
Fault Recovery Using Evolvable Fuzzy Systems
Garrison W. Greenwood

Department of Electrical and
Computer Engineering

Portland State University
Portland, OR 97207–0751

Email: greenwd@ece.pdx.edu

Abstract— Autonomous systems must survive for long periods
without relying on humans for fault recovery. Faults may be
impossible to analyze remotely and redundant hardware is
frequently not allowed. The only recourse may be to replace the
existing control strategy. This paper proposes a fuzzy logic con-
troller architecture that executes a replacement control strategy
for autonomous systems. I will show this architecture is ideally
suited for fault recovery in autonomous systems with imprecisely
defined faults. The controller is evolved in-situ and evaluated
intrinsically.

I. PREFACE

Imagine a deep-space probe speeding towards the outer
reaches of the solar system. The probe, launched by NASA
several months ago, measures solar wind effects. It maneuvers
with three rocket side thrusters under the direction of an
on-board control strategy. The probe has already passed the
planet Mars and has now just entered the asteroid belt.

Suddenly the probe accidently bumps into a large rock
fragment and the collision partially disables one of the side
thrusters. Now the existing control strategy, which was de-
signed to work with three fully functional side thrusters, can no
longer effectively maneuver the probe. A new control strategy
is needed if the probe has any chance of safely traversing the
asteroid belt.

II. INTRODUCTION

Autonomous systems must often operate for long periods
without relying on humans for maintenance support. Never-
theless, they must survive and continue operating when faults
do occur. Fault tolerant systems can detect, isolate, and at least
to some level, recover from faults automatically. Hardware
redundancy is a common fault recovery method but limited
space and weight requirements, such as in the space probe,
won’t always allow room for spares. Evolvable hardware (EH)
provides an alternative to hardware redundancy. Under control
of an evolutionary algorithm (EA), the hardware is automati-
cally reconfigured until an acceptable level of functionality is
restored.

Although EH is powerful, it isn’t necessarily the silver bullet
in all situations. Realistically every circuit in the system won’t
be reconfigurable. What if the fault is in a portion of the circuit
that can’t be reconfigured? It’s not at all clear if modifying
some circuitry that can be reconfigured would help. Besides, in
the space probe problem described in the preface, the problem

wasn’t a faulty circuit. The problem was physical damage to
a rocket thruster. No circuitry was involved.

A real challenge in keeping autonomous systems operational
is coming up with an effective way of dealing with the
uncertainty. Autonomous systems often operate in remote
locations, which makes it difficult to get precise information
about the nature of the fault. Furthermore, it may be extremely
difficult to find out what capabilities still remain in the faulty
system. This uncertainty impedes the fault recovery efforts.

One solution—perhaps the only solution—is to reconfigure
the system’s control strategy. The control strategy determines
how the system responds to inputs from the operational
environment. Change the control strategy and you change the
system’s behavior. This is where EH provides a real benefit
because it contains all the necessary infrastructure to evolve
new control strategies.

In this paper I describe how an evolved fuzzy system
makes an ideal replacement control strategy because it has
an inherent ability to deal with the uncertainty found in faulty
autonomous systems. FLCs don’t require precise information
about a system before they can control that system and they
can accurately control a system without mathematics. Instead,
the FLC uses a natural language set of control laws to mimic
human thinking. FLCs can control linear or non-linear systems
and systems too complex to be described quantitatively. I
therefore believe a FLC has the greatest flexibility to deal
with the uncertainty surrounding an autonomous system with
imprecisely defined failures.

EAs can design the FLC in-situ, which makes the FLC self-
organizing. This feature doesn’t need any simulations since
the control strategy evaluation is done intrinsically—i.e., by
physically implementing it and then running a small set of
tests to check it’s performance. Of course simply trying any
randomly created control strategy would be unwise because
further damage to the already faulty system is always possible.
Consequently, the evolution of a new FLC is performed in a
particular manner that guarantees safety. Figure 1 shows a
simplified diagram of my proposed method.

