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Abstract— Data Link layer attacks on WiFi networks are
known to be one of the weakest points of WiFi networks. While
these attacks are very simple in implementation, their effect on
WiFi networks can be devastating. To this end, several Intrusion
Detection Systems (IDS) have been employed to detect these
attacks. In this paper, we compare the ability of Snort-Wireless
and a genetic programming (GP) based intrusion detector, in
the detection of a particular data link layer attack, namely
the deauthentication attack. We focus particularly on a scenario
where the attacker stealthily injects the attack frames into the
target network. Results show that the GP based detection system
is much more robust against the different versions of the attack
compared to Snort-Wireless and can achieve a detection rate in
average 100% and a false positive rate in average 0.1%.

I. INTRODUCTION

The wireless network protocol IEEE 802.11, also referred
to as Wireless Fidelity (WiFi), is a protocol which has been
deployed in a growing number of locations and environments.
The security vulnerabilities of networks based on the IEEE
802.11 wireless network standard have been widely attested in
literature [1]. These security vulnerabilities are not necessarily
peculiar to WiFi networks but to all wireless communication
protocols. Data transmission through open air waves is a
characteristic of all wireless communication protocols, where
this fact is responsible for their seeming openness to intrusions.
Particular emphasis is however placed on WiFi networks due
to the pervasiveness of their deployment. IEEE 802.11 is by
far the most widely used wireless networking standard in the
world today and its popularity increases by the day.

Wireless Data Link layer attacks target the lower layers of
the Open System Interconnect (OSI) protocol stack and their
goal is to render the network unusable. They are therefore of
particular importance in any discussion on the vulnerabilities
of WiFi networks. Apart from being designed specifically for
WiFi networks, most of the security features incorporated
into the WiFi protocol such as data encryption and client
authentication are not able to guard against these attacks. The
deauthentication attack which is investigated in this work is a
data link layer attack, which causes a Denial-of-Service (DoS)
by injecting a subset of the IEEE 802.11 Management Frames
i.e. the deauthentication frame into the network traffic.

In this paper, we compare the detection capabilities of Snort-
Wireless, a signature based IDS, against a machine learning,
namely genetic programming (GP), based detection solution.
Snort-Wireless, is selected for this work as a signature based
detector since it is an open source solution, which is widely
used. It detects the deauthentication attack through the mea-
surement of certain metrics, whose values are provided by
the network administrator. The problem with using such a
method arises in a scenario where an attacker injects attack
frames into the network in a controlled and stealthy manner in
order to beat the signatures in the intrusion detection database.
Based on the past success in the use of Genetic Programming
based solutions in detecting the deauthentication attack [2],
our objective is to test the suitability and robustness of such
an approach in detecting the deauthentication attack when
signature based solutions like Snort-Wireless fail.

The remainder of this paper is organised as follows. Section
2 discusses WiFi networks in detail and how data link layer
attacks affect them. Section 3 discusses the methods of detect-
ing data link layer attacks investigated. Section 4 outlines the
experiments and explains our approach. Section 5 presents the
results and conclusions are given in Section 6.

II. DATA LINK LAYER ATTACKS AND WIFI NETWORKS

A. WiFi Networks

WiFi networks generally consist of one or more Access
Points (APs) and a number of clients, which can be any
device from laptop computers to wireless Personal Digital As-
sistants(PDAs), which communicate over a wireless medium
using the IEEE 802.11 standard. Network technologies based
on the IEEE 802.11 standard include 802.11b, 802.11g and
so on. These technologies differ from each other, amongst
other things, by the frequency at which they operate and the
bandwidth that they are able to deliver. In this paper, we deal
specifically with 802.11b networks [3].

WiFi APs act as base stations or servers for wireless Local
Area Networks (WLANs). Using Beacon Frames, they period-
ically broadcast their Service Set Identifier (SSID), a character
string, which identifies the AP. This way, any authorised client
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machine that is within the range of the AP and that can pick
up the SSID signal can choose to join the network of the AP.

