
Use of Trust Vectors for CyberCraft and the Limits of Usable Data History for
Trust Vectors

Michael Stevens and Paul D. Williams, PhD

E-mail: {michael.stevens@afit.edu, paul.williams@afit.edu}

Abstract
The CyberCraft initiative is designing a system of agents to pro-
vide command and control of future Air Force information sys-
tems.1 In such a distributed environment, trust between agents be-
comes pertinent to provide a combatant commander an accurate
picture of the network by merging conflicting data and giving the
commander confidence in the control of their network. The Trust
Vector model breaks from traditional trust models as it provides a
range of trust values for data, enabling the system to describe par-
tial trust in data rather than binary values of trust or no trust, and
from that build confidence intervals in fused data. The Trust Vec-
tor model builds trust based on current and historical data, but
does not address the limits of utility of the historical data. This re-
search2 provides implementors of the Trust Vector model input as
to how much historical data should be stored to balance accuracy
of trust with limits of storage.3

1. Overview

On 7 December 2005, Secretary of the Air Force Michael
Wynne and Chief of Staff of the Air Force T. Michael Mose-
ley stated “The mission of the United States Air Force is
to deliver sovereign options for the defense of the United
States of America and its global interests – to fly and fight
in Air, Space, and Cyberspace” [1]. The CyberCraft Initia-
tive is creating vehicles for the Cyberspace domain, as air-
craft operate in the domain of the air and spacecraft exploit
the domain of space, to enable commanders to defend Air
Force information systems in the same manner that aircraft
protect our nation’s airspace. CyberCraft agents will be de-
ployed on Blue networks to provide commanders manage-
ment of their network and a fused picture of the health of the
network. CyberCraft agents are resident on host computers,

1 The authors would like to acknowledge the support of AFOSR and
AFRL for this research

2 This work is drawn from the master’s thesis of the first author
3 The views expressed in this paper are those of the authors and do not

reflect the official policy or position of the United States Air Force,
Department of Defense, or the United States Government

and have the ability to load different payloads to accom-
plish different missions, from loading a policy that changes
settings on the host computer to comply with a specific IN-
FOCON level to reporting on network traffic received by
the host computer [2].

With faster networks and rapid computer processing,
a human’s reaction time is too slow to prevent network
attacks. The SQL Slammer worm infected 75,000 hosts
on the internet, the majority within 10 minutes. The SQL
Slammer worm instances on the internet doubled every 8.5
seconds[3], which is far faster than a human can defend
against. CyberCraft agents will possess some decision mak-
ing capabilities to identify and defend against network at-
tacks faster than a human could react. For a commander to
incorporate the CyberCraft agents into the decision making
process or to give responsibility for the defense of the net-
work to the automated decision making agents, that com-
mander must have some level of trust in the data provided
by that agent, and some level of confidence in the ability
of the CyberCraft agent to successfully and accurately per-
form the defense mission.

2. Background

Historically, trust between computers or software agents
is defined in Boolean terms; either an agent completely
trusts another agent or it does not trust the other agent.
Dr Indrajit Ray and Dr Sudip Chakraborty were funded by
the Air Force Research Laboratory (AFRL) and the Federal
Aviation Administration (FAA) to develop a new model of
trust that accounts for differing degrees of trust. If an agent
has a track record of 70% good data, a user of that data (au-
tomated or human) would like to assign more merit to new
data from that agent than the one with a 50% track record,
but not completely trust the data. [4].

In order to describe a range of trust between two agents,
Dr Ray and Dr Chakraborty developed the Trust Vector
model, where trust is defined as a vector with three com-
ponents, experience (past performance of remote agent),
knowledge (known ability of remote agent), and recommen-

193

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

1-4244-0700-1/07/$20.00 ©2007 IEEE

dations (from other agents regarding their trust in the remote
agent). By their admission, these three components are not
the only components that can be used to determine trust.
The range of trust spans from complete trust (represented
as +1) to no trust (0) to complete distrust (-1). Distrust dif-
fers from no trust in that distrust indicates a level of confi-
dence that the information is incorrect rather than total un-
certainty about the veracity of the information.

This Trust Vector model also incorporates a degradation
function to illustrate that trust (or distrust) will lessen over
time to approach 0 or no trust. Modelling trust between hu-
mans, as time passes the trust one agent has in the other
slowly degrades as the remote agent’s abilities may have
changed, or the data provided becomes stale.

