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Abstract- This paper discusses a problem that our brain 
building research group is confronted with increasingly 
each year, namely, “How can we evolve, one neural net 
module at a time, while building artificial brains, when the 
technology, i.e. Moore’s Law, keeps increasing the number 
of neural net modules that a PC can process in real time, 
by a factor of two nearly every year or two?” In 2006, it 
was possible to have a PC process the neural signaling in 
real time, of an artificial brain of some 50,000 modules, 
each to be evolved individually, by a human BA (Brain 
Architect) or EE (evolutionary engineer). This number is 
already too large to be practical, so the obvious question 
arises, “How to automate the simultaneous evolution of 
multiple numbers of neural net modules?” This paper 
presents the problem and gives some tentative answers.  
  

I.   INTRODUCTION 
 
    This paper describes a problem that our research group is 
currently grappling with, namely, how to evolve neural 
network modules quickly enough, to build artificial brains, 
when today’s processor chips and memory chips allow us to 
put 50,000 modules in a PC, then have the PC run the neural 
signaling of the artificial brain in real time. The problem is that 
50,000 are just too many. In a year it will be 100,000, due to 
Moore’s Law. Evolving one module at a time is now simply 
too slow, if we want to build artificial brains with 50,000 
modules, as today’s PCs make possible. This exponential 
explosion of electronic capacity (“more electronics than 
ideas”) is forcing us to consider ways to evolve more than one 
neural network module at a time, but how to do this?  
    This paper presents some tentative ideas on how multi-
modules can be evolved simultaneously.  

    We begin by saying a little about what brain building is and 
what it can be used for. The basic idea of our approach to 
building artificial brains is to evolve neural network modules, 
one at a time, each with its own little function, with its own 
fitness definition.  
    These modules are evolved in an electronic accelerator 
board fifty times faster than on a PC. Once each module is 
evolved on the board, it is downloaded into the PC. This 
process is repeated many thousands of times, to generate 
thousands of neural net modules in the PC. Special software is 
then used to specify the inter-connectivity of the modules to 
build artificial brains, according to the designs of human 
“BAs” (Brain Architects). The artificial brain in the PC can 
then be used, via radio antennas, to control the behaviors of 
such things as autonomous robots, vision systems, speech 
understanding systems, etc.  

With Moore’s Law supplying trillion trillion component 
machines by 2020, there will be plenty of scope for building 
artificial brains with vast capacities.  Our research group is 
investigating how artificial brains can be built using the 
“evolved neural net module approach”. If we are successful, 
other research groups could use it, because this approach is not 
expensive. The accelerator board costs less than $2000, a PC 
costs less than $1000, and a robot is also about $1000, so any 
computer science or engineering research group could get a 
small research grant and begin building artificial brains for 
many different purposes.  

For over a decade the first author has been investigating the 
possibility of building artificial brains [2], [3]. Our approach 
recently has been to evolve neural network (NN) modules in 
programmable electronic accelerator boards to shorten the 
evolution times. These neural network modules are evolved 
one at a time in the board, and then downloaded into an 
ordinary PC.    
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    Our group has written many papers in the past [3] on the 
evolution of individual NNs, which are typically fully 
connected, and consist of 12-16 artificial neurons. Each 
connection is weighted by a signed binary fraction of typically 
8 or 9 bits. The dot product of the (signed binary fraction) 
incoming neural signal vector and the weight vector of each 
neuron is calculated. To this product is added the external 
signal values to a neuron. The sum is then sent through a 
sigmoid or squashing function that limits the absolute size of 
the signal to be less than 1.0 Copies of this output signal value 
are then sent to all neurons in the network, to become input 
signals in the next (tick) cycle. 
    Each NN module performs some little function that is 
evolved. Several thousand NN modules can be evolved 
individually in this way and downloaded into the PC’s 
memory, where they are then interconnected according to the 
designs of human “BAs” (Brain Architects) to construct an 
artificial brain. The PC then performs the neural signaling of 
the whole brain, i.e. thousands of NN modules, sequentially, in 
real time (defined to be 25 Hz per neural signal) for all neural 
signals of all NN modules in the brain.  
    These modules can be evolved to perform a large variety of 
tasks, e.g. for pattern recognition, motion control, decision-
making, memory, etc. The art of brain building is knowing 
which modules (i.e. their functions) are needed for a given 
application, and how they should be connected together. These 
decisions are made by BAs (Brain Architects). 
    A few years ago, our group did an experiment to see how 
many NN modules a normal PC of that year, could process 
sequentially in real time. We were shocked at the answer, 
which was, about 20,000 modules. That was several years ago. 
With another Moore’s Law doubling, this number is now 
around 50,000. In another year or so it will be over 100,000. 
This is in effect an “embarrassment of riches”. We now have 
more modules than we can handle. Even with quite a large 
research team of say 20 people (mostly graduate students) with 
each person evolving single NN modules separately, 20 people 
is not enough, when the total number of modules is about 
50,000. 
    The question then arises “Is it possible to evolve several 
modules simultaneously?” These individual modules, once 
evolved one at a time, as we do currently, are subsequently 
interconnected in the PC to build artificial brains. “Could 
several NN modules be evolved together and then downloaded 
as a “unit”, consisting of several interconnected NN modules, 
that functions as a subcomponent in the artificial brain 
design?” 