WiFi networks have many advantages, one of which is
their ease of deployment. This has made WiFi technology
one of the fastest growing wireless technologies to reach
its consumers. WiFi technologies reached 25% of the North
American population within 12 years of its release, compared
to televisions and wired telephones, which took 40 and 50
years respectively to achieve the same feat [4].

However, security is of great concern in WiFi networks.
WiFi networks are particularly susceptible to attacks, which
their wired counterparts are not susceptible. In particular,
transmitting data over open airwaves is responsible for this.
Data transmitted in this fashion can easily be intercepted.
Indeed, research suggests that security is the major inhibitor to
the future growth of the wireless network market. Several pro-
tocols, which use authentication and cryptographic techniques
like Wireless Encryption Protocol (WEP), WiFi Protected
Access (WPA) and wireless Virtual Private Networks (VPN)
have been proposed to ameliorate these vulnerabilities. These
protocols, however, do not deal with attacks that target the
physical and data link layers of the OSI protocol stack. Most
of these attacks are DoS attacks, which usually exploit Media
Access Control (MAC) frames, and their end effect results
in the network being unusable or inaccessible to legitimate
clients.

B. Data Link Layer Management Frames

The 802.11 standard defines various frame types that sta-
tions (clients and access points) use for communication, as
well as for management and control of their connections
[3]. This gives rise to three broad classes of frames i.e.
management frames, control frames and data frames. Man-
agement frames are used by stations to establish and maintain
connections. This makes them the target of most attacks, which
aim to make a WiFi network unusable. Types of management
frames include: Association, Disassociation, Authentication,
Deauthentication, Beacon and Probe frames. Full discussion
on the uses of these frames is beyond the scope of this paper,
we however briefly discuss the Association, Disassociation,
Authentication and Deauthentication frame subtypes below.

• Authentication frame: This frame is used by clients to
enable an AP to identify them as legitimate stations on a
WiFi network. The client sends an authentication request
and the AP replies with an authentication response, which
either accepts or rejects the identity of the client.

• Deauthentication frame: A station sends a deauthenti-
cation frame to another station if it wishes to terminate
secure communications. The station can either be the
client or the AP.

• Association request frame: This frame is used by clients
to associate with an AP. When a client is associated with
an AP, the AP allocates resources for and synchronizes
with the client. Association frames can either be requests
(from the client to the AP) or responses (from the AP to
client).

• Disassociation frame: This is sent when a station wishes
to terminate an association between itself and another
station. The station can either be the client or the access
point.

C. Deauthentication Attack

As mentioned earlier, this paper focuses on the Deauthen-
tication attack. This attack, like other MAC layer attacks is
very easy to implement. An attacker simply eavesdrops on
a network and gathers information about the stations on the
network. The attacker then uses this information to spoof the
MAC address of a station on the network. If the attacker
targets a specific client, it creates a deauthentication frame
with the MAC address of the target as the source and the MAC
address of the AP as the destination. This frame causes the
AP to send a deauthentication frame back at the client (target);
this prevents the target from communicating any further as a
legitimate client on the network. This scenario is outlined in
Fig. 1.

Apart from the scenario outlined above the attacker can vary
the scope of the attack i.e. focusing on the AP to take down the
entire network, targeting a specific client or group of clients,
as well.

D. Void11

Void11 is a free software implementation of some common
802.11b attacks [6]. The basic implementation works in a
command line Linux/Unix environment (though it has a GUI
implementation called gvoid11, too). For void11 to work on
a computer, the computer must have a prism based wireless
Network Interface Card (NIC) and must have hostap drivers
installed. The hostap drivers allow the machine to act as a
wireless AP [7].

The vulnerabilities discussed in this section result
directly from this additional functionality and can
be broadly placed into two categories: identity and
media-access control.

