
4Macfee http://vil.nai.com
5 Symantec – www.symantec.com
6 Kasparsky www.viruslist.com
7Macfee http://vil.nai.com

171

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

activity, we considered three major aspects: computer
hardware configuration, constant background application
consuming extreme computational resources, and user
activity, being binary variables. (1) Computer hardware
configuration: Both computers ran on Windows XP, which
considered the most widely used operation system, having
two configuration types: an "old", having Pentium 3 800Mhz
CPU, bus speed 133Mhz and memory 512 Mb, and a "new",
having Pentium 4 3Ghz CPU, bus speed 800Mhz and
memory 1 Gb. (2) Background application: We ran an
application affecting mainly the following features:
Processor object, Processor Time (usage of 100%); Page
Faults/sec; Physical Disk object, Avg Disk Bytes/Transfer,
Avg Disk Bytes/Write, and Disk Writes/sec. (3) User activity:
several applications, including browsing, downloading and
streaming operations through Internet Explorer, Word,
Excel, chat through MSN messenger, and Windows Media
Player, were executed to imitate user activity in a scheduled
order. The two options in the Background Application and
User Activity were presence or absence of the user activity.

Each dataset contained monitored samples of each one of
the five injected worms separately, and samples of a normal
computer behavior, without any injected worm. Each worm
was monitored for a period of 20 minutes in resolution of
seconds. Thus, each record, containing a vector of
measurements and a label, presented a second and labeled by
the specific worm activity, or none activity label. Each
dataset contained few thousands (labeled samples) of each
worm or none activity. We therefore had three binary
aspects, which resulted in 8 possible combinations
representing a variety of dynamic computer configurations
and usage patterns. Each dataset contained monitored
samples for each of the five worms injected separately, and
samples of a normal computer behavior without any injected
worm. Each sample (record) was labeled with the relevant
worm (class), or 'none' for "clean" samples.

B. Feature Selection

In Data Mining applications, the large number of features
in many domains presents a huge challenge. Typically, some
of the features do not contribute to the accuracy of the
classification task and may even hamper it. Moreover, in our
approach reducing the amount of features, while maintaining
a high level of detection accuracy, is crucial for meeting
computer performance and resource consumption. Ideally,
we would like to minimize the self-consumption of computer
resources required for the monitoring operations
(measurements) and the classifier computations. This can be
achieved through reduction of the classified features using
the feature selection technique. Since this is not the focus of
this paper, we will describe the feature selection
preprocessing very briefly. In order to compare the
performance of the classification algorithms, we used the
filters approach, which is applied on the dataset and is
independent of any classification algorithm (unlike wrappers,

in which the best subset is chosen upon an iterative
evaluation experiment). Under filters, a measure is calculated
to quantify the correlation of each feature with the class (in
our case, the presence or absence of a worm activity). Each
feature receives a rank representing its expected contribution
in the classification task. Eventually, the top ranked features
were selected.

We used three feature selection measures which resulted
in a list of ranks for each feature selection measure and an
ensemble incorporating all three of them. We used Chi-
Square (CS), Gain Ratio (GR), ReliefF implemented in the
Weka environment [23] and their ensemble, based on a
simple average of the three ranks. We took the highest
ranked (top) features 5, 10, 20 and 30 from each feature
selection measure ranked list. Finally we had four subsets
and the full features set, for whom we had eight datasets each
resulting in 17 datasets. While the feature selection isn’t the
focus of this study, but its application we briefly describe the
measures we used.

Chi-Square measures the lack of independence between a
feature f and a class ci and can be compared to the chi-square
distribution with one degree of freedom to judge
extremeness. Equation 1 shows how the chi-square measure
is defined and computed, where N is the total number of
documents and f refers to the presence of the feature (and

f its absence), and ci refers to its membership in ci.