    Our group has barely begun to think about such issues, let 
alone trying to find solutions to the problem. However, due to 
the explosive, exponential growth of electronic capacity, due 
to Moore’s Law, we are now being forced to. In earlier years, 
it was not an issue, because the size of the annual increments 
in the number of extra NN modules was too small to be 
concerned about. But, this is no longer the case.  
    Not only are the PC processing speeds, and the memory 
capacities doubling, so too are the capacities of the 
programmable chips (FPGAs) on the electronic accelerator 

boards we use to perform the evolution of the NN modules. 
We use these boards to shorten the evolution times of 
individual NN modules. To evolve a single module in a PC can 
take many hours to over a day. We find that an accelerator 
board can perform the same task about 50 times faster than the 
PC.  
    At present, with our evolution of one NN module at a time, 
we find that the percentage of the logic gates used in the 
programmable chip is over 50%. So if we were to use the same 
chip to evolve several NN modules at the same time, we would 
probably run out of logic gates on the board.  
    Perhaps a little background knowledge on the use of the 
board would be helpful here. A user of the board writes high-
level “C-language-like” code that consists of a genetic 
algorithm to evolve a NN module with a specific fitness 
function, to perform some task. This code is then hardware-
compiled into instructions to configure the wiring of the 
programmable chip (FPGA). The more code, the greater 
number of programmable logic gates in the FPGA are used. 
But the FPGAs on the boards are themselves also subject to 
Moore’s Law. They too are doubling the number of logic gates 
they contain every year or two, so they are now large enough 
for the idea of simultaneous multiple NN module evolution to 
be tested. (In fact it is even possible that the programmable 
board we are using currently may be big enough to allow two 
NN modules to be evolved simultaneously.)  
    The big question is “how”?  The remainder of this paper 
attempts to give some tentative ideas to this tantalizing 
question. In fact, section 2 gives an outline of some ideas on 
how to proceed. Section 3 shows how two modules of a 2-
module subsystem could be evolved individually. Section 4 
shows how they could be evolved simultaneously. Section 5 
discusses some points and questions arising from simultaneous 
multi-module evolution.  
 

II.    INITIAL IDEAS 
 
    Before starting the discussion we need to explain how we 
evolve currently an individual module in the accelerator board 
(from the British company “Celoxica”, by the way [1]). The C-
like language whose compilation the Celoxica board accepts is 
called “Handel-C” [4], based on the name of the composer. 
This language is about 80% ordinary C, with the remaining 
statements concerned mostly with the parallelism that the 
board can handle. 
    A user of the board writes Handel-C code to perform a 
genetic algorithm (GA) that is applied to the evolution of the 
weights of a single fully connected neural net module. The 
fitness definition of the module is part of the code. The module 
is then evolved at electronic speed, and the elite chromosome 
(coding the weights of the NN module) is then downloaded 
into the RAM memory of the PC, to be later connected to other 
such downloaded NN modules, to create an artificial brain, 
consisting of thousands of such NN modules. The artificial 
brain can then be used to control such devices as autonomous 
robots and such systems as speech recognition, and artificial 
vision, etc. There are many possible applications. 
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    To aid thinking about how to evolve multiple-modules 
simultaneously, we restrict ourselves to the simplest case, i.e. 
in attempting to evolve only two such modules simultaneously.  
    However, before talking about how to do this, we talk about 
how the two modules could be evolved independently, and in 
the then talk about how they could be evolved simultaneously. 
Even simultaneous evolution can be done in several ways. One 
is called “independent simultaneous evolution” and the other is 
called “dependent simultaneous evolution”.  