3.1 Identity Vulnerabilities

Identity vulnerabilities arise from the implicit
trust 802.11 networks place in a speaker’s source
address. As is the case with wired Ethernet hosts,
802.11 nodes are identified at the MAC layer with
globally unique 12 byte addresses. A field in the
MAC frame holds both the senders and the receivers
addresses, as reported by the sender of the frame.
For “class one” frames, including most management
and control messages, standard 802.11 networks do
not include any mechanism for verifying the correct-
ness of the self-reported identity. Consequently, an
attacker may “spoof” other nodes and request var-
ious MAC-layer services on their behalf. This leads
to several distinct vulnerabilities.

3.1.1 Deauthentication

Exemplifying this problem is the deauthentication
attack. After an 802.11 client has selected an access
point to use for communication, it must first authen-
ticate itself to the AP before further communication
may commence. Moreover, part of the authentica-
tion framework is a message that allows clients and
access points to explicitly request deauthentication
from one another. Unfortunately, this message it-
self is not authenticated using any keying material.
Consequently the attacker may spoof this message,
either pretending to be the access point or the client,
and direct it to the other party (see Figure 1). In
response, the access point or client will exit the au-
thenticated state and will refuse all further pack-
ets until authentication is reestablished. How long
reestablishment takes is a function of how aggres-
sively the client will attempt to reauthenticate and
any higher-level timeouts or backoffs that may sup-
press the demand for communication. By repeating
the attack persistently a client may be kept from
transmitting or receiving data indefinitely.

One of the strengths of this attack is its great
flexibility: an attacker may elect to deny access to
individual clients, or even rate limit their access, in
addition to simply denying service to the entire chan-
nel. However, accomplishing these goals efficiently
requires the attacker to promiscuously monitor the
channel and send deauthentication messages only
when a new authentication has successfully taken
place (indicated by the client’s attempt to associate
with the access point). As well, to prevent a client

Client Attacker AP

Authentication Request

Authentication Response

Association Request

Association Response

Deauthentication

Data

Deauthentication

Figure 1: Graphical depiction of the deauthentica-
tion attack. Note that the attacker needs only gen-
erate one packet for every six exchanged between the
client and access point.

from “escaping” to a neighboring access point, the
attacker must periodically scan all channels to en-
sure that the client has not switched to another over-
lapping access point.

3.1.2 Disassociation

A very similar vulnerability may be found in the as-
sociation protocol that follows authentication. Since
a client may be authenticated with multiple access
points at once, the 802.11 standard provides a spe-
cial association message to allow the client and ac-
cess point to agree which access point shall have
responsibility for forwarding packets to and from
the wired network on the client’s behalf. As with
authentication, association frames are unauthenti-
cated, and 802.11 provides a disassociation message
similar to the deauthentication message described
earlier. Exploiting this vulnerability is functionally
identical to the deauthentication attack. However,
it is worth noting that the disassociation attack is
slightly less efficient than the deauthentication at-
tack. This is because deauthentication forces the
victim node to do more work to return to the as-

Fig. 1. Deauthentication Attack [5]
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Void11 implements three data link layer attacks, which use
management frames. They are Deauthenticate Flood (default
mode), Authentication Flood and the Association Flood1. The
basic goal of each of the attacks is to flood the network
with management frames causing random clients to loose their
connection with the AP. The end result of each of the attack
types differs based on the rate of injection of the frames and
on the type of client involved.

The delay (-d) switch is of particular interest to our work.
This switch controls the rate at which management frames
are injected into the network. The default value for the delay
parameter is 10000µs [6]. Assigning a different value to this
switch can be used to stealthily inject frames into the target
network.

III. DETECTING DATA LINK LAYER ATTACKS

Traditionally Intrusion Detection Systems (IDSs) are used
to detect attacks against the integrity, confidentiality and
availability of computer networks [2], [8]. They are analogous
to burglar alarms, which monitor the premises to find evidence
of break-ins. These operations aim to catch attacks and log
information about the incidents such as source and nature of
the attack. An IDS can be a combination of software and
hardware, which collects and analyzes data collected from a
network(s) or a host(s). IDSs are generally analyzed from two
aspects:

• Deployment: Whether to monitor incoming traffic or host
information.

• Detection: Whether to employ the signatures of known
attacks or to employ the models of normal behavior.