3. Goal, Hypothesis, and Results

AFRL and the FAA funded the Trust Vector research for
applications like the CyberCraft initiative, Air Traffic Con-
trol systems, and other distributed systems. As the Cyber-
Craft Initiative seeks to move decision making for network
defense out of the hands of humans, the humans employing
these CyberCraft agents need a measure of confidence that
the correct decision will be made. The Trust Vector Model
seeks to quantify the trust in the data and in the agents’ deci-
sion making abilities to give the human warfighters the con-
fidence that the system will operate as expected.

Goal: Our research examines the application of the Trust
Vector model to the CyberCraft initiative and identify chal-
lenges and future areas of research with the Trust Vector
model.

Hypothesis: We believe that there is a threshold for the
utility of historical data for the Trust Vector model, after
which the cost of storing the data far outweighs the bene-
fit provided by the data

Results Our results support our hypothesis in that as data
ages, the benefit provided by the older data is diminished to
the point where the contribution to the current trust level
is so small that keeping the data is not worth the storage
cost. We do not attempt to identify a specific point to dis-
card data, but provide a model which can provide recom-
mendations based on the implementation of the Trust Vec-
tor model

4. Trust Vectors

A trust vector is valid in a specific context; one agent
may have multiple trust vectors for another agent in dif-
ferent contexts, denoting that it trusts the data from the
other agent differently depending on the context of the
data. The experience component (AEc

B represents the Ex-
perience component for the trust relationship between

truster A and trustee B in context c) is based on previ-
ous data received from the remote agent and the verac-
ity of that data. The knowledge component (AKc

B) is
based on the knowledge one agent has about the abili-
ties of the other agent in that context. The recommendation
component (ΨRc

B where Ψ represents a group of rec-
ommenders) is the sum of the recommendations of other
agents on the trustworthiness of an agent in that con-
text weighted by the trust the receiving agent in the recom-
mendation context of the other agents. Trust vector values
degrade over time, to reflect the value of current informa-
tion [5].

Each component of a trust vector ranges in value from
-1 to +1. To produce a single value for trust, a trust pol-
icy is applied to the trust vector. The trust policy has the
same components as the trust vector, and each component
of the trust policy represents the associated weight placed
on the components of the trust vector, thus We,Wk,Wr rep-
resent the weights of the experience component, knowledge
component, and recommendation component respectively.
We,Wk,Wr ∈ [0, 1] and We + Wk + Wr = 1. By mul-
tiplying the value of each component of the trust vector by
the corresponding weight and summing the product

We ·A Ec
B +Wk ·A Kc

B +Wr ·Ψ Rc
B ∈ [−1, +1]

a single value between -1 and +1 is produced, where -1 in-
dicates total distrust of the remote agent, 0 indicates lack
of trust, but not distrust of the remote agent, and +1 indi-
cates complete trust.

4.1. Components

4.1.1. Recommendation Component The recommen-
dations component is updated through querying other
agents about their trust with the remote agent. Each
other agent’s recommendation is tempered by the lo-
cal agent’s trust in the recommending agent in the con-
text of accepting recommendations. If a recommending
agent has a record of making poor recommendations, then
the local agent will trust that recommending agent’s rec-
ommendation less than the recommendation from an
agent that has a better record for accurate recommenda-
tions.

4.1.2. Knowledge Component The knowledge com-
ponent represents the local agent’s knowledge about the
remote agent’s abilities. An example of this is two re-
mote agents each have a software package to scan
a network for vulnerabilities. If one agent’s pack-
age is known to have a high rate of false positives (or

194

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

false negatives), then the value of the knowledge com-
ponent for the context of scanning for vulnerabilities
would be less than the agent who has the more accu-
rate scanner. As different scanners have different false
positive rates for the different vulnerabilities, a more gran-
ular approach would be to have a trust vector for the local
agent’s trust in the remote agent for detecting each vul-
nerability, but this could lead to scalability issues with
the amount of data being stored for multiple trust vec-
tors.

4.1.3. Experience Component The experience compo-
nent is based on the past performance of the remote agent
in the given context. Each event where the performance of
the remote agent is evaluated is given a value of trust posi-
tive (+) or trust negative (-). This collection of events is then
divided into by time into intervals. The values of the events
in each interval are summed to produce a single value for
that interval. If the interval from t0 to t1 has four events,
three trust positive and one trust negative, the value of that
interval would be +2. Each interval is weighted based on
the number of intervals and the position of each interval.
The weight for each interval is calculated by the formula
wi = i

S where S = n(n+1)
2 .