Before launching into the details of the evolution of the 2 
modules (whether evolved individually or simultaneously) we 
define the differences between the two types of simultaneous 
evolution. 

 
a) 2-module, Simultaneous Independent Evolution (SIE) 

 
One is the very simple idea of evolving two modules 

independently on the same board. This is a “no-brainer”, since 
it consists of simply having two independent NN module 
evolutions going on at the same time in the board. This is not 
an interesting case conceptually speaking. Of course, it speeds 
up the evolution when one can evolve two modules at once, 
compared to doing one at a time, but this is not what this paper 
is aiming at. This brings us to the second approach. 

 
b) 2-module Simultaneous Dependent Evolution (SDE) 

 
In this second case, two modules are evolved at the same 

time, but they are not independent, i.e. they are connected, 
with the outputs of one connecting to the inputs of another, and 
both NN modules evolving at the same time. The evolution of 
one module influences the behavior of the other module. One 
could also have a mutual influence, where the output signals of 
the second module feed back to the first, in a non-feed-forward 
manner. Hence we can make a further distinction between  

 
a) feed-forward multi-module simultaneous evolution 
b) feed-back multi-module simultaneous evolution 
 
    In this paper, to keep things simple, we limit ourselves to a 
simple feed-forward 2-module simultaneous evolution.Take 
two NN modules that are connected to form a 2-module neural 
subsystem, i.e. both are needed to allow the subsystem to 
perform its function.  
    To keep the discussion concrete, imagine the two modules 
are components of a neural subsystem that detects a visual 
pattern and responds by pressing the left lever or the right lever 
of a device, depending on which of two different patterns it 
saw, and on the values of two switching input control signals. 
 

III.    MULTI-MODULE EVOLUTION 
 
    More specifically, let module A be a detector of either a 
triangle or a square in its visual field. It outputs two signals 
Stri (i.e. triangle) and Ssq (i.e. square). If the pattern presented 
to the subsystem is a triangle/square, the output signal Stri 
should be strong/weak, and the signal Ssq should be 

weak/strong correspondingly. These two output signals are fed 
into a module B which uses these two (now input) signals to 
help decide which lever to press, the left one or the right one, 
depending also upon two further switching control signals Sthi 
(i.e. triangle high) and Sshi (i.e. square high).  
    These two signals tell Module B that if a triangle is shone 
onto the grid, then either the left lever or the right lever should 
be pressed. Module B has two output signals Sleft, and Sright. 
If Sleft is strong, and a triangle is shone on the grid, then the 
left lever will be pressed. If Sright is strong and a triangle is 
shown on the grid, then the right lever will be pressed.  
    The two “switching” input signals, in effect, shunt or divert 
the Stri and Ssq signals to the Sleft and Sright or to the Sright 
and Sleft output signals. If these two switching signals did not 
exist, then the input signals to module B, i.e. Stri and Ssq   
could be connected directly to the output signals Sleft and 
Sright of module B, respectively. These shuntings can be 
summarized in symbolic form, as follows: 
 
IF (triangle) & (Sthi = high) & (Sshi = low)  
THEN (Sleft = Stri) & (Sright = Ssq) 
 
IF (triangle) & (Sshi = low) & (Sshi = high)  
THEN (Sleft = Ssq) & (Sright = Stri) 
 
IF (square) & (Sthi = high) & (Sshi = low)  
THEN (Sleft = Ssq) & (Sright = Ssq) 
 
IF (square) & (Sshi = low) & (Sshi = high)  
THEN (Sleft = Stri) & (Sright = Ssq) 
 
    Now that the function of the 2-module neural subsystem is 
fairly clear, again, to aid thinking, the evolution of these two 
modules is now discussed, and on the assumption that each 
module is evolved independently.  
    We need to know what the fitness function of each neural 
net module is, and its neural architecture. These details are 
discussed now, and will carry over to a large extent, when we 
discuss the simultaneous evolution of both modules. 
 
