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Abstract – Research and development in modeling and 
simulation of human cognizance functions requires a high-
performance computing platform for manipulating large-
scale mathematical models. Traditional computing 
architectures cannot fulfill the attendant needs in terms of 
arithmetic computation and communication bandwidth. In 
this work, we propose a novel hybrid computing 
architecture for the simulation and evaluation of large-
scale associative neural memory models. The proposed 
architecture achieves very high computing and 
communication performances by combining the 
technologies of hardware-accelerated computing, parallel 
distributed data operation and the publish/subscribe 
protocol.  Analysis has been done on the computation and 
data bandwidth demands for implementing a large-scale 
Brain-State-in-a-Box (BSB) model. Compared to the 
traditional computing architecture, the proposed 
architecture can achieve at least 100X speedup. 

I. INTRODUCTION 
With the recent ongoing research in human intelligence, more 
attention has been paid to the autoassociative and 
heteroassociative neural memory models [2] because in many 
aspects, their working mechanisms are very similar to the 
functionality of the cerebral cortex, i.e., neocortex. To 
evaluate the feasibility and performance of using these models 
for a complete cognitive function, for example vision, we need 
to build and simulate a large-scale model that may consist of 
hundreds of thousands of individual models and a massive 
number of connections among them. The traditional 
computing architecture, i.e., a “general-purpose CPU plus 
centralized memory” cannot fulfill the arithmetic computation 
and data bandwidth demands to simulate large-scale cortical 
models. 
More and more research tends to show that the neocortex 
follows a hierarchical architecture.  At the lowest level of this 
hierarchy we find the neuron; and moving upward in 

the hierarchy we find multiple neurons forming  
cortical mini-columns; multiple mini-columns forming 
cortical columns; and pattern repeated at higher levels to 
implement the functional blocks thought to underlie 
cognizance operations in the human brain [3]. 
To artificially realize the operations in this hierarchical 
architecture/functionality of the brain, different mathematical 
models have been studied. The Brain-State-in-a-Box (BSB) 
attractor model [2], is one of the promising solutions to the 
problem. The BSB model is usually used to model the 
functionality of a mini-column. Multiple BSB models can be 
connected to model a cortical column, and eventually to model 
a complete cognitive function of the brain, for example, vision. 
In this paper, we present a novel high-performance hybrid 
computing architecture for large-scale BSB models. Key 
contributions of the work can be summarized as follows. 
1. The proposed high-performance, reconfigurable 

computing architecture can be applied to the research and 
development of computing models of the neocortex. 
Compared to conventional architectures, the new 
architecture will accelerate the computing speed by at 
least 100X. 

2. The proposed hardware architecture is targeted at highly-
connected hybrid computer clusters, which may consist of 
50 to 100 workstations communicating with each other 
through high-speed interconnect networks. Within each 
workstation, there are custom boards with field 
programmable gate array (FPGA) devices. The proposed 
architecture is general and scalable so that it can be 
adapted to different hybrid platforms. 

3. With the proposed architecture and design, we can run 
more than 100,000 BSB models with dimensionality of up 
to 128, simultaneously, with reaction time of less than 
100 milliseconds. 

4. In the proposed architecture, the computational 
algorithms of the models are implemented on the FPGA 
devices. Up to 1,000 models share the same FPGA device 
and run in a time-multiplexed way. Parallel local memory 
banks are used to satisfy high bandwidth demands. 

* This work is sponsored by the Information Directorate 
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5. The inter-model connection/communication problem will 
be solved by both hardware and software. Within the 
same workstation, hardware circuits will be designed for 
sending outputs of one model to another. For 
communication across different workstations, high-level 
asynchronous communication protocols such as the 
publish/subscribe protocol is used. 

The remainder of the paper is organized as follows. In Section 
II, we will give a brief introduction to the BSB model and a 
hybrid computing platform. The proposed architecture and 
design are introduced in Sections III and IV. An analysis of 
the computation and data bandwidth needs by large-scale BSB 
model is also discussed in Section IV. The conclusions of the 
paper are given in Section V. 

