
Architectural Design and Complexity Analysis of Large-Scale Cortical
Simulation on a Hybrid Computing Platform

Qing Wu *, Qinru Qiu *, Richard Linderman **, Daniel Burns **, Michael Moore **, Dennis Fitzgerald **

* Department of Electrical and Computer
Engineering

Binghamton University
Binghamton, NY 13902

001-607-777-4918, 001-607-777-4536
qwu@binghamton.edu, qqiu@binghamton.edu

** Air Force Research Laboratory, Rome Site
26 Electronic Parkway

Rome, NY 13441
001-315-330-2335, 001-315-330-4920

Richard.Linderman@rl.af.mil, Daniel.Burns@rl.af.mil
Michael.Moore.ctr@rl.af.mil, Dennis.Fitzgerald@rl.af.mil,

Abstract – Research and development in modeling and
simulation of human cognizance functions requires a high-
performance computing platform for manipulating large-
scale mathematical models. Traditional computing
architectures cannot fulfill the attendant needs in terms of
arithmetic computation and communication bandwidth. In
this work, we propose a novel hybrid computing
architecture for the simulation and evaluation of large-
scale associative neural memory models. The proposed
architecture achieves very high computing and
communication performances by combining the
technologies of hardware-accelerated computing, parallel
distributed data operation and the publish/subscribe
protocol. Analysis has been done on the computation and
data bandwidth demands for implementing a large-scale
Brain-State-in-a-Box (BSB) model. Compared to the
traditional computing architecture, the proposed
architecture can achieve at least 100X speedup.

I. INTRODUCTION
With the recent ongoing research in human intelligence, more
attention has been paid to the autoassociative and
heteroassociative neural memory models [2] because in many
aspects, their working mechanisms are very similar to the
functionality of the cerebral cortex, i.e., neocortex. To
evaluate the feasibility and performance of using these models
for a complete cognitive function, for example vision, we need
to build and simulate a large-scale model that may consist of
hundreds of thousands of individual models and a massive
number of connections among them. The traditional
computing architecture, i.e., a “general-purpose CPU plus
centralized memory” cannot fulfill the arithmetic computation
and data bandwidth demands to simulate large-scale cortical
models.
More and more research tends to show that the neocortex
follows a hierarchical architecture. At the lowest level of this
hierarchy we find the neuron; and moving upward in

the hierarchy we find multiple neurons forming
cortical mini-columns; multiple mini-columns forming
cortical columns; and pattern repeated at higher levels to
implement the functional blocks thought to underlie
cognizance operations in the human brain [3].
To artificially realize the operations in this hierarchical
architecture/functionality of the brain, different mathematical
models have been studied. The Brain-State-in-a-Box (BSB)
attractor model [2], is one of the promising solutions to the
problem. The BSB model is usually used to model the
functionality of a mini-column. Multiple BSB models can be
connected to model a cortical column, and eventually to model
a complete cognitive function of the brain, for example, vision.
In this paper, we present a novel high-performance hybrid
computing architecture for large-scale BSB models. Key
contributions of the work can be summarized as follows.
1. The proposed high-performance, reconfigurable

computing architecture can be applied to the research and
development of computing models of the neocortex.
Compared to conventional architectures, the new
architecture will accelerate the computing speed by at
least 100X.

2. The proposed hardware architecture is targeted at highly-
connected hybrid computer clusters, which may consist of
50 to 100 workstations communicating with each other
through high-speed interconnect networks. Within each
workstation, there are custom boards with field
programmable gate array (FPGA) devices. The proposed
architecture is general and scalable so that it can be
adapted to different hybrid platforms.

3. With the proposed architecture and design, we can run
more than 100,000 BSB models with dimensionality of up
to 128, simultaneously, with reaction time of less than
100 milliseconds.

4. In the proposed architecture, the computational
algorithms of the models are implemented on the FPGA
devices. Up to 1,000 models share the same FPGA device
and run in a time-multiplexed way. Parallel local memory
banks are used to satisfy high bandwidth demands.

* This work is sponsored by the Information Directorate
of the Air Force Research Laboratory, Rome, New York.