)()()()(

)],(),(),(),([
),(

2
2

ii

iiiii
i cPcPfPfP

cfPcfPcfPcfPN
cf

−
=χ (1)

Gain Ratio originally presented by Quinlan in the context
of decision trees [24], which was designed to overcome a
bias in the Information Gain (IG) measure [25], which
measures the expected reduction of entropy caused by
partitioning the examples according to a chosen feature.
Given entropy E(S) as a measure of the impurity in a
collection of items, it is possible to quantify the effectiveness
of a feature in classifying the training data. Equation 3
presents the formula of the entropy of a set of items S, based
on C subsets of S (for example, classes of the items),
presented by Sc. Information Gain measure the expected
reduction of entropy caused by portioning the examples
according to attribute A, in which V is the set of possible
values of A, as shown in equation 2. These equations refer to
discrete values; however, it is possible to extend it to
continuous values attribute.

)(
||

||
)(),(

)(
v

AVv

v SE
S

S
SEASIG ∑

∈

⋅−= (2)

||

||
log

||

||
)(2 S

S

S

S
SE c

Cc

c∑
∈

⋅−= (3)

172

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

The IG measure favors features having a high variety of
values over those with only a few. GR overcomes this
problem by considering how the feature splits the data
(Equations 4 and 5). Si are d subsets of examples resulting
from portioning S by the d-valued feature A.

),(

),(
),(

ASSI

ASIG
ASGR = (4)

||

||
log

||

||
),(

1
2 S

S

S

S
ASSI i

d

i

i∑
=

⋅−= (5)

ReslifF [26] estimates the quality of the features according
to how well their values distinguish between instances that
are near each other. Given a randomly selected instance x,
from a dataset s with k features, Relief searches the data set
for its two nearest neighbors. From the same class, called
nearest hit H and from different class, called nearest miss M.
The quality estimation W[Ai] is stored in a vector of the
features Ai, based on the values of a difference function diff()
given x, H and M as shown in equation 6..

⎪
⎩

⎪
⎨

⎧

≠
=

−
=

, &nominal is A if 1

 , & nominal is A if 0

numeric, is A if ||

),,(

21i

21i

i21

21

ii

ii

ii

iii

xx

xx

xx

xxAdiff (6)

C. Classification Algorithms

One of the goals of this study was to pinpoint the
classification algorithm which provides the highest level of
detection accuracy. We employed four commonly used
Machine Learning algorithms: Decision Trees, Naïve Bayes,
Bayesian Networks and Artificial Neural Networks, in a
supervised learning approach, in which the classification
algorithm learns from a provided training set, containing
labeled examples.

While the focus of this paper is not on classification
algorithm techniques, but on their application in the task of
detecting worm activity, we briefly describe the
classification algorithms we used in this study.
1) Decision Trees

Decision tree learners [24] are a well-established family of
learning algorithms. Classifiers are represented as trees
whose internal nodes are tests on individual features and
leaves are classification decisions. Typically, a greedy
heuristic search method is used to find a small decision tree
that correctly classifies the training data. The decision tree is
induced from the dataset by splitting the variables based on
the expected information gain. Modern implementations
include pruning which avoids over fitting. In this study we
evaluated J48, the Weka version of the commonly used C4.5
algorithm [24]. An important characteristic of Decision
Trees is the explicit form of their knowledge which can be
easily represented as a set of rules.
2) Naïve Bayes

The Naïve Bayes classifier is based on the Bayes theorem,

which in the context of classification states that the posterior
probability of a class is proportional to its prior probability
as well as to the conditional likelihood of the features, given
this class. If no independent assumptions are made, a
Bayesian algorithm must estimate conditional probabilities
for an exponential number of feature combinations. “Naive
Bayes” simplifies this process by making the assumption that
features are conditionally independent given the class, and
requires that only a linear number of parameters be
estimated. The prior probability of each class and the
probability of each feature, given each class, is easily
estimated from the training data and used to determine the
posterior probability of each class, given a set of features.
Naive Bayes has been shown empirically to produce good
classification accuracy across a variety of problem domains
[27]. In this study, we evaluated Naive Bayes, the standard
version that comes with Weka.
3) Bayesian Networks

Bayesian networks is a form of the probabilistic graphical
model [28]. Specifically, a Bayesian network is a directed
acyclic graph of nodes with variables and arcs representing
dependence among the variables. Like Naïve Bayes,
Bayesian networks are based on the Bayes Theorem,
however, unlike Naïve Bayes they do not assume that the
variables are independent. Actually Bayesian Networks are
known for their ability to represent conditional probabilities
which are the relations between variables. A Bayesian
network can thus be considered a mechanism for
automatically constructing extensions of Bayes' theorem to
more complex problems. Bayesian networks were used for
modeling knowledge and implemented successfully in
different domains. We evaluated the Bayesian Network
standard version which comes with WEKA.
4) Artificial Neural Networks