II. BACKGROUND 
A) The Brain-State-in-a-Box attractor model 
The mathematical model of a BSB attractor can be represented 
in the following form. 

x(t+1) = S(alpha*A*x(t) + lambda*x(t) + gamma*x(0))   (1)

where, x(t+1) and x(t) are N dimensional real vectors with -
1 x(i) 1; 

A is an N N connection matrix;  
alpha is a scalar constant feedback factor; 
lambda is an inhibition decay constant;  
gamma is a nonzero constant if there is a need to 

maintain the input stimulation; 
x(0) is the input stimulation; 
S() is the “squash” function:  S(y) = 1 if y>1; -1 if y<-

1; y otherwise. 
There are two main BSB operations: Training and Recall. 
Equation (1) is used in the recall operation. The training 
operation will use the following equations to determine the 
weight coefficients in A.

                            A = l_rate * (x – A*x) x                  (2) 

                                      A = A + A                                  (3) 

where, x is the input training pattern, a N dimensional real 
vector;

l_rate is the learning rate of the training operation; 
 is the operator for the outer product of two vectors. 

The BSB attractor model discussed above is an 
autoassociative neural memory model. There are other 
autoassociative and heteroassociative models that have been 
studied extensively [1]. Different Hebbian learning algorithms 
have been studied, too. These models and learning algorithms 
have many similarities with the BSB model. 

B) The hybrid computer cluster platform 
The proposed hardware architecture is targeted at highly-
connected hybrid computer clusters, which consist of a large 
number of workstations communicating with each other 

through high-speed interconnect networks. Within each 
workstation, in addition to a traditional architecture with 
general-purpose processors, there are custom boards with field
programmable gate array (FPGA) devices and local 
memories [4]. 
Figure 1 shows the components and system structure of the 
high-performance computing (HPC) cluster at the Air Force 
Research Lab, Rome, New York. The HPC cluster consists of 
about 50 computing nodes that are connected through high-
speed interconnect networks. Each node consists of a general-
purpose workstation with Intel’s Pentium Xeon processors 
running the Linux operating system, and a WILDSTAR II PCI 
card [4] in the workstation’s PCI slot. 

Figure 1. The components and system structure of the 
HPC cluster at RomeLab. 

Figure 2. The block diagram of half of the WILDSTAR II 
PCI card. 
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Figure 2 shows half of the detailed block diagram of the 
WILDSTAR II PCI card [4]. There are two Xilinx Virtex II 
XC2V6000 FPGA [5] processing elements (PEs) on each card. 
Each PE connects to 6 parallel local memory banks, which 
provides high bandwidth (5.5 GBytes/second) for data 
read/write operations. These high-performance FPGA cards 
are the key enabling technology for the proposed computing 
architecture.

III. PROPOSED HYBRID COMPUTING 
ARCHITECTURE 

A) Research challenges 
Major research challenges in hardware architecture and data 
communication can be summarized as follows: 
1. High computational demand. A large-scale 

autoassociative/heteroassociative neural memory model 
consists of a large number (on the order of 100,000) of 
highly connected individual models. For example, a  BSB 
model for the entire visual cortex may require floating 
point multiplications and additions on the order of 
1,000,000,000, for each cognizance task (e.g. 1 recall for 
each of the 100,000 BSB models). While the arithmetic 
resources in any hardware platform are limited, a good 
architecture must effectively utilize these resources to 
achieve required performance. 

2. Heavy data traffic. A large-scale model is also data-
intensive. On any platform, data communication can 
become the bottleneck of the system performance. For 
example, for a 128-neuron BSB model, the weight matrix 
has 16,384 32-bit numbers. Even with high bandwidth 
between the system memory and the processing element 
(PE), performance may be limited if the PE has to fetch 
the weight matrix from the memory for each operation of 
training or recall. A good architecture must provide an 
effective method of utilizing the on-chip memory present 
on modern FPGA chips, as well as the off-chip local 
memory banks to achieve high communication bandwidth. 

B) A parallel architecture for high-performance 
computing 
To address the first challenge, we have developed a new 
method that implements BSB operations on  FPGA  [5] chips. 
This architecture parallelizes the multiplications and additions 
by utilizing the large number of multipliers and adders on the 
FPGA. For example, there are 144 18-bit integer multipliers 
on an XC2V6000 FPGA [5], which provides the capability of 
performing 144 integer multiplications in the same clock cycle. 
We have developed the FPGA design of a 32-neuron BSB 
recall function to illustrate the proposed approach. The 
detailed PE data-path design is shown in the Figure 3. 
In Figure 3, Xi (i=0, 1, …, 31) is a 16-bit 2’s complement 
integer stored in a register. In this design, we use 16-bit signed 
integer number to represent a real number in the range of [-1.0, 
+1.0]. Therefore, 0x7FFF (32767) is for +1.0 and 0x8001 (-
32767) for -1.0. We use the same conversion method for other 
real numbers in Equations (1), (2) and (3). 