201

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

1-4244-0700-1/07/$20.00 ©2007 IEEE

5. The inter-model connection/communication problem will
be solved by both hardware and software. Within the
same workstation, hardware circuits will be designed for
sending outputs of one model to another. For
communication across different workstations, high-level
asynchronous communication protocols such as the
publish/subscribe protocol is used.

The remainder of the paper is organized as follows. In Section
II, we will give a brief introduction to the BSB model and a
hybrid computing platform. The proposed architecture and
design are introduced in Sections III and IV. An analysis of
the computation and data bandwidth needs by large-scale BSB
model is also discussed in Section IV. The conclusions of the
paper are given in Section V.

II. BACKGROUND
A) The Brain-State-in-a-Box attractor model
The mathematical model of a BSB attractor can be represented
in the following form.

x(t+1) = S(alpha*A*x(t) + lambda*x(t) + gamma*x(0)) (1)

where, x(t+1) and x(t) are N dimensional real vectors with -
1 x(i) 1;

A is an N N connection matrix;
alpha is a scalar constant feedback factor;
lambda is an inhibition decay constant;
gamma is a nonzero constant if there is a need to

maintain the input stimulation;
x(0) is the input stimulation;
S() is the “squash” function: S(y) = 1 if y>1; -1 if y<-

1; y otherwise.
There are two main BSB operations: Training and Recall.
Equation (1) is used in the recall operation. The training
operation will use the following equations to determine the
weight coefficients in A.

 A = l_rate * (x – A*x) x (2)

 A = A + A (3)

where, x is the input training pattern, a N dimensional real
vector;

l_rate is the learning rate of the training operation;
 is the operator for the outer product of two vectors.

The BSB attractor model discussed above is an
autoassociative neural memory model. There are other
autoassociative and heteroassociative models that have been
studied extensively [1]. Different Hebbian learning algorithms
have been studied, too. These models and learning algorithms
have many similarities with the BSB model.

B) The hybrid computer cluster platform
The proposed hardware architecture is targeted at highly-
connected hybrid computer clusters, which consist of a large
number of workstations communicating with each other

through high-speed interconnect networks. Within each
workstation, in addition to a traditional architecture with
general-purpose processors, there are custom boards with field
programmable gate array (FPGA) devices and local
memories [4].
Figure 1 shows the components and system structure of the
high-performance computing (HPC) cluster at the Air Force
Research Lab, Rome, New York. The HPC cluster consists of
about 50 computing nodes that are connected through high-
speed interconnect networks. Each node consists of a general-
purpose workstation with Intel’s Pentium Xeon processors
running the Linux operating system, and a WILDSTAR II PCI
card [4] in the workstation’s PCI slot.

Figure 1. The components and system structure of the
HPC cluster at RomeLab.

Figure 2. The block diagram of half of the WILDSTAR II
PCI card.

202

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

Figure 2 shows half of the detailed block diagram of the
WILDSTAR II PCI card [4]. There are two Xilinx Virtex II
XC2V6000 FPGA [5] processing elements (PEs) on each card.
Each PE connects to 6 parallel local memory banks, which
provides high bandwidth (5.5 GBytes/second) for data
read/write operations. These high-performance FPGA cards
are the key enabling technology for the proposed computing
architecture.

III. PROPOSED HYBRID COMPUTING
ARCHITECTURE

A) Research challenges
Major research challenges in hardware architecture and data
communication can be summarized as follows:
1. High computational demand. A large-scale

autoassociative/heteroassociative neural memory model
consists of a large number (on the order of 100,000) of
highly connected individual models. For example, a BSB
model for the entire visual cortex may require floating
point multiplications and additions on the order of
1,000,000,000, for each cognizance task (e.g. 1 recall for
each of the 100,000 BSB models). While the arithmetic
resources in any hardware platform are limited, a good
architecture must effectively utilize these resources to
achieve required performance.

2. Heavy data traffic. A large-scale model is also data-
intensive. On any platform, data communication can
become the bottleneck of the system performance. For
example, for a 128-neuron BSB model, the weight matrix
has 16,384 32-bit numbers. Even with high bandwidth
between the system memory and the processing element
(PE), performance may be limited if the PE has to fetch
the weight matrix from the memory for each operation of
training or recall. A good architecture must provide an
effective method of utilizing the on-chip memory present
on modern FPGA chips, as well as the off-chip local
memory banks to achieve high communication bandwidth.