The use of machine learning and artificial intelligence
techniques in the building of IDSs is relatively new. Hitherto,
building IDSs required a human expert to construct a set
of rules, which when triggered, would indicate malicious
activity. In this section, we briefly discuss intrusion detection
systems compared in this work i.e. Snort-Wireless and GP
based IDS and how they detect the de-authentication attack.
Snort-Wireless is a signature based technique, which uses rules
constructed by a human expert. On the other hand, GP based
detection is a machine learning based technique, which works
by a data-driven approach.

A. Snort-Wireless Based Data Link Layer Attack Detection

There are several open source and commercial IDSs avail-
able in the market today but Snort stands out as being one
of the most popular. Developed in 1998 by Martin Roesch,
Snort is an open source, real-time intrusion detection system
[9]. Using signature and anomaly based metrics it detects
and prevents attacks by utilizing a rule-driven language. It
is the most widely deployed open source IDS in industry and
research.

With the appropriate patches applied, Snort can be trans-
formed into Snort-Wireless [10]. These patches enable Snort

1The command syntax for using the void11 tool to launch an attack is:
void11penetration -D -t[type of attack] -d[delay] -s[station MAC] -B[BSSID]
[interface]

(Snort-Wireless, after patches are applied) to detect WiFi
specific attacks. Signatures that detect the deauthentication
attack (and other WiFi MAC Layer attacks) are among the
patches included in Snort-Wireless.

The most important metrics used by Snort-Wireless to detect
the deauthentication attack are the number of deauthentication
frames to be considered as an attack and the time frame within
which that number of frames need to be detected. The default
values for these parameters in Snort-Wireless are 20 frames
and 60 seconds respectively [10]. While this setup can detect
most attacks effectively, an attacker who injects only 19 frames
in every 60 second period will go undetected with such a
signature.

B. GP Based Data Link Layer Attack Detection

GP is an extension of the Genetic Algorithm (GA); which
is an evolutionary computation (EC) method proposed by
John H. Holland [11]. GP extends the GA to the domain of
evolving complete computer programs [12]. Using the Dar-
winian concepts of natural selection and fitness proportional
breeding, populations of programs are genetically bred to
solve problems. These populations of programs can either be
represented as tree like LISP structures or as binary strings,
which represent integers. These integers are then mapped onto
an instruction set and a set of source and destination registers.
Each individual can thus be decoded into a program, which
takes the form of assembly language type code for a register
machine. This is known as the Linear Page Based GP (L-
GP) [13]. Our work utilizes the L-GP approach, alongside
the Random Subset Selection - Dynamic Subset Selection
(RSS-DSS) algorithm [14], detailed below. L-GP has been
used successfully by other researchers in the realm of IDSs
[2], [8], [15]. Based on its successful use in detecting the
deauthentication attack [2] and other higher level attacks [15],
it is also employed in this work.

C. Linear Page Based GP

L-GP consists of a sequence of integers that once decoded,
form the basis of a program in which the output is taken
from the best performing register, as defined by the fitness
function. In order to decode this linear set of instructions,
each integer is mapped to a valid instruction from the defined
instruction set. The instruction set consists of operands and
either a source or destination register. The operands in our
work are a set of register arithmetic functions, while the
source and destinations are a set of valid general-purpose
registers. The decoding of a sequence then creates a program
that consists of simple register level transformation. Once the
execution is completed, the output is taken from the best
performing register. The sequences of integers are grouped
in pages, each page consisting of the same number of integers
(therefore the same number of instructions). The crossover
operator performs a crossover on an entire page, preserving
the total number of pages in an individual. The mutation
operator selects one instruction with uniform probability and
performs an Ex-OR operation between this and a bit-sequence
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created with uniform probability. A second crossover operator
performs a swap of two instructions within the same individual
(selected again with uniform probability). The page size itself,
which controls the number of instructions per individual, is
dynamically modified depending on the fitness level of the
population. If the fitness level has not changed for a specified
window, the page size is increased. This pattern will continue
until a maximum page size is reached, at which point the
page size is dropped back down to the initial starting page
size. This entire process is continued until the GP has reached
either optimal fitness, or some sort of previously set stopping
criteria.