Figure 3. The datapath design of a 32-neuron BSB recall 
function. 

In this experimental design, values of Xi and Ai,j will be 
loaded from the memory to FPGA in sequential manner, i.e., 
one 32 bit data word per clock cycle. Initially shifting in the 
weight matrix requires 1,024 clock cycles, however this is 
only a fixed non-recurring overhead.  
For the above design, the throughput is 32 clock cycles per 
BSB recall function. In our implementation, the FPGA chip 
can run at 100MHz, which achieved by pipelined design. Thus 
the throughput is 320ns per BSB recall.   Since a recall 
involves about 2,048 integer operations, this represents an 
operation rate of about 2,048operations/320ns or 6.4GOPS.  
Meanwhile, the time for a 2.4GHz PC to do one BSB recall in 
software has been measured to be about 12,000ns.  This 
represents a floating operation rate of about 2,048 
operations/12,000ns or 171MOPS.  Therefore, the hardware 
versus software speedup is about 12,000/320  37X.  
For a 128-neuron BSB model, the software computation time 
increases quadratically, while the hardware computation time 
increases linearly, from the 32-neuron BSB model. Therefore 
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for 128-neuron models, the speedup that can be achieved by 
the hardware design is about (37*4)=148X, with an operation 
rate of about 25.6GOPS. Note that we have ignored the 
coefficient loading overhead for both PC and FPGA, which 
we will address in the next section. 
One possible concern about the proposed approach is that all 
the previous BSB model work is based on floating-point 
numbers and operations. To evaluate the feasibility of using 
integer operations instead of floating-point operations, we 
made a test case that uses a 32-neuron BSB model to learn and 
recall one of the four patterns shown in Figure 4. 

Figure 4. Four 25-pixel black-and-white patterns used for 
the training and recall of a 32-neuron BSB model. 

Two software programs in C/C++ were developed on a PC 
with Linux OS, one using floating-point numbers and the 
other using 16-bit integer numbers. We found that, given the 
same sequence of training-recall operations, both programs 
achieve the same results. Although this study does not cover 
all possible application scenarios of the BSB models, it gives 
us leap of faith that the proposed FPGA-based architecture 
will work in the integer domain.  
The design in Figure 3 can easily be scaled up for 128-neuron 
BSB models, as long as we have enough multipliers on the 
FPGA. As we have mentioned, the WILDSTAR II PCI card in 
the HPC cluster uses Xilinx XC2V6000 FPGA that has 144 
multipliers. One 128-neuron BSB model or four 32-neuron 
BSB models are good fit to its capacity. It is worth mentioning 
that the FPGA is virtually capable of implementing BSB 
models of any size, with appropriate multiplexing of resources. 

IV. ANALYSIS OF COMPUTING AND 
COMMUNICATION PERFORMANCE FOR LARGE-

SCALE CORTICAL MODELS 
To address the second research challenge of heavy data traffic, 
we divide the data communication in the system into two 
types: intra-BSB communication and inter-BSB 
communication. Intra-BSB communication is generated 
mainly by the loading of weight matrices from memory to the 
FPGA. Inter-BSB communication is generated mainly by 
sending the outputs of BSB models to the inputs of other 
models. To quantify the communication bandwidth 
requirements, we have analyzed the following application 
scenario. 
To build a model for the whole primary visual cortex (V1), we 
estimate that we need to have about 100,000 highly-connected 
128-neuron BSB models. If we have 100 FPGAs in the 
computing platform, then the number of BSB models must 
share the same FPGA can be calculated as: 

        num_of_BSB_per_FPGA = 100,000 / 100 = 1,000     (4) 

A 128-neuron BSB model has 1282 = 16,384 coefficients in 
the weight matrix. If each coefficient is a 16-bit integer, then 
the total storage space needed for all the BSB models on the 
same FPGA can be calculated as: 

total_memory_space = 1,000 * 16,384 * 2  32 MBytes    (5) 