B) A parallel architecture for high-performance
computing
To address the first challenge, we have developed a new
method that implements BSB operations on FPGA [5] chips.
This architecture parallelizes the multiplications and additions
by utilizing the large number of multipliers and adders on the
FPGA. For example, there are 144 18-bit integer multipliers
on an XC2V6000 FPGA [5], which provides the capability of
performing 144 integer multiplications in the same clock cycle.
We have developed the FPGA design of a 32-neuron BSB
recall function to illustrate the proposed approach. The
detailed PE data-path design is shown in the Figure 3.
In Figure 3, Xi (i=0, 1, …, 31) is a 16-bit 2’s complement
integer stored in a register. In this design, we use 16-bit signed
integer number to represent a real number in the range of [-1.0,
+1.0]. Therefore, 0x7FFF (32767) is for +1.0 and 0x8001 (-
32767) for -1.0. We use the same conversion method for other
real numbers in Equations (1), (2) and (3).

Figure 3. The datapath design of a 32-neuron BSB recall
function.

In this experimental design, values of Xi and Ai,j will be
loaded from the memory to FPGA in sequential manner, i.e.,
one 32 bit data word per clock cycle. Initially shifting in the
weight matrix requires 1,024 clock cycles, however this is
only a fixed non-recurring overhead.
For the above design, the throughput is 32 clock cycles per
BSB recall function. In our implementation, the FPGA chip
can run at 100MHz, which achieved by pipelined design. Thus
the throughput is 320ns per BSB recall. Since a recall
involves about 2,048 integer operations, this represents an
operation rate of about 2,048operations/320ns or 6.4GOPS.
Meanwhile, the time for a 2.4GHz PC to do one BSB recall in
software has been measured to be about 12,000ns. This
represents a floating operation rate of about 2,048
operations/12,000ns or 171MOPS. Therefore, the hardware
versus software speedup is about 12,000/320 37X.
For a 128-neuron BSB model, the software computation time
increases quadratically, while the hardware computation time
increases linearly, from the 32-neuron BSB model. Therefore

A 3
1,

0
A 3

1,
0

A
30

,0
A 3

0,
0

A
0,

0
A

0,
0

A 3
1,

1
A 3

1,
1

A
30

,1
A

30
,1

A
0,

1
A

0,
1

A
31

,3
1

A
31

,3
1

A 3
0,

31
A

30
,3

1
A 0

,3
1

A 0
,3

1

w
_s

hi
ft_

in
w

_u
pd

at
e

w
_u

pd
at

e

w
_u

pd
at

e

X
31X
31

X
30X
30

X
0X
0

x_
sh

ift
_i

n

x_
up

da
te

X
31X
31

X
30X
30

X
0X
0

x_
sh

ift
_i

n
x_

up
da

te

×× ×× ××X
0

X
1

X
31

++ ++

++

A
dd

er
 T

re
e

A
dd

er
 T

re
e

××

al
ph

a

++

××

la
m

bd
a

S
()S
()

X
N

31
X

N
31

X
N

30
X

N
30

X
N

0
X

N
0

A 3
1,

0
A 3

1,
0

A
30

,0
A 3

0,
0

A
0,

0
A

0,
0

A 3
1,

1
A 3

1,
1

A
30

,1
A

30
,1

A
0,

1
A

0,
1

A
31

,3
1

A
31

,3
1

A 3
0,

31
A

30
,3

1
A 0

,3
1

A 0
,3

1

w
_s

hi
ft_

in
w

_u
pd

at
e

w
_u

pd
at

e

w
_u

pd
at

e

X
31X
31

X
30X
30

X
0X
0

x_
sh

ift
_i

n

x_
up

da
te

X
31X
31

X
30X
30

X
0X
0

x_
sh

ift
_i

n
x_

up
da

te

A 3
1,

0
A 3

1,
0

A
30

,0
A 3

0,
0

A
0,

0
A

0,
0

A 3
1,

1
A 3

1,
1

A
30

,1
A

30
,1

A
0,

1
A

0,
1

A
31

,3
1

A
31

,3
1

A 3
0,

31
A

30
,3

1
A 0

,3
1

A 0
,3

1

w
_s

hi
ft_

in
w

_u
pd

at
e

w
_u

pd
at

e

w
_u

pd
at

e

X
31X
31

X
30X
30

X
0X
0

x_
sh

ift
_i

n

x_
up

da
te

X
31X
31

X
30X
30

X
0X
0

x_
sh

ift
_i

n
x_

up
da

te

×× ×× ××X
0

X
1

X
31

++ ++

++

A
dd

er
 T

re
e

A
dd

er
 T

re
e

××

al
ph

a

++

××

la
m

bd
a

S
()S
()