D. Random Subset Selection - Dynamic Subset Selection Al-
gorithm

The Random Subset Selection - Dynamic Subset Selection
(RSS-DSS) algorithm is a technique implemented in order
to reduce the computational overhead involved with applying
GPs to large data sets. To do so, the RSS-DSS algorithm
utilizes a hierarchical sampling of training exemplars, dividing
the problem into two levels [15]. We present here a brief
overview of how the algorithm functions for completeness,
as we have implemented it in our GP, but it is not the focus of
our work. The first level of RSS-DSS performs the RSS step.
It divides the training set into blocks of equal size, the second
level chooses (stochastically) a block and places it in memory.
Level 2 performs the DSS step, as it dynamically selects a
subset of the set in memory (the tournament selection). The
dynamic selection is based on two metrics the GP maintains,
the age of the exemplar and the apparent difficulty of the
exemplar. The tournament individuals are then trained on
the current subset, genetic operators are applied, and then
placed back in the subset. This DSS is continued until a
maximum number of DSS iterations or a stopping criteria is
met, then the algorithm returns to the RSS step, selecting
another block to place in memory and repeats DSS. This
entire process continues until a maximum number of RSS
iterations or the stopping criteria have been met. The RSS-
DSS algorithm removes the requirement to train on the entire
data set, instead using only a small subset of the data set
that represents the more difficult or least recently encountered
exemplars. This allows the GP to train more efficiently then
standard techniques on big datasets.

IV. EXPERIMENTS

Our experiments require that we have appropriate datasets
for the training and testing of the GP based IDS as well
as for the testing of Snort-Wireless. These datasets have to
be in tcpdump format for replaying through Snort-Wireless.
Moreover, the tcpdump files need to be labeled for the training
and testing of the GP based IDS. In order to generate such
datasets, we attack a test network, outlined in Table I, using
void11. All the clients are connected to an AP via 802.11
connection on channel 6. The data was collected on the
monitoring machine using Kismet Wireless [16].

The deauthentication attack implemented is directed at the
AP. From the attack machine, using void11, a stream of
deauthentication frames with the source set to the MAC
address of the AP and the target to that of the broadcast
address (ff:ff:ff:ff:ff:ff) are intermittently released into the
network stream. Normal traffic is also generated using our web
crawling implementation, which is developed using the Java 2
Platform, Micro Edition (J2ME). The web crawler ensures a
continuous stream of web browsing requests from the clients
as the network data is logged.

A. Feature Selection

The tcpdump traffic files collected by Kismet wireless could
be automatically replayed through Snort-Wireless but needed
further processing before they could be used on the GP based
IDS. To this end, an appropriate feature set had to be selected
from the features within the frames. 802.11 frames consist
of several features but not all of them are related to this
attack. Based on the feature selection in previous work [2], the
following subset of features were selected for this purpose:

1) Frame Control - Defines the protocol version,
type/subtype of the frame and any flags

2) Destination Address - MAC address of the destination
of the frame

3) Source Address - MAC address of the source of the
frame

4) Basic Service Set Identifier (BSSID)- Ethernet Address
of the Access Point

5) Fragment Number - Defines the fragment number in a
particular sequence of the frames

6) Sequence Number - Defines the sequence number of
the frame

7) Channel - The transmission channel used for commu-
nication

B. Data Set Generation

A total of 16 different datasets are generated and employed
in the following experiments. Table II details these datasets,
where void11 is employed to generate attacks and Kismet
wireless is employed for logging traffic.