Module A: The Pattern Detector Module 
 
    Assume this detector module receives input signals from the 
output signals of an 8*8 pixel grid of photocells, so that if an 
image of a triangle is shone on it, those photocells positioned 
inside the triangle of light will emit a strong output signal to 
the detector module A. 
    Let us assume that every photocell output signal Sij (where i, 
j ranges over 0 to7) is sent to every neuron in the module A, 
which in turn is assumed to be a fully connected neural 
network of 16 neurons.  This implies a rather large number of 
connections between the photocells and the neurons, namely 
8*8*16 = 1024. We assume for reasons of generality, that each 
grid-neuron connection is given its own neural weighting 
factor Wijk, where the i, j identify the photocell pixel, and the k 
is the neuron number in the net. We assume that the neural 
network is fully connected, i.e. each neuron has a connection 
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with every other neuron, including itself. Hence a fully 
connected neural net of N neurons will have N*N connections 
and hence N*N weights. We choose to have N=16 (which 
divides 64, the number of pixels in the grid). Hence, there will 
be 16*16 = 256 such weights. We assume also that two 
“output neurons” in the network exist which provide the two 
output signals of module A, i.e. the signals Stri and Ssq. We 
assume each of these output neurons is connected to all 16 
neurons of the neural net module, and that each connection has 
a weighting factor Wrs, where r = 0,1, and s = 0 to 15. So the 
total number of connections/weights in this module = 8*8*16 
+ 16*16 + 2*16 = 1024 + 256 +32 = 1312. If we assume that 
each weight is a signed binary fraction, with one bit for the 
sign (+/-), and 9 bits for the binary fraction, the total length of 
the bit string chromosome for neural net module A is 13120, a 
long chromosome. But it is a very general architecture for 
pattern recognition tasks. If the evolution of the module 
“decides” that certain pixel output signals should go only to a 
particular neuron in the module, then the weights of the 
connections from those pixels that go to other neurons will be 
driven down to zero, i.e. corresponding to “no connection”. 
The above architecture is very general and very versatile. It is 
also has very long chromosomes, but manageable with today’s 
electronic capacities. 

To evolve module A independently, we assume the 
following target or desired output signals. Let the triangle be 
shone onto the grid for 50 “ticks” (i.e. time units, where 1 
“tick” is the time taken for all the neurons in the network to 
calculate their outputs from their inputs). Then let the square 
be shone onto the grid for a further 50 “ticks”. When the 
triangle is shone, the target output is to be a strong signal on 
Stri, i.e. 0.8, and a weak signal on Ssq, i.e. 0.2 

When the square is shone, the target output is to be a weak 
signal on Stri, i.e. 0.2, and a strong signal on Ssq, i.e. 0.8 The 
fitness function is then the inverse of the sum of the squares of 
the differences between the actual outputs of the two signals 
over the 100 ticks, and the target signals. This will be 
quadruple sum where the target value will be 0.8 for Stri in the 
triangle case, for the first 50 ticks, and 0.2 for the second 50 
ticks, and 0.2 for Ssq in the square case for the first 50 ticks, 
and 0.8 for the second 50 ticks. Based on our group’s 
evolutionary experience, this module A should evolve 
successfully.  
 
Module B:  The Switching Module 
 
    We now specify the function, architecture and fitness 
definition of the switching module B, which has 4 inputs and 2 
outputs, i.e. the 2 outputs from the detector module A, and two 
switching control signals, Sthi and Sshi (i.e. “triangle high”, 
and “square high”). Its 2 outputs, Sleft and Sright, control the 
lever pressing. The function, i.e. the behavior, of this module is 
as follows. Its function is essentially to switch or shunt the 
input signals from module A to the outputs of module B in 
various ways.  
    For example, if a triangle is shone on the grid, and the signal 
on Sthi is strong and the signal on Sshi is weak, then the input 