An Artificial Neural Network (ANN) [29] is an
information processing paradigm that is inspired by the way
biological nervous systems (i.e., the brain) are modeled with
regards to information processing. The key element of this
paradigm is the structure of the information processing
system. It is a network composed of a large number of highly
interconnected processing elements, called neurons, working
together in order to approximate a specific function. An
ANN is configured for a specific application, such as pattern
recognition or data classification, through a learning process
during which the weights of the inputs in each neuron are
updated. The weights are updated by a training algorithm,
such as back-propagation; according to the examples the
network receives, in order to reduce the value of error
function. The power and usefulness of ANN have been
demonstrated in numerous applications including speech
synthesis, medicine, finance and many other pattern
recognition problems. For some application domains, neural
models show more promise in achieving human-like
performance than do more traditional artificial intelligence
techniques. All ANN manipulations in this study have been

173

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

performed within a MATLAB(r) environment using Neural
Network Toolbox [30].

IV. EXPERIMENTAL DESIGN

In the first part of the study, we wanted to identify the best
feature selection measure, the best classification algorithm
and the minimal features required to maintain a high level of
accuracy. In the second part we wanted to measure the
ability to classify unknown worms using a training set of
known worms. In order to answer these questions we
designed two experimental plans, based on seventeen sets of
subsets resulted from the four feature selection measures,
from which we extracted the Top 5, 10, 20 and 30, and the
full feature set, in which each set appeared in eight created
datasets (described earlier), for the evaluation. After
evaluating all the classification algorithms on the sets of
datasets, we selected the best feature selection and the top
features to evaluate the unknown worms' detection.

A. Experiment I – Best feature selection

To determine which feature selection measure, top feature
selection and classification algorithm are the best, we had a
wide set of experiments, in which we evaluated each
classification algorithm, feature selection and top selection
combination. In this experiment, called e1, we trained each
classifier on a single dataset i and tested on each one (j) of
the eight datasets. Thus, we had a set of 8 iterations in which
a dataset was used for training, and 8 corresponding
evaluations which were done on each one of the datasets,
resulting in 64 evaluation runs, for each one of the
combination of classification algorithm, feature selection
measure and top feature selection. When i = j, we used 10
folded cross validation [31], in which the dataset is
partitioned into 10 partitions and repeatedly the classifier is
trained on 9 partitions and tested on the 10th. Note, that the
task was to specifically classify the exact worm out of the
five or a none (worm) activity, and not generally to a binary
classification of “worm” or a “none” activity, which was our
final goal in the context of an unknown worm detection.
Such conditions while being more challenging were expected
to bring more insights.

B. Experiment II – Unknown worms detection

To estimate the potential of the suggested approach in
classifying an unknown worm activity, which was the main
objective of this study, we designed an additional
experiment, called e2, in which we trained classifiers based
on part of the (five) worms and the none activity, and tested
on the excluded worms (from the training set) and the none
activity, in order to measure the detection capability of an
unknown worm and the none activity.

In the first experiment (e21) the training set consisted on
four worms and the testing set contained the fifth excluded
worm, while the none activity appeared in both datasets.
This process repeated five times for each worm.

To better estimate the generalization based on the amount
of worm activity examples in the training set, we extended
e21 to e22, in which we decreased the amount of worms in
the training set and increased the amount of (unknown)
worms in the test set. We did it for three options of one to
three worms in the training set in addition to e21, in which
there were four worms. The test set included only the
excluded worms and not the worms presented in the training
set since we wanted to measure the detection rate of the
unknown specifically. Note, that in these experiments, unlike
in e1, there were two classes: (generally) worm, for any type
of worm, and none activity. This experiment was evaluated
on each classification algorithm, using the outperforming top
selected features from e1.