In Table II, the datasets marked with attack type “Original”
are those, which are generated by implementing the deauthen-
tication attack with the default value of the “delay” parameter.
The default setting of the ”delay” parameter is 10000µS [6],
after some tuning of the “delay” parameter, we were able to set
the smallest value for the delay parameter at which we could

TABLE I
TEST NETWORK COMPONENTS

Type Description
Clients Palm Tungsten C (5x)

HP IPAQ 4700 (3x)
Dell Inspiron 9300 Laptop
Macintosh Mini

AP Airport Base Station Extreme
Monitoring Machine Intel Based Desktop
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TABLE II
DATASET CHARACTERISTICS

File Size Attack Type % Attack
1 23960 3302 Original 13.78
2 20960 3521 Original 16.80
3 7600 42 Modified 0.55
4 6800 42 Modified 0.62
5 7240 46 Modified 0.63
6 6880 43 Modified 0.62
7 7240 40 Modified 0.55
8 6440 44 Modified 0.68
9 6880 39 Modified 0.56
10 5600 48 Modified 0.85
11 6200 50 Modified 0.81
12 7200 36 Modified 0.50
13 5960 43 Modified 0.72
14 6400 42 Modified 0.66
15 5960 39 Modified 0.65
16 4960 38 Modified 0.77

TABLE III
GP PARAMETERS

Parameter Setting
Population Size 125

Maximum Number of Pages 32
Page Size 8 Instructions

Maximum Working Page Size 8 Instructions
Crossover Probability 0.9
Mutation Probability 0.5

Swap Probability 0.9
Tournament Size 4

Number of Registers 8
Function Set (+,-,*,/)
Terminal Set (0,. . . ,255) ∪ (r0,. . . ,r7)

RSS Subset Size 5000
DSS Subset Size 50

RSS Iteration 1000
DSS Iteration 100

continuously sustain the attack (without recourse to timing
control). This value was 3, 250, 000µS. All the datasets, which
have an attack type of “Modified” are generated using this
value for the delay parameter.

All the datasets we generated have approximately 30 min-
utes worth of WiFi traffic data logged in them. During this
30 minute period, we attacked the network twice. Each attack
lasting for two minutes for the Original Attack and 10 minutes
for the Modified Attack.

C. GP Based IDS Configuration

The parameter settings for the GP in all cases are given
in Table III. In addition to the GP parameters, the fitness
function utilised in this work is the switching fitness function
[2]. The switching fitness function assigns credit to a member
of the population depending on whether the execution of the
individual on an exemplar produces a false positive (1) or a
false negative (2). A higher credit value assignment at the end
of the run indicates a poor performing individual.

Fitness + =
1

TotalNumberofNormalConnections
(1)

Fitness + =
1

TotalNumberofAttackConnections
(2)

V. RESULTS

In intrusion detection, two metrics are typically used in
order to quantify the performance of the IDS, Detection Rate
(DR) and False Positive Rate (FP), equations (3) and (4)
respectively, a high DR and low FP rate would be the desired
outcomes. In the instance of an unbalanced data set (more of
one type of exemplar then the other, in this case more normal
then attack) an evolved solution can survive by simply learning
to label all of the exemplars as the larger type in the data set.
This survival technique will provide a high DR, but also a
high FP rate, an undesirable result. Undesirable results of this
kind are referred to as outlier solutions.

DR = 1− #FalseNegativeClassifications

TotalNumberOfAttackConnections
(3)

FP =
#FalsePositiveClassifications

TotalNumberofNormalConnections
(4)

A. Snort-Wireless Results

When all the “Modified” datasets are replayed through
Snort-Wireless, it is seen that Snort-Wireless cannot detect the
attacks in them. It is worthy of note that Snort-Wireless with
default parameters is only able to detect the attack in the traffic
dump files if the attack is run in its default form, i.e. original
attack scenario, otherwise it cannot detect the deauthentication
attack if it is modified as described above.

During our experiments with Snort-Wireless, we observed
that while the modified deauthentication attack was taking
place, most of the clients continuously tried to renew their
connections with the AP after being deauthenticated. They
did this by sending an Authentication request to the AP.
These authentication requests were sent each time the clients
were deauthenticated, this lead to a flood of authentication
requests directed at the AP during the attacks. This flood of
authentication requests were erroneously detected by Snort-
Wireless as an authentication attack2. The presence of these
alerts in the snort alert logs for both the original and modified
attacks is an example of proof of the effect of the attack in
both the Original and Modified scenarios.