X
N

31
X

N
31

X
N

30
X

N
30

X
N

0
X

N
0

×× ×× ××X
0

X
1

X
31

++ ++

++

A
dd

er
 T

re
e

A
dd

er
 T

re
e

××

al
ph

a

++

××

la
m

bd
a

S
()S
()

X
N

31
X

N
31

X
N

30
X

N
30

X
N

0
X

N
0

203

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

for 128-neuron models, the speedup that can be achieved by
the hardware design is about (37*4)=148X, with an operation
rate of about 25.6GOPS. Note that we have ignored the
coefficient loading overhead for both PC and FPGA, which
we will address in the next section.
One possible concern about the proposed approach is that all
the previous BSB model work is based on floating-point
numbers and operations. To evaluate the feasibility of using
integer operations instead of floating-point operations, we
made a test case that uses a 32-neuron BSB model to learn and
recall one of the four patterns shown in Figure 4.

Figure 4. Four 25-pixel black-and-white patterns used for
the training and recall of a 32-neuron BSB model.

Two software programs in C/C++ were developed on a PC
with Linux OS, one using floating-point numbers and the
other using 16-bit integer numbers. We found that, given the
same sequence of training-recall operations, both programs
achieve the same results. Although this study does not cover
all possible application scenarios of the BSB models, it gives
us leap of faith that the proposed FPGA-based architecture
will work in the integer domain.
The design in Figure 3 can easily be scaled up for 128-neuron
BSB models, as long as we have enough multipliers on the
FPGA. As we have mentioned, the WILDSTAR II PCI card in
the HPC cluster uses Xilinx XC2V6000 FPGA that has 144
multipliers. One 128-neuron BSB model or four 32-neuron
BSB models are good fit to its capacity. It is worth mentioning
that the FPGA is virtually capable of implementing BSB
models of any size, with appropriate multiplexing of resources.

IV. ANALYSIS OF COMPUTING AND
COMMUNICATION PERFORMANCE FOR LARGE-

SCALE CORTICAL MODELS
To address the second research challenge of heavy data traffic,
we divide the data communication in the system into two
types: intra-BSB communication and inter-BSB
communication. Intra-BSB communication is generated
mainly by the loading of weight matrices from memory to the
FPGA. Inter-BSB communication is generated mainly by
sending the outputs of BSB models to the inputs of other
models. To quantify the communication bandwidth
requirements, we have analyzed the following application
scenario.
To build a model for the whole primary visual cortex (V1), we
estimate that we need to have about 100,000 highly-connected
128-neuron BSB models. If we have 100 FPGAs in the
computing platform, then the number of BSB models must
share the same FPGA can be calculated as:

 num_of_BSB_per_FPGA = 100,000 / 100 = 1,000 (4)

A 128-neuron BSB model has 1282 = 16,384 coefficients in
the weight matrix. If each coefficient is a 16-bit integer, then
the total storage space needed for all the BSB models on the
same FPGA can be calculated as:

total_memory_space = 1,000 * 16,384 * 2 32 MBytes (5)

If the FPGA runs at 100MHz, the time for one recall operation
(128 clock cycles) is about 1.28 s. For each BSB model, the
maximum possible frequency of the recall operation can be
calculated as:

 num_of_recall_per_BSB_per_Second

 = (1.0s / 1.28 s) / 1,000 780 (6)

The time for one recall operation is 1sec/780recalls, which
represents a sub-millisecond responsiveness (BSB state-to-
state transitions). Assuming a worst case scenario in which
the same FPGA hosts all 1000 BSB models (i.e. each weight
matrix must be transferred from memory to FPGA in
succession), just one recall operation would require weight
matrices to be loaded from memory to FPGA at a frequency of:

 num_of_matrix_load_per_Second

 = 780 * 1,000 = 780,000 (7)