Older intervals will be weighted less than more re-
cent intervals. The length of an interval is arbitrary,
and the number of events that occur in an interval may
not be constant, but the weighted value of each inter-
val will be normalized between -1 and +1 by dividing
each weighted value by the number of events in the inter-
val.

4.2. Trust degradation over time

As mentioned in the background, the Trust Vector model
has a degradation function to calculate the current value of
trust based on a past value. Figure 1 shows how the trust
value of a trust relationship approaches 0 or no trust as time
increases.

The degradation function described by Ray and
Chakraborty is v(Ttn) = v(Tti)e

−(v(Tti
)∆t)2k

where
v(Tti) is the trust value of a trust vector (Tti) at time
ti and v(Ttn) is the degraded value at time tn, and
∆t = tn − ti and k is an integer greater or equal to 1.
The value for k is arbitrary and determines the rate of de-
cline.

In analyzing Ray and Chakraborty’s equation, we saw
that higher initial values of trust degrade faster than lower
initial values, which is counter intuitive (Figure 2). Inverting
the v(Tti) term (trust value at time ti) from the exponent of
e changes the equation to v(Ttn) = v(Tti)e

−(v(Tti
)−1∆t)2k

,

Figure 1. Trust degradation as time increases

which degrades all trust values at an equal rate as shown in
Figure 3 (k is arbitrarily set to 2 to match Figure 2).

In section 5.2 we will cover the utility of keeping past
trust values.

4.3. Vulnerability Assessment Scenario

To illustrate how the three components and trust work to-
gether we will consider a scenario where three agents are
scanning the same network for vulnerabilities.

• Agent 1 has a high false positive rate when scanning
for a particular vulnerability.

• Agents 2 and 3 are accurate when scanning for the
same vulnerability.

All agents have two trust vectors for each of the other
two agents; one vector for the remote agent’s ability to

Figure 2. Higher values degrade faster using
v(Ttn) = v(Tti)e

−(v(Tti
)∆t)2k

195

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

Figure 3. All values degrade at an equal rate
using v(Ttn

) = v(Tti
)e−(v(Tti

)−1∆t)2k

scan for the vulnerability, and another vector for the remote
agent’s ability to provide accurate recommendations.

Each agent also has two trust vector to themselves; one
for their trust in their scanning ability, and the other for their
ability to provide accurate recommendations. These vectors
enable the agent to self identify itself as possibly producing
bad data if the value of the trust vector to itself drops below
a certain level. If Agent 1 receives recommendations from
the other agents that Agent 1 is reporting systems vulner-
able when they are not(due to the high false positive rate),
Agent 1’s trust vector to itself for its scanning ability will
decrease in value. As the value of the trust vector drops,
Agent 1 will have less trust in its own data, acknowledg-
ing that it may be compromised or have a problem with its
scanning software.

While scanning the network agents 1, 2 and 3 scan the
same box (Figure 4). Agent 1 reports that the box is suscep-
tible to the vulnerability, and Agents 2 and 3 report the box
is not vulnerable.

• Agent 1 would record this event as trust negative (i)
for its trust vectors for Agents 2 and 3’s scanning abil-
ities.

• Agent 2 to Agent 1 = -, and to Agent 3 = +

• Agent 3 to Agent 1 = -, and to Agent 2 = +

Over time, as more computers are scanned, the history of
events is populated and the experience components of the
trust vectors for scanning can be calculated. If Agent 3
needed to make a determination as to whether or not the
scanned box had the vulnerability, it would modify each re-
sult by its trust value for the agent that supplied each re-
sult. After modifying each result, Agent 3 would then com-
bine the three results to produce a single value which repre-
sents its confidence that the target machine is vulnerable or
is not vulnerable.

Figure 4. Scenario of Agents 1, 2, and 3 scan-
ning the same computer

If Agent 1 receives data about a target computer that it
did not scan, it would be able to make a determination as to
the state of that computer based off of the trust it has in the
computers reporting the data.

An advantage of this approach of using multiple ma-
chines and multiple scanning techniques is that if a compro-
mised computer is configured to hide vulnerabilities from a
particular scanner, as other scanners detect the vulnerabil-
ity the trust vector system will note that there is a problem
with the scanner that is being spoofed (in addition to identi-
fying the compromised computer).