B. GP based IDS Results

In order to compare the performance of the GP based IDS
against the performance of Snort-Wireless in detecting the
attacks in the modified datasets, the GP based IDS is first
trained on the “original attack” scenario datasets. To this end,
the original datasets are both used as training and testing files
in 40 runs of the GP, each time using a different initial seeding.
This enabled us to determine which seeding produced the best
individual, the seeding that produced the best individual is then

2This is an example authentication flood alert: 06/23-15:14:41.810091 [**]
[212:1:1](sppauthflood)Authflood detected! Addr src:00:07:e0:15:5c:5a −>
Addr dst: 00:03:93:ec:64:55, Bssid: 00:03:93:ec:64:55. [**]
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used in the GP runs which were tested on the modified attack
datasets. The results of these experiments are presented in the
following.

C. Original Attack Datasets

The summary of the results of running the GP based IDS 40
times against the training/test original attack pairs are shown
in Table IV.

Out of a total of 40 runs, nine outlier solutions are produced
and are not included in the analysis. Based on these results,
the seeding which produced the best overall individual, which
is given in Table V, is used for GP runs on the “modified
attack” scenario datasets.

D. Modified Attack Datasets

Each of the “modified” attack datasets is tested using
a solution that was trained on each of the two “original”
attack datasets, i.e. default deauthentication attack scenario.
This way a fair comparison to Snort-Wireless is achieved as
well, i.e. . GP is trained on the “original” but tested on the
“modified” attack. The testing is done once using a seeding,
which produced the best individual that is able to get 91%
detection rate and 0.1% false positive in the training phase of
our experiments, Table V. The results for testing are shown in
Table VI.

The results show that the GP based IDS is able to detect the
attacks in the files even though Snort-Wireless was unable to
detect them. The results also show that individual produced
by training on dataset 2 is a lot more accurate than the
individual trained on dataset 1. While both individuals had
good detection rates, the individual produced by training on
dataset 1 produced an unusually high false positive rate with
dataset 8. It is likely that the individual produced by dataset
2 is more accurate because the file contains a higher attack
percentage than dataset 1, Table II. Having a more even
distribution of exemplars in a training dataset increases the
likelihood of producing a more robust solution.

E. Datasets With Increased Attack Percentages

The attack percentages in datasets created with the con-
trolled attack are all well below 1%. It could be argued that
this was responsible for the very good performance of the
GP based IDS, as the low number of attacks reduced the
number of points where the GP based IDS could go wrong. It

TABLE IV
STATISTICS ON GP BASED IDS ON ORIGINAL ATTACK DATASETS

Max Min Mean
FP 0.5244 0 0
DR 1 0.2400 1

Time 47.7038 26.5402 38.5583

TABLE V
THE BEST INDIVIDUAL GIVEN BY THE GP BASED IDS

FP DR Time
0.0941 0.9125 48.8773

should be noted however that this low attack percentages are
characteristic of such datasets. Moreover, it is more difficult
to detect an attack for a machine learning based algorithm in
such unbalanced datasets, i.e. ˜99.9% normal and ˜0.1% attack
data.

Kismet wireless, the data logging tool used in our work,
provides an interface that allow for real-time monitoring of
the data logging process. Information on the rate at which
packets are logged is available from this interface. During
our data collection we could ascertain from this interface that
operation of the network, the average rate at which packets
were been logged is 30 packets/sec (which leads to 1800
packets/min). During periods when the modified attack was
run, only about 19 packets/min of the total 1800 packets/min
could be considered as part of the attack, all others would
be normal. This corresponds to about ˜0.1% of the packets
logged.

Notwithstanding, we also generated datasets with an in-
creased attack percentage. The steps taken to increase the
attack percentages (without unduly biasing the dataset) are
highlighted below and the resultant datasets are summarised
in Table VII.