C. Evaluation Measures

For the purpose of evaluation we used the True
Positive (TP) measure presenting the rate of instances
classified as positive correctly, False Positive (FP)
presenting the rate of positive instances misclassified
(Equation 7), and the Total Accuracy - the rate of the
entire correctly classified instances, either positive or
negative, divided by the entire number of instances, as
shown in Equation 8. The actual (A) amount of
classifications are represented by XYA, where Y
presents the classification (positive or negative) and X
presents the classification correctness (true or false).

AA

A

FNTP

TP
TP

+
= ;

AA

A

TNFP

FP
FP

+
= ; (7)

AAAA

AA

FNTNFPTP

TNTP
AccuracyTotal

+++
+

= ; (8)

We also measured a confusion matrix, which depicts the
number of instances from each class which were classified in
each one of the classes (ideally all the instances would be in
their actual class).

V. RESULTS

A. Experiment I

Our objective in e1 was to determine the best feature
selection measure, top feature subset size, and classification
algorithms. We ran 68 (4 classification algorithms applied to
17 data sets) evaluations (each includes 64 runs), summing
up to 4352 evaluation runs. Figure 1 shows the mean
performance achieved for each feature selection measure in
each top selection. Based on the mean performance of the
four classification algorithms GainRatio outperformed the
other measures in most of the top features selection, while
the ensemble outperformed at the Top5. Unlike the
independent measures in which there was a monotonic
growth when features added, in the ensemble a monotonic
slight decrease was observed as more features used. The

174

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

Top20 features outperformed in general (by averaging) and
in GainRatio in particular.

Figure 2 shows the same results but presenting the mean
performance of the classification algorithms and the top
feature subset size. Bayesian Networks outperforms for any
amount of top selection, and in average the Top20
outperformed the other top selections. To emphasize the
significant features types the Top5 of the GainRatio
included: A_1ICMP: Sent_Echo_sec, Messages_Sent_sec,
Messages_sec, and A_1TCP: Connections_Passive and
Connection_Failures, which are windows performance
counters, related to ICMP and TCP, describing general
communication properties.

Fig. 1. The mean performance achieved by each feature selection measure,
and the top ranked features. While Top20 outperforms for most of the
measures, Top5 outperforms for the Ensemble.

B. Experiment II

Based on the results achieved in e1, in which the Top20 from
GainRatio outperformed on average, we used only this
features subset in e2. Table 1 presents a detailed report on
the results from e21. Each row presents the results achieved
when worm i (see section III.A.2) was in the test set and the
columns refer to the classification algorithms. On average,
while the Decision Trees outperformed the other
classification algorithms, each classification algorithm
outperformed in detecting different unknown worms and the
false positive rates in all the classification algorithms were
low.

Fig 2. The performance achieved by each classification algorithm and the
top ranked selection. Bayesian Networks outperformed across all
categories. While for most of the algorithms Top30 and Top20 achieved
similar performance, in the Bayesian Networks the Top30 outperformed.

TABLE I
THE RESULTS OF E21, SHOW A DIFFERENCE IN THE DETECTION ACCURACY OF EACH CLASSIFICATION ALGORITHM FOR EACH TYPE OF WORM. ON AVERAGE,

DECISION TREES OUTPERFORMED THE OTHER ALGORITHMS, WHILE MAINTAINING A VERY LOW LEVEL OF FALSE POSITIVE RATE.

ANN_20 BN_20 DT_20 NB_20

Worm Acc TP FP Acc TP FP Acc TP FP Acc TP FP

1 0.985 0.985 0.014 0.554 0.557 0.443 0.936 0.937 0.063 0.497 0.500 0.499

2 0.494 0.499 0.500 0.992 0.992 0.007 0.999 0.999 0.0005 0.997 0.997 0.002

3 0.952 0.952 0.047 0.992 0.993 0.007 0.680 0.678 0.3215 0.844 0.843 0.156

4 0.994 0.994 0.005 0.998 0.998 0.002 0.968 0.968 0.032 0.998 0.998 0.002

5 0.636 0.637 0.362 0.990 0.991 0.008 0.999 0.999 0.0005 0.975 0.974 0.026

Avg. 0.81 0.81 0.19 0.91 0.91 0.09 0.92 0.92 0.08 0.86 0.86 0.14

StdDev 0.05 0.05 0.05 0.04 0.04 0.04 0.02 0.02 0.02 0.05 0.05 0.05

175

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

Figure 3 presents the results of e22, in which a monotonic
increase in the accuracy is shown. As more worms are in the
training set the accuracy is higher. Note that the number of
worms in the x axis refer to the number of excluded worms,
which were in the test set.