Section III describes my approach. Readers unfamiliar with
FLC concepts should review the appendix first.

III. TECHNICAL DESCRIPTION

The reader should refer frequently to Figure 1 while reading
this section.

21

Proceedings of the 2007 IEEE Workshop on
Evolvable and Adaptive Hardware (WEAH 2007)

1-4244-0699-4/07/$20.00 ©2007 IEEE

Fig. 1. The proposed system architecture. For convenience the existing control strategy is depicted as a PID controller although in practice any type of
control strategy could be used. The evolutionary algorithm evolves the rule-base and database for a FLC, which becomes the replacement control strategy.
Details are given in Section III.

A. The Evolutionary Algorithm

The EAs are responsible for tuning the FLC membership
functions and evolving the FLC rule-base.

1) Tuning: Tuning involves setting the input signal gain
values and choosing the membership function locations. Each
of these tasks are described below.

Membership functions are defined over a normalized range.
FLC inputs are scaled to map the crisp input value range onto
this normalized range. Studies indicate FLC performance is
strongly affected by this scaling [1]. Several types of scaling
functions are in wide use. Many FLCs use a linear scaling
function x′

i = β0ixi + β1i where β0i and β1i are constants
designed to map the crisp input xi → [−a, a]. Hoffman [1]
points out once this linear scaling is done a nonlinear mapping
of the form

x̃ = sign(x′)|x′|α

can be done. This has the effect of making the control more
sensitive to x′ ≈ 0 if α < 1 and less sensitive for larger x′

values. The opposite effect happens if α > 1.
For this portion of the tuning a (µ, λ) ES can be used to

evolve the three real numbers associated with each crisp input
xi. More specifically, for an FLC with crisp inputs x1 and
x2, each individual in the ES population would have the form
(β01 β11 α1 β02 β12 α2).

The second type of tuning manipulates the membership

Fig. 2. Tuning of membership locations. Each �ij > 0 to preserve the
order with respect to the fuzzy set ZE, which is fixed with it’s center at 0.

functions. The most straightforward approach is to pick sym-
metric triangular functions with fixed width and have an
ES evolve their center locations. Typically the ZE (zero)
membership function has its center fixed at 0 in the universe
of discourse. The other membership functions can have their
centers changed, but this must be done in a way that preserves
the ordering. In other words, the NS membership function
must never be to the left of a NB membership function.
Fortunately, ordering is easy to preserve. Let ci be the center
of the triangular fuzzy set Ai. ci should be to the left of cj if
i < j. One way to make sure this always is true is to move

22

Proceedings of the 2007 IEEE Workshop on
Evolvable and Adaptive Hardware (WEAH 2007)

the center locations relative to each other. The fuzzy set ZE is
fixed with its center at 0 and the order is enforced by making
each �ij > 0 as shown in Figure 2. In this case a (µ, λ)
ES would be evolving a real-number vector (�12 �23 . . .).
Another possibility, using the same real-number vector, is to
fix the left and right bottom positions of the triangles and move
the center locations relative to each other thereby producing
asymmetric triangles like those shown in Figure 4 in Appendix
A.

2) Self-Organization: An (µ + λ) ES evolves a new rule-
base for the FLC. This process is self-organizing in the sense
that input from an external expert—which is where a FLC
would traditionally get it’s rule-base from—isn’t required here.
Camazine, et.al [6] define self-organization as “. . . an emer-
gent property of the system rather than a property imposed on
the system by an external ordering influence”. The objective
is to create a rule-base that can restore as much functionality
as possible. Since any information about the failures is vague,
and there is no way to provide precise information about them
to an external expert, the evolution must be done in-situ and
without external assistance.

Each individual in the population is an integer array that
encodes a complete set of rules. The encoding is positional,
which means a particular value at a particular location in the
array corresponds to a specific rule in the decision table. To
see this, consider the 2-input, single output FLC decision table
below.