1) Reduce the number of normal packets logged by reduc-
ing the length of time the clients spent retrieving pages
from the Internet.

2) Sustaining the attack for longer durations.
3) Not including the Beacon Frames in the attack. The

beacon frames make up a large portion of frames logged
on a wireless network and have no implication on the
attack.

As can be seen from the results shown in Table VIII, the
GP was able to achieve 100% detection rate in both files.

TABLE VI
RESULTS FOR GP-BASED IDS ON THE MODIFIED ATTACK

TRAINING
Dataset 1 Dataset 2

T
E

ST

File FP DR Time FP DR Time
3 4.84E-05 1 35.4177 0 1 42.2258
4 0.000194 1 33.0050 0.000803 1 39.8475
5 0 1 35.0290 0.006078 0.9783 51.4397
6 0.129877 1 31.9577 0.09508 1 47.4222
7 0.000484 1 36.3893 0.006078 1 51.4573
8 0.494433 1 33.7363 0 1 42.6153
9 0 1 35.4747 0 1 41.554
10 0 1 31.0705 0 1 42.7578
11 0 1 33.3265 0 1 48.3118
12 0 1 34.7407 0 1 47.3905
13 0 1 32.6878 0 1 50.379
14 0.088537 1 33.6962 0 1 50.4942
15 0.119518 1 34.8012 0 1 50.0882
16 0 1 32.1827 0 1 35.242

TABLE VII
DATASETS WITH INCREASED ATTACK %

File Size Attack Type % Attack
1 1471 19 Modified 1.30
2 1160 26 Modified 2.24
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TABLE VIII
RESULTS ON THE DATASETS WITH INCREASED ATTACK PERCENTAGES

TRAINING
Dataset 1 Dataset 2

TEST
File FP DR Time FP DR Time

1 0 1 48.8773 0 1 48.6145
2 0.3513 1 26.2513 0.0012 1 38.478

However the individual produced by dataset 1 produced a high
false positive rate in File 2, while the individual produced by
dataset 2 did not. Again this underscores our initial assertion
about solutions produced by training on dataset 2.

VI. CONCLUSION AND FUTURE WORK

In this work we designed, developed and tested a L-GP
based IDS on Data Link Layer attacks on Wifi networks.
Based on previous work [2], we implemented a feature set and
employed a switching fitness function for our IDS as well as
generated a data set to train and test it. Moreover, we compared
the performance of the GP based IDS with Snort-Wireless
under the same datasets. In these datasets, the deauthentication
attack was run in two forms: (i) Original Attack Scenario,
where the attack was run using default parameters as in
the void11 attack tool employed. In a way, this corresponds
to a new attacker just finding and employing the tool to
attack. (ii) Modified Attack Scenario, where the attack was
run by changing the parameters given in the vioid11 tool. This
corresponds to a more experienced attacker, who is crafting a
more difficult attack. To the best of our knowledge this is the
first time such a comparison has been performed between a
machine learning based IDS system, namely GP based IDS,
and a signature based system, namely the well known Snort-
Wireless.

The results show that both systems can detect the deauthen-
tucation attack under the original attack scenario but only the
GP based IDS can detect the attacks under the second scenario,
modified attack. In this case, the GP based IDS provides high
detection rates while still maintaining a low false positive rate.
The more consistent results of the GP based IDS does indicate
that it encourages the evolving of solutions that can handle the
modified attacks and the unbalanced nature of our data sets .
Compared to implementing Snort-Wireless for detecting this
DoS attack, the GP based IDS does not require a user to set
a threshold count of de-authentication frames nor a maximum
time window size for this count to be met. It eliminates this
requirement, providing a more robust tool for detecting the
DoS attack.

Our future work will explore the use of larger data sets for
training and testing our L-GP based IDS using more than one
AP. This will allow us to verify the effectiveness of our work
over larger networks as well as a varied number and length of
DoS attacks.

Furthermore, we plan on applying the same approach de-
scribed here on other WiFi attacks, with the goal of developing
an IDS that can be used to detect a variety of attacks.
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