4.4. Problem Statement

As storage will be a factor with multiple trust vectors
across a large number of agents, how much history should
be stored? At what point does the weight of the interval di-
minish the value of the interval to the point that it is not
worth storing the data?

5. Analysis

To determine how much historical data should be stored,
we first analyzed how much the historical data contributes
to the current trust value. Historical data is used to calcu-
late the value of the experience component (which in turn is
used to calculate the trust value of the trust vector), and in
the current value of a previous trust vector.

196

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

5.1. Utility of historical data for experience com-
ponent

As stated in section 4.1.3, the experience component is
calculated by weighting the values of the intervals of the
event history and summing the products of the weights and
the values of the intervals. Table 1 shows the weight associ-
ated with the oldest interval kept for a given number of in-
tervals.

As shown in Table 1, if 10 intervals of data are stored for
the calculation of the experience component, the oldest in-
terval will count for less than 2% of the total value of the
experience component.

The following scenario illustrates the the difference be-
tween keeping 11 intervals of historical data vs. only keep-
ing 10 intervals (Figure 5). If the events in the oldest in-
terval are all trust-negative, and all events since the oldest
interval were trust-positive, the normalized value of inter-
val 1 (the oldest interval) is -1 and the normalized values of
the rest of the intervals are +1. The difference between sum-
ming the weighted values for the 11 intervals versus the ten
most recent intervals is 0.03 (twice the weight of the old-
est interval). An alternative scenario is that the oldest in-
terval’s value is still -1 and the rest of the intervals’ values
are 0. The difference in this case is 0.015, equivalent to the
weight of the oldest interval. The maximum difference be-
tween the keeping 11 intervals and keeping 10 intervals oc-
curs when the eleventh interval’s value was one extreme and
the rest of the intervals were the other extreme.

From this, the maximum difference between keeping
x intervals and keeping x-1 intervals would be twice the
weight of the oldest interval when x intervals are kept. From
Table 1, the weight at 8 intervals is 2.8%, so to keep 7 in-
tervals versus 8 intervals could lead to a 5.6% difference

Number of S = n(n+1)
2 Weight of

Intervals Oldest Interval
1 1 100%
2 3 33.3%
3 6 16.7%
4 10 10.0%
5 15 6.7%
6 21 4.8%
7 28 3.6%
8 26 2.8%
9 45 2.2%

10 55 1.8%
11 66 1.5%
12 78 1.3%

Table 1. Decreasing value of Oldest Interval

Figure 5. Calculation of experience compo-
nent

in the value of the experience component. Each application
that uses the trust vector system have different needs for the
granularity of trust, and Table 1 contains the information to
determine the number of intervals needed to meet the level
of granularity. The experience component is only one part
of the trust vector system, and the impact it has on deter-
mining trust is governed by the trust policy. If the trust pol-
icy is set where the experience component if 50% of the
trust value, then the 5.6% difference in the value of the ex-
perience component leads to a 2.8% difference in the trust
value.

5.1.1. OS Fingerprinting Scenario To illustrate the ef-
fect of keeping different amounts of historical experience
data on the trust value, the following deterministic sce-
nario was developed. A group of five agents are fingerprint-
ing a single target machine that runs Windows and can run
Linux as a virtual machine. The agents scan the target ma-
chine every minute and exchange new recommendations ev-
ery five minutes. The Trust Policy Vector is Experience =
40%, Knowledge = 25%, and Recommendations = 35%.
This Trust Policy Vector was chosen to place more weight
on the experience of the agents, followed by slightly less
weight on the recommendations. This will cause discrepan-
cies between agents to affect the trust values faster, enabling
quicker detection of deviations between agents. Four of the
agents will detect the virtual machine and report the OS as
being Linux (while Linux is running), and the fifth agent
will continue to report the OS as being Windows (this could
be due to a different scanning package that the fifth machine
is using that is not able to detect the virtual machine, or is
able to see past the virtual machine to the host OS). The dif-
ference in the reports from the fifth machine and the other
four machines will lead to the trust between the four ma-
chines that detected Linux and the fifth machine to dimin-
ish, while the trust between the four machines that detected
Linux will increase. This scenario shows the difference in
trust when the target machine switches from Windows to
the Linux virtual machine at 9:00 AM and switches back to
Windows at 9:30 AM (when all five machines again agree
upon the detected OS, leading to increase in trust amongst
the agents).