If the FPGA runs at 100MHz, the time for one recall operation 
(128 clock cycles) is about 1.28 s. For each BSB model, the 
maximum possible frequency of the recall operation can be 
calculated as: 

        num_of_recall_per_BSB_per_Second  

        = (1.0s / 1.28 s) / 1,000  780                                  (6) 

The time for one recall operation is 1sec/780recalls, which 
represents a sub-millisecond responsiveness (BSB state-to-
state transitions).  Assuming a worst case scenario in which 
the same FPGA hosts all 1000 BSB models (i.e. each weight 
matrix must be transferred from memory to FPGA in 
succession), just one recall operation would require weight 
matrices to be loaded from memory to FPGA at a frequency of: 

        num_of_matrix_load_per_Second

        = 780 * 1,000 = 780,000                                            (7) 

Therefore, the worst-case total data traffic bandwidth for intra-
BSB communication can be calculated as: 

        intra_BSB_traffic = 16,384 * 2 * 780,000  

        = 25,559,040,000  25.6 GBytes/Second                  (8) 

As a reference, the local memories banks (6 per FPGA) on the 
WILDSTAR II PCI card can provide a communication 
bandwidth of about 5.5 GBytes/Second. 
If we assume that half of the BSB outputs (64 integers = 128 
Bytes) will be sent to other models after every recall, then the 
worst-case total data traffic for inter-BSB communication can 
be calculated as: 

        inter_BSB_traffic = 100,000 * 780 * 128  

        = 9,984,000,000  10 GBytes/Second                        (9) 

The intra-BSB communication is solely between memory and 
FPGA, while most of the inter-BSB communication is 
between different workstations. As a reference, a Gigabit 
Ethernet can provide a raw bandwidth of 125 MBytes/Second, 
which implies a minimum communications channel 
requirement of 80GBytes/sec. The achievable aggregated 
bandwidth may be larger, but is dependent on the network 
topology. 
From the analysis we can see that, when developing the new 
architecture, maximizing communication bandwidth is as 
important as providing enough computing power. We believe 
that a good architecture, combined with good resource 
allocation algorithms, can achieve the best system 
performance. 
To maximize the bandwidth for intra-BSB communication, we 
use a parallel loading method by distributing the weight 
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matrix into the local memory banks so that they can be loaded 
to the FPGA in parallel. If we use the WILDSTAR II PCI card, 
the method is illustrated in Figure 5. 
At full speed, the time to load a BSB model can be calculated 
as:

        time_to_load_BSB

        = 16,384 * 2 / (5.5 GBytes/Second)  6 s               (10) 

Figure 5. A parallel loading method for minimizing the 
loading time of the weight matrix. 

The total for loading a BSB model and performing a recall can 
be calculated as: 

          time_to_load_recall_BSB = 6 + 1.28 = 7.28 s      (11) 

If we consider some possible latency and overhead, 
conservatively speaking, we should be able achieve a total 
time under 10 s. Since there are 1,000 BSB models sharing 
the same FPGA, the effective total “load + recall” time for 
each BSB model is 10ms.
Figure 6 shows the overall hardware and communication 
framework of the system. The inputs and outputs of the BSB 
models will be stored in the on-chip memory. Inter-BSB 
communication on the same FPGA only involves memory 
reads and writes. For communication between models hosted 
by two different FPGAs that are both resident the same 
WILDSTAR card, we can use the built-in high-speed links. 
The cost for inter-BSB communication across workstations is 
much higher because the data have to go through the PCI bus, 
the hardware-pub/sub interface, pub/sub protocol software, 
and the network.   Thus, for a fully trained functional model 
performing mostly recall, achieving the best possible 
performance will involve optimizing the placement of various 

BSB models within single FPGA’s, on pairs of FPGA’s, and 
among workstations. 

Figure 6. The overall hardware and communication 
framework of the system. 

V. CONCLUSIONS 
We have proposed a novel hybrid computing architecture for 
the simulation and evaluation of large-scale associative neural 
memory models. The proposed architecture achieves very high 
computing and communication performances by combining 
the technologies of hardware-accelerated computing, parallel 
distributed data operation and the publish/subscribe protocol. 
Analysis has been done on the computation and data 
bandwidth demands for implementing a large-scale Brain-
State-in-a-Box (BSB) model. Compared to the traditional 
computing architecture, the proposed architecture can achieve 
at least 100X speedup.  
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