Therefore, the worst-case total data traffic bandwidth for intra-
BSB communication can be calculated as:

 intra_BSB_traffic = 16,384 * 2 * 780,000

 = 25,559,040,000 25.6 GBytes/Second (8)

As a reference, the local memories banks (6 per FPGA) on the
WILDSTAR II PCI card can provide a communication
bandwidth of about 5.5 GBytes/Second.
If we assume that half of the BSB outputs (64 integers = 128
Bytes) will be sent to other models after every recall, then the
worst-case total data traffic for inter-BSB communication can
be calculated as:

 inter_BSB_traffic = 100,000 * 780 * 128

 = 9,984,000,000 10 GBytes/Second (9)

The intra-BSB communication is solely between memory and
FPGA, while most of the inter-BSB communication is
between different workstations. As a reference, a Gigabit
Ethernet can provide a raw bandwidth of 125 MBytes/Second,
which implies a minimum communications channel
requirement of 80GBytes/sec. The achievable aggregated
bandwidth may be larger, but is dependent on the network
topology.
From the analysis we can see that, when developing the new
architecture, maximizing communication bandwidth is as
important as providing enough computing power. We believe
that a good architecture, combined with good resource
allocation algorithms, can achieve the best system
performance.
To maximize the bandwidth for intra-BSB communication, we
use a parallel loading method by distributing the weight

204

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

matrix into the local memory banks so that they can be loaded
to the FPGA in parallel. If we use the WILDSTAR II PCI card,
the method is illustrated in Figure 5.
At full speed, the time to load a BSB model can be calculated
as:

 time_to_load_BSB

 = 16,384 * 2 / (5.5 GBytes/Second) 6 s (10)

Figure 5. A parallel loading method for minimizing the
loading time of the weight matrix.

The total for loading a BSB model and performing a recall can
be calculated as:

 time_to_load_recall_BSB = 6 + 1.28 = 7.28 s (11)

If we consider some possible latency and overhead,
conservatively speaking, we should be able achieve a total
time under 10 s. Since there are 1,000 BSB models sharing
the same FPGA, the effective total “load + recall” time for
each BSB model is 10ms.
Figure 6 shows the overall hardware and communication
framework of the system. The inputs and outputs of the BSB
models will be stored in the on-chip memory. Inter-BSB
communication on the same FPGA only involves memory
reads and writes. For communication between models hosted
by two different FPGAs that are both resident the same
WILDSTAR card, we can use the built-in high-speed links.
The cost for inter-BSB communication across workstations is
much higher because the data have to go through the PCI bus,
the hardware-pub/sub interface, pub/sub protocol software,
and the network. Thus, for a fully trained functional model
performing mostly recall, achieving the best possible
performance will involve optimizing the placement of various

BSB models within single FPGA’s, on pairs of FPGA’s, and
among workstations.

Figure 6. The overall hardware and communication
framework of the system.

V. CONCLUSIONS
We have proposed a novel hybrid computing architecture for
the simulation and evaluation of large-scale associative neural
memory models. The proposed architecture achieves very high
computing and communication performances by combining
the technologies of hardware-accelerated computing, parallel
distributed data operation and the publish/subscribe protocol.
Analysis has been done on the computation and data
bandwidth demands for implementing a large-scale Brain-
State-in-a-Box (BSB) model. Compared to the traditional
computing architecture, the proposed architecture can achieve
at least 100X speedup.

REFERENCES
[1] Q. Qiu, Q. Wu, D. Burns, P. Mukre, “Hybrid Architecture for

Accelerating DNA Codeword Library Searching,” submitted
to International Symposium on Circuits and Systems, May
2007.

[2] “Associative Neural Memories: Theory and Implementation,”
Mohamad H. Hassoun, Editor, Oxford University Press, 1993.

[3] “On Intelligence,” Jeff Hawkins, Sandra Blakeslee, Times
Books, Henry Holt and Company, LLC, 2004.

[4] “WILDSTAR II for PCI Data Sheet,” Annapolis Micro
Systems, Inc.