signal Stri is shunted to Sleft with as little change in signal 
strength as possible, and Ssq is shunted to Sright. In other 
words, if a triangle is shone on the grid and Sthi is strong, then 
Stri goes straight through to Sleft. If a triangle is shone on the 
grid and Sshi is strong, Stri gets diverted into Sright, and 
correspondingly for Ssq. If a square is shone on the grid, the 
outputs of module B are reversed compared to the triangle 
case. 
    Thus we have two separate modules, one that detects a 
pattern, and the other that switches signals depending on the 
pattern detected and its control signals. We expect fully that 
we can evolve these two neural net modules independently and 
then combine them into a 2-module neural subsystem that will 
function as desired.  
    The interesting question is how would it evolve if both 
modules were to be evolved simultaneously? Before discussing 
this question further, we continue with the fitness definition 
and architecture of the switching module B.  
    Since its function is rather simple, i.e. merely shunting 
signals to different outputs, we think that the number of 
neurons needed to perform this task is less than needed to 
perform the more complex pattern recognition task, so let NB, 
the number of neurons for this module be 8. 
    How to connect the 2 input signals from module A to the 
neurons of module B? Let us provide a general solution, i.e. 
specify that there are two input neurons NB1 and NB2 in 
module B that receive the outputs from module A, i.e. Stri 
goes to NB1 and Ssq goes to NB2. NB1 and NB2 then connect 
to all 8 neurons of module B. These 8 neurons are fully 
connected.  
    There are two input neurons for the control signals as well, 
and they too connect to all of the 8 neurons.  There will also be 
2 output neurons of module B, creating the 2 output signals 
Sleft and Sright. Hence the total number of neurons in module 
B will be 2+2+2+8 = 14 (i.e. 2 input neurons for Stri and Ssq, 
2 input neurons for Sthi and Sshi, and 2 output neurons for 
creating Sleft and Sright. The number of weights will be 8*8 + 
2*8 + 2*8 + 2*8 = 112 (i.e. the 8*8 for the fully connected 
neural net of module B, 8 weights for each input neuron of 
module B to each of the 8 neurons of the fully connected 
module B, similarly for the two control input neurons, and the 
two output neurons. Hence the length of the bit string 
chromosome to evolve module B independently would be 
1120 bits, much smaller than the 13,120 bits of the detector 
module A. 
    Now that we know the architecture of the switching module 
B, we can begin to define its fitness function. To evolve 
module B independently, we need a set of input “training 
vector” signals, that we present to the module, say for 50 ticks 
each, sequentially, clearing out the internal neural signals 
between presentations of the input pair of values. More 
concretely, imagine we input 100 pairs of input signals (Stri, 
Ssq), where each independently takes a value that ranges from 
0.05 to 0.95 in steps of 0.10   So we have 100 input pairs. But 
we also have two control pairs of signals, so in total we have 
200 cases. We give each case 50 ticks of input time, clearing 
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out the internal signals between cases. We can incorporate 
these 200 cases into the fitness definition of module B.  
    It will be the inverse of the sum of 200 summation terms 
corresponding to the combination of two control input pairs of 
(Sthi = high, Sshi = low) and vice versa, and the 100 pairs of 
input values (ranging over 0.05 to 0.95). Each of the 200 
combinations of the 4 input values lasts 50 ticks, thus each bit 
string chromosome per generation takes 200*50 = 10,000 ticks 
to measure its fitness. 
    When Sthi/Sshi is high/low (i.e. a strong/weak signal) we 
want the output signal Sleft to be as close as possible to the 
input signal Stri from module A to module B, and 
correspondingly for Ssq. Let us present the 100 input signal 
pairs with Sthi high, and then again with Sthi low. There will 
be 400 sum terms in the fitness definition, 200 for each output 
signal Sleft and Sright.  
    For the 100 input combinations (Stri, Ssq), we want Sleft to 
be as close as possible to the target (desired) value of Stri, 
when Sthi/Sshi is high/low. So we will have a summation term 
for each of the 100 input pair combinations, over 50 ticks. This 
term will look like  

 [Sleft(t) - Stri(t)]
2

t=1

50

!  

  
where t is the tick number. Similarly for Sright, when Sthi/Sshi is 
high/low, i.e.  
 

[Sright(t) - Ssq(t)]2

t=1

50

!  

 
    After 100*50 = 5000 ticks, the two control signals Sthi and 
Sshi change from high/low to low/high (e.g. from 0.8/0.2 to 
0.2/0.8), so the sum terms become 
 

[Sleft(t) - Ssq(t)]2

t=1

50

!  

 
and  
 

[Sright(t) - Stri(t)]2

t=1

50

!  

 
 
    Since there are more training combinations for module B, it 
is likely that its evolution will take longer. This completes the 
description of the independent evolution of the two modules.  
  

IV.   SIMULTANEOUS EVOLUTION 
 
    We now turn our attention to the evolution of both modules 
simultaneously, treating the 2-module subsystem as a black 
box, with the 64 inputs from the grid and the 2 control inputs 

(Sthi/Sshi) and the two output signals (Sleft/Sright). The two 
internal signals (Stri/Ssq) are hidden and are not taken into 
account this time. 
    In this case, there will be 4 input combinations, i.e. when the 
triangle or the square is presented on the grid, and when the 
control signals (Sthi/Sshi) are (high/low) or (low/high). 
    When the triangle is presented to the grid, we want the 
output on Sleft to be high, e.g. 0.8 (i.e. a fixed target value) 
and Sright to be low (0.2). Correspondingly, when the square 
is presented on the grid, i.e. we want the output on Sright to be 
high (0.8) and Sleft to be low (0.2). 
    We can shine the triangle on the grid for 50 ticks, and then 
the square for 50 ticks, measuring the outputs at Sleft and 
Sright at each tick. 
    The fitness definition will be the inverse of the sum of 8 
sum terms, each over 50 ticks. When the triangle is presented 
at the grid and Sthi/Sshi is high/low, we want the 
corresponding sum term to be 

[Sleft(t) - 0.8]
2

t=1

50

!  

 
and similarly for Sright 
 

[Sright(t) - 0.2]2

t=1

50

!  