Fig 3. The performance monotonically increases as fewer worms are
excluded (and more worms appear in the training set)

I. CONCLUSIONS AND FUTURE WORK

We presented the concept of detecting unknown computer
worms based on a host behavior, using Data Mining
algorithms. Based on the results shown in this study using
Data Mining concepts, such as feature selection and
classification algorithms, it is possible to identify the most
important computer features in order to detect unknown
worm activity, currently performed by human experts. Based
on the initial experiment (e1), the GainRatio feature
selection measure was most suitable in this task. In average
the Top20 features produced the highest results. Bayesian
Networks commonly outperformed other classification
algorithms. In the detection of unknown worms (e2), the
results shown that it is possible to achieve a high level of
accuracy (above 90% in average), however, the detection of
each worm varied and each classification algorithm seemed
to classify better other unknown worms exceeding 99%
accuracy. Thus, we are considering applying an ensemble of
classifiers to achieve a unified level of accuracy in detecting
a variety of worm instances. These results are highly
encouraging and show that worms, which commonly spread
intensively can be stopped from propagating in real time.
The advantage of the suggested approach is the automatic
acquisition and maintenance of knowledge, based on
inductive learning. This avoids the need in a human expert
who is not always available and familiar with the general
rules. This is possible these days based on the existing
amount of known worms, as well as the generalization
capabilities of classification algorithms.

We are currently in the process of extending the amount of
worms in the dataset, as well as extending the suggested

approach to other types of malicious code using temporal
data mining.

ACKNOWLEDGMENT

We would like to thank our undergraduate student, Clint
Feher, for providing the worm software and creating the
large number of data sets we used in this study.

REFERENCES

[1] Craig Fosnock, Computer Worms: Past, Present and Future. East
Carolina University (2005)

[2] Kabiri, P., Ghorbani, A.A. (2005) "Research on intrusion detection
and response: A survey," International Journal of Network Security,
vol. 1(2), pp. 84-102.

[3] Schultz, M., Eskin, E., Zadok, E., and Stolfo, S. (2001) Data Mining
Methods for Detection of New Malicious Executables, Proceedings of
the IEEE Symposium on Security and Privacy, 2001, pp. 178--184.

[4] Abou-Assaleh, T., Cercone, N., Keselj, V., and Sweidan, R. (2004) N-
gram based Detection of New Malicious Code, Proceedings of the
28th Annual International Computer Software and Applications
Conference (COMPSAC'04)

[5] Kolter, J.Z. and Maloof, M.A. (2004). Learning to detect malicious
executables in the wild. In Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
470–478. New York, NY: ACM Press.

[6] Moore D., Paxson V., Savage S., and Shannon C., Staniford S., and
Weaver N. (2003) Slammer Worm Dissection: Inside the Slammer
Worm, IEEE Security and Privacy, Vol 1 No. 4, July-August 2003,
33-39.

[7] Kienzle, D.M. and Elder, M.C. (2003) Recent worms: a survey and
trends. In Proceedings of the 2003 ACM Workshop on Rapid
Malcode, pages 1--10. ACM Press, October 27, 2003.

[8] Moore, D., Shannon, C., and Brown, J. (2002) Code Red: a case study
on the spread and victims of an internet worm, Proceedings of the
Internet Measurement Workshop 2002, Marseille, France, November
2002.

[9] Weaver, N. Paxson, V. Staniford, and S. Cunningham, R. (2003) A
Taxonomy of Computer Worms, Proceedings of the 2003 ACM
workshop on Rapid Malcode, Washington, DC, October 2003, pages
11-18

[10] CERT. CERT Advisory CA-2000-04, Love Letter Worm,
http://www.cert.org/advisories/ca-2000-04.html

[11] Lee, W., Stolfo, S.J. and Mok, K.W. (1999). A data mining
framework for building intrusion detection models. In Proceedings of
the 1999 IEEE Symposium on Security and Privacy, May 1999

[12] Richard P. Lippmann, Isaac Graf, Dan Wyschogrod, Seth E. Webster,
Dan J. Weber, and Sam Gorton, "The 1998 DARPA/AFRL Off-Line
Intrusion Detection Evaluation,"
First International Workshop on Recent Advances in Intrusion
Detection (RAID), Louvain-la-Neuve, Belgium, 1998.