Figure 6 shows the differences in the Trust Value of the
agents reporting the Linux virtual machine with regard to

197

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

Figure 6. Trust Value for different experience
intervals kept

the agent reporting Windows OS4 5. The graph shows that
as the number of intervals kept decreases, the Trust Value
changes faster and drops farther when discrepancies occur,
as there is less historical data to counterbalance current data.
The difference between 8 intervals kept and 9 intervals kept
is greater than the difference between 10 intervals kept and
11 intervals kept (shown in Table 2). The maximum differ-
ence of the Trust Values between runs with different number
of intervals kept is consistent with the mathematical analy-
sis in Table 1. The maximum difference between keeping 9
and 10 intervals of data in the scenario was 0.0321, which is
slightly more than 1.6% of the range of Trust Values (-1 to
1). The 1.6% difference in trust values is less than the 1.8%
of the experience component listed as the value of the oldest
interval when 10 intervals are kept (which is to be expected,
as the experience component only accounted for 35% of the
Trust Value).

In the application of the Trust Vector Model, the deci-
sion of how many intervals are to be kept will depend on
the trade-off between storage of each interval and the need
for granularity of the Trust Values. The storage cost of each

4 This scenario was based on only the current calculated Trust Values,
and not previously calculated Trust Values with the degradation func-
tion.

5 This scenario also only concentrates on the discrepancy between re-
ports between agents. A real world application of OS fingerprinting
should incorporate some method to account for Virtual Machines or
dual boot machines. This will be covered in the Future Work section.

interval can be calculated by E ×B × C ×A where

• E = Events per Interval

• B = Bytes per event

• C = Number of contexts

• A = Number of agents

This scenario uses four events per interval, but this is
arbitrary. If the time period of the interval is fixed but the
occurrence of a trust event is stochastic, then the number
of events per interval could vary depending on the rate of
events generated.

The Trust Vector Model proposed by Ray and
Chakraborty uses boolean values for each trust event, so ev-
ery event is either trust-positive or trust-negative, but
there are many contexts where a range of values for the
trust event would be more applicable. One example of
this is the recommendations. The modified Trust Vec-
tor Model that is used in this research uses floating point
values between -1 and 1 to represent each event for recom-
mendations, as it makes more sense to represent an agent’s
trust in a recommendation as the absolute difference be-
tween that recommendation and the agent’s trust value for
the same context rather than a boolean value of agree-
ing with the recommendation and not agreeing with the
recommendation. This scenario used one byte for ev-
ery event.

This scenario only used two contexts, OS Fingerprinting
and Recommendations, but it is conceivable that scanning
a network for vulnerabilities could have a different context
for every vulnerability scanned (or the ability of a network
scanner could be abstracted into a single context).

This scenario used five agents, so each agent would keep
one Trust Vector per context for all other agents plus a Trust
Vector to itself for each context. Thus each interval would
cost 40 bytes to store per agent (4× 1× 2× 5 = 40).

5.2. Utility of previous trust vectors

Previous trust values are used in conjunction with cur-
rent trust values to produce a composite trust score. If an
agent had produced poor data in the past but is now pro-
ducing what appears to be good data, the current trust level

Number of Maximum difference
Intervals of Trust Values

8 to 9 0.0357
9 to 10 0.0321

10 to 11 0.0287

Table 2. Decreasing value of Oldest Interval

198

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

Figure 7. Degradation of Trust Value of 1 at
different rates

is moderated with historical knowledge of the previous per-
formance. Another scenario has an agent that has not been
heard from for a while, but is now providing data again (e.g.
the reporting machine was turned off and has since been re-
booted). The degraded trust value is used to estimate the
value of the new data, as it would be imprudent to accept
the data at the previous trust level as it is unknown what has
happened to that agent in the interim.

Figure 7 shows the degradation of the trust val-
ues based on different decay rates. In the equation
v(Ttn) = v(Tti)e

−(v(Tti
)−1∆t)2k

, k is an arbitrary inte-
ger value for the decay rate of the trust value. As k in-
creases, the trust value decays slowly at first and then
rapidly decays, but we see that for k > 1 the value ap-
proaches 0 between about t1.25 and t1.5 . Even with
k = 1 we see that by t2 the decayed value is approach-
ing 0. With higher values of k the decay approaches zero
between t1 and t1.25.

Time periods are arbitrary, as the time difference be-
tween t0 and t1 could be 10 seconds or 2 months. We sug-
gest that the retention of previous trust values be based on
the value of k used and the granularity needed for the trust
model, but that previous trust values when k = 1 are dis-
carded no later than t2 and when k > 1 trust values are dis-
carded by t1.5.