    When the triangle is presented at the grid and Sthi/Sshi is 
low/high, we want the corresponding sum term to be 
 

[Sleft(t) - 0.2]
2

t=1

50

!  

 
and similarly for Sright 
 

[Sright(t) - 0.8]2

t=1

50

!  

 
    When the square is presented at the grid and Sthi/Sshi is 
high/low, we want the corresponding sum term to be 
 

[Sleft(t) - 0.2]
2

t=1

50

!  

 
and similarly for Sright 
 

[Sright(t) - 0.8]2

t=1

50

!  

 
    When the square is presented at the grid and Sthi/Sshi is 
low/high, we want the corresponding sum term to be 
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[Sleft(t) - 0.8]
2

t=1

50

!  

 
and similarly for Sright 
 

[Sright(t) - 0.2]2

t=1

50

!  

 
 
    To evolve both modules simultaneously, we simply 
concatenate the two bitstring chromosomes for the two 
modules to make one longer bitstring chromosome to evolve 
the 2-module subsystem considered as a unit.  
 

  
V.    DISCUSSION 

 
    This paper is an initial attempt to answer the question as to 
whether it is possible to evolve several neural net modules that 
comprise a useful integrated neural subsystem, simultaneously. 
Being honest, our research group has not really bothered to 
consider the question seriously before, for several reasons, the 
main one being that we were not forced to. Until recently, the 
maximum number of interconnected, evolved neural net 
modules in an artificial brain that could be neurally signaled in 
real time was about 10,000 to 20,000. At the time (only a year 
or two back) we thought that that number could be reached 
reasonably by a sizable human team of BAs (brain architects) 
of say 20 people working for a few years. Of course, we 
extrapolated up the Moore’s Law curve and anticipated that we 
would soon run into a situation of 50,000 modules, then 
100,000, but it had not yet happened so we forgot about it. 
Now it is real, so if we want to take advantage of it, then we 
need to confront the fact that we seem to have “more 
electronics than ideas”. The bottleneck now is not the lack of 
electronic capacities, but the lack of an approach on how to 
evolve many modules at once. So the motivation level to solve 
this problem increased to the point of writing this paper. We 
are now hoping that the experience we gain in working with 
the ideas of this paper in which we evolve only 2 modules at 
once, will help us evolve 3 modules at once, then 4, etc. 
    There are many remarks we can make and questions we can 
pose regarding multi-module simultaneous evolution. For 
example, how will the evolvability of the larger system 
compare with that of the two smaller systems? For example, 
will :- 
 

ET(A) + ET(B) > ET(A+B) 
 

where ET(X) is the evolution time of module X? 
 
    We are fairly sure the evolution of the two separate modules 
A and B will be successful. (Actually, since this paper was 
written just before the submission deadline, the experimental 

coding and testing is yet to be done, but that can now proceed 
quickly, given that the specifications are now clear). Will the 
2-module (A+B, or alternatively, D+S (i.e. detector and 
switcher module)) evolution be quicker than the time taken for 
D and S to evolve separately? Is it possible that the 2-module 
system will not evolve at all, whereas the two modules 
separately will?  
    Another possibility, is that since the size of the search space 
of the simultaneous evolution is hugely greater than that of the 
two separate search spaces of the individual evolutions, then 
perhaps the 2-module evolution will find more interesting and 
surprising solutions. One thing that experience has taught us is 
that when one tries new things, one should expect to be 
surprised. 
    Another consideration is that the natural biological world 
has been doing simultaneous multi-module evolution for 
millions of years. The mammalian brain for example has been 
evolving as a whole for a long time, with each component of 
the brain evolving along with other components, and 
interacting with them. So, if nature can do it, can we, as brain 
builders, do the same? 
    Another question relates to how we could compare the 
evolution times of the two cases, i.e. evolving S+D 
simultaneously, compared with evolving S and D separately. 
How to define the stopping condition of each evolution, so that 
a comparison is meaningful? 
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