[5] “Virtex-II Family Product Table,” Xilinx, Inc.
[6] “Virtex-II Pro Family Product Table,” Xilinx, Inc.
[7] Patrick Eugster, Pascal Felber, Rachid Guerraoui, and Anne-

Marie Kermarrec, “The Many Faces of Publish/Subscribe,”
ACM computing Surveys, 35(2), June 2003.

A31,0A31,0 A30,0A30,0 A0,0A0,0

A31,1A31,1 A30,1A30,1 A0,1A0,1

A31,31
A31,31 A30,31

A30,31 A0,31
A0,31

w_shift_in
w_update

w_update

w_update

X31X31 X30X30 X0X0

x_shift_in

x_update

X31X31 X30X30 X0X0

x_shift_in
x_update

A31,0A31,0 A30,0A30,0 A0,0A0,0

A31,1A31,1 A30,1A30,1 A0,1A0,1

A31,31
A31,31 A30,31

A30,31 A0,31
A0,31

w_shift_in
w_update

w_update

w_update

X31X31 X30X30 X0X0

x_shift_in

x_update

X31X31 X30X30 X0X0

x_shift_in
x_update

××

××

××

X0

X1

X31

++

++

++

Adder TreeAdder Tree

××

alpha

++

××

lambda

S()S()

XN31XN31 XN30XN30 XN0XN0

××

××

××

X0

X1

X31

++

++

++

Adder TreeAdder Tree

××

alpha

++

××

lambda

S()S()

XN31XN31 XN30XN30 XN0XN0

128128--neuron BSB neuron BSB
hardware on FPGAhardware on FPGA

BSB_1 weight BSB_1 weight
matrix, part 1matrix, part 1

BSB_2 weight BSB_2 weight
matrix, part 1matrix, part 1

……

BSB_1000 weight BSB_1000 weight
matrix, part 1matrix, part 1

Memory Bank 1Memory Bank 1

BSB_1 weight BSB_1 weight
matrix, part 2matrix, part 2

BSB_2 weight BSB_2 weight
matrix, part 2matrix, part 2

……

BSB_1000 weight BSB_1000 weight
matrix, part 2matrix, part 2

Memory Bank 2Memory Bank 2

BSB_1 weight BSB_1 weight
matrix, part 3matrix, part 3

BSB_2 weight BSB_2 weight
matrix, part 3matrix, part 3

……

BSB_1000 weight BSB_1000 weight
matrix, part 3matrix, part 3

Memory Bank 3Memory Bank 3

BSB_1 weight BSB_1 weight
matrix, part 4matrix, part 4

BSB_2 weight BSB_2 weight
matrix, part 4matrix, part 4

……

BSB_1000 weight BSB_1000 weight
matrix, part 4matrix, part 4

Memory Bank 4Memory Bank 4

BSB_1 weight BSB_1 weight
matrix, part 5matrix, part 5

BSB_2 weight BSB_2 weight
matrix, part 5matrix, part 5

……

BSB_1000 weight BSB_1000 weight
matrix, part 5matrix, part 5

Memory Bank 5Memory Bank 5

BSB_1 weight BSB_1 weight
matrix, part 6matrix, part 6

BSB_2 weight BSB_2 weight
matrix, part 6matrix, part 6

……

BSB_1000 weight BSB_1000 weight
matrix, part 6matrix, part 6

Memory Bank 6Memory Bank 6

Parallel load memory interfaceParallel load memory interface

Parallel load memory interfaceParallel load memory interface

BSB_1 in/outBSB_1 in/out
BSB_2 in/outBSB_2 in/out

……
BSB_1000 in/outBSB_1000 in/out

OnOn--Chip MemoryChip Memory

PE0PE0

BSB_1 in/outBSB_1 in/out
BSB_2 in/outBSB_2 in/out

……
BSB_1000 in/outBSB_1000 in/out

OnOn--Chip MemoryChip Memory

PE1PE1

Direct LinkDirect Link

PCI Bus InterfacePCI Bus Interface

Hardware Hardware -- Pub/Sub Interface SoftwarePub/Sub Interface Software

Publish/Subscribe Framework SoftwarePublish/Subscribe Framework Software

GeneralGeneral--purpose processor purpose processor
with Linux OSwith Linux OS

Hybrid Computing Workstation

High-Speed Interconnect Network

205

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