6. Future Work

This research is focusing on the application of the Trust
Vector model to the CyberCraft initiative, to include the bal-
ancing the number of agents that check each other with
the overhead of storage and network traffic that larger trust
groups would cause. As the CyberCraft initiative will even-
tually span hundreds of thousands of computers, scalabil-
ity of the Trust Vector model will become an issue. An-
other scalability issue is mentioned in section 4.1.2, where
the trade off between the granularity of multiple trust vec-
tors for specific tasks must be balanced with the storage and
computational complexity requirements to support several
trust vectors. Future research will address the culminating
point between the granularity of trust contexts and the stor-
age, computational power, and bandwidth needed to support
multiple trust vectors for different contexts between agents

As alluded to in section 5.1.1, another area that this re-
search will address in future work is the use of Trust Vectors
with differing views that do not necessarily conflict. An ex-
ample of this would be OS Fingerprinting as in the scenario
of 5.1.1, where one agent reports a target system as being a
Mac OS, another agent reports the same system as a Win-
dows OS (but not specifically XP or 2000), and a third ma-
chine reports the machine as a Windows XP SP2, how does
the model combine these inputs to produce a best guess at
the target machine’s OS with an associated confidence. Fur-
ther research would entail how to accommodate data that
changes with time, such as a dual booting system or vir-
tual machines.

Ambiguity in the reported data is another area this re-
search is looking into. An example of this would be if an
agent was fingerprinting a target system, and the data re-
ceived from the scan was not conclusive, e.g. the target OS
had some Linux characteristics, but not enough to definitely
label the target system as Linux. Another example of the
above is if the agent suspects that it is compromised, and
is being fed inaccurate data. Data sent from these agents to
other agents should reflect the ambiguity in the data held
by the reporting agent. We are also looking at integrating
Markovian Decision Trees into the Trust Vector model to
supplement building a trust vector with little data.

Another possible application of Trust Vectors is the use
of Trust Vectors with dynamic routing of network traffic.
This could include using the rate of dropped packets for
the experience component, the available bandwidth of a
link (as well as graph theory with network topology) as the
knowledge component, and abilities of neighboring routers
to reach a distant end for the recommendation component
to determine the utility of a link to reach a distant end.

199

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

7. Conclusion

As the impact of the oldest interval decreases, even with
a 50% weight of the experience component on the trust
value, keeping 9 intervals instead of 10 intervals leads to
less than a 2% maximum difference, which is below the
level of granularity needed for most applications. When Cy-
berCraft is deployed across thousands of computers and
each agent holds multiple trust vectors per remote agent,
keeping one less byte of data per trust vector may be signif-
icant.

The utility of previous Trust Values decreases as time in-
creases, and section 5.2 shows that by t2 (two time periods
since the trust value was last calculated) previous trust val-
ues have decayed to the point that they are too small to im-
pact the current value of trust. This conclusion is valid us-
ing the modified equation v(Ttn

) = v(Tti
)e−(v(Tti

)−1∆t)2k

,
as Ray and Chakraborty’s equation will keep the value of
smaller initial trust longer (an initial trust value of .25 will
decay to .05 at approximately t4.5 at k = 2).

In summary, implementors of the Trust Vector algorithm
should identify the points where the contribution of histor-
ical data is too small to impact the current trust value, and
conserve storage by expunging data older than these points.
This research provides a model which can assist in the iden-
tification of these points.

References

[1] M. Wynne and T. M. Mosely, “Letter to airmen: Mission state-
ment.” http://www.af.mil/library/viewpoints/jvp.asp?id=192,
December 2005.

[2] P. W. Phister, Jr., D. Fayette, and E. Krzysaik, “Cybercraft:
Concept linking network control warfare principles with the
cyber domain in an urban opertional environment.” Air Force
Research Labratory, Information Directorate, 2004.

[3] I. Dubrawsky, “Effects of worms on internet routing stability.”
http://www.securityfocus.com/infocus/1702, June 2003.

[4] I. Ray and S. Chakraborty, “Cyber trust research: Moti-
vation (in a nutshell).” http://www.cs.colostate.edu/ indra-
jit/Security/trust/index.htm.

[5] I. Ray and S. Chakraborty, “A vector model of trust for devel-
oping trustworthy systems,” in ESORICS, 2004.

200

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