[13] Barbara, D., Wu, N., Jajodia, S. (2001) “Detecting novel network
intrusions using bayes estimators,” in Proceedings of the First SIAM
International Conference on Data Mining (SDM 2001), Chicago,
USA

[14] Ste. Zanero and Sergio M. Savaresi, “Unsupervised learning
techniques for an intrusion detection system,” in Proceedings of the
2004 ACM symposium on Applied computing, pp. 412–419, Nicosia,
Cyprus, Mar. 2004. ACM Press.

176

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

[15] H. Gunes Kayacik, A. Nur Zincir-Heywood, and Malcolm I.
Heywood, On the capability of a som based intrusion detection
system, in Proceedings of the International Joint Conference on
Neural Networks, vol. 3, pp. 1808–1813. IEEE, IEEE, July 2003.

[16] J. Z. Lei and Ali Ghorbani, “Network intrusion detection using an
improved competitive learning neural network,” in Proceedings of the
Second Annual Conference on Communication Networks and
Services Research (CNSR04), pp. 190–197. IEEE-Computer Society,
IEEE, May 2004.

[17] P. Z. Hu and Malcolm I. Heywood, Predicting intrusions with local
linear model, in Proceedings of the International Joint Conference on
Neural Networks, vol. 3, pp. 1780–1785. IEEE, IEEE, July 2003.

[18] John E. Dickerson and Julie A. Dickerson, “Fuzzy network profiling
for intrusion detection,” in Proceedings of NAFIPS 19th International
Conference of the North American Fuzzy Information Processing
Society, pp. 301–306, Atlanta, USA, July 2000.

[19] Susan M. Bridges and M. Vaughn Rayford, “Fuzzy data mining and
genetic algorithms applied to intrusion detection,” in Proceedings of
the Twenty-third National Information Systems Security Conference.
National Institute of Standards and Technology, Oct. 2000.

[20] M. Botha and R. von Solms, “Utilising fuzzy logic and trend analysis
for effective intrusion detection,” Computers & Security, vol. 22, no.
5, pp. 423–434, 2003.

[21] (133/2006) Robert Moskovitch, Ido Gus, Shay Pluderman, Dima
Stopel, Yisrael Fermat, Yuval Shahar and Yuval Elovici, Host Based
Intrusion Detection Using Machine Learning, Faculty of Engineering,
Ben Gurion Unversity, Israel (2006)..

[22] Lorch, J. and Smith, A. J. (2000) The VTrace tool: building a system
tracer for Windows NT and Windows 2000. MSDN Magazine,
15(10):86–102, October 2000.

[23] Witten, I.H. and Frank E., Data Mining: Practical machine learning
tools and techniques, 2nd Edition, Morgan Kaufmann, San Francisco,
2005.

[24] Quinlan, J.R. (1993). C4.5: programs for machine learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[25] Mitchell T. (1997) Machine Learning, McGraw-Hill.

[26] H Liu, H Motoda and L Yu, A Selective Sampling Approach to
Active Selection, Artificial Intelligence, 159 (2004) 49-74.

[27] Domingos, P., and Pazzani, M. (1997) On the optimality of simple
Bayesian classifier under zero-one loss, Machine Learning, 29:103-
130.

[28] Pearl J., (1986) Fusion, propagation, and structuring in belief
networks. Artificial Intelligence 29(3):241–288.

[29] Bishop, C.(1995) Neural Networks for Pattern Recognition.
Clarendon Press, Oxford.

[30] Demuth, H. and Beale, (1998) M. Neural Network toolbox for use
with Matlab. The Mathworks Inc., Natick, MA.

[31] Kohavi, R., (1995) A Study of Cross-Validation and Bootstrap for
Accuracy Estimation and Model Selection, International Joint
Conference in Artificial Intelligence, 1137-1145, 1995

177

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