A1 A2 A3

A1 B1 B4 B2

A2 B2 B1 B2

A3 B1 B4 B3

Each input has one of three membership functions
{A1 A2 A3} and the output has one of four membership
functions {B1 B2 B3 B4}. The rows are scanned from left-
to-right, top-to-bottom while recording the subscript of each
Bi. For instance, the above decision table would be encoded
as (1 4 2 2 1 2 1 4 3). New rules would be created by
mutating the integers—i.e., replacing the current value of an
integer in a randomly chosen position with a new integer from
the set {1 2 3 4}. Another variation operator might randomly
choose another individual from the population and applying a
crossover operator.

3) The Fitness Function: The fitness of each FLC configu-
ration is computed by the critic. Since the critic is defined in
Section III-B, the fitness function is also described in Section
III-B.

4) Creating Safe FLC Configurations: Every FLC configu-
ration is evaluated intrinsically—i.e., physically implemented
and tested in hardware. Whenever intrinsic evolution is used,
it is absolutely essential the control strategy be safe to pre-
vent harm to the system while it undergoes evaluation. This
requirement is achieved by making sure all control strategies
pass a safety check before they are downloaded for evaluation.

Safety is the one area where an expert has to get involved.

Fortunately, that involvement can be occur before the au-
tonomous system is deployed. A designer could formulate
safety conditions and then convert them to a specific set of
fuzzy rules. Indeed, the antecedents for these safety rules can
use the same input fuzzy sets as used for the operational rule-
base. However, the consequent in these safety rules specifies
which output fuzzy sets are NOT acceptable—i.e., safety rule
consequents are always complemented because they describe
forbidden actions. For example, a safety rule might be

if θ is NB AND �θ is NB

then the force F is ¬NB
where “¬” represents the NOT operation. The semantics of
the above rule is if θ and �θ are both negative and large,
then the output force should not be negative and large. All
safety rules are collected into a safety rule-base.

Every rule evolved by the ES must be checked for safety.
A safety check is performed by comparing the evolved rule
against every rule in the safety rule-base. An evolved rule is
discarded if there is a complemented safety rule—i.e., a safety
rule that is identical except for a complemented consequent.
Safety rules always take precedence over evolved rules.

It is important to note that the safety rules are invariant.
It doesn’t matter what the control strategy is—FLC, PID or
something else—because the safety properties are with respect
to the plant and not the control strategy. The EA doesn’t
modify anything in the safety rule-base. Safety rules remain
fixed throughout the lifetime of the system.

Finally, it is worth mentioning some FLC actions may not
necessarily damage the plant, but they may produce unstable
plant behavior. The expert should be mindful of this possibility
and add rules to the safety rule-base as needed to prevent
undesired plant behavior.

B. The Critic

The critic block is essential to the self-organizing process
and it is responsible for several tasks. First, it performs fault
detection by monitoring the difference between the actual
system step response and the step response of a fault-free
system. (How this is done is described below.) If the error is
too large, the critic sends a start signal to the EA, telling it to
begin execution, and a select signal to the analog multiplexer
to switch from the PID controller to the FLC. A series of step
inputs to the system evaluate each FLC configuration produced
by the EA. The critic uses the resultant y(kT) response to
compute the fitness value of that configuration for the EA.

The critic contains an internal lookup table to store the
step response of a fault-free system at time kT with k =
0, 1, . . . , L. Referring to Figure 1, notice the critic also re-
ceives the input step response r(kT). When r(kT) exceeds
1.0 volts the lookup table entries are extracted and compared
against the actual system’s step response. Let ỹk denote the
k-th entry in the lookup table. The error at time t = kT is
ηe(kT) = |y(kT) − ỹk|.

The critic uses an internal watchdog timer to autonomously
perform fault detection. The timer is initialized to a value

23

Proceedings of the 2007 IEEE Workshop on
Evolvable and Adaptive Hardware (WEAH 2007)

N and decrements at regular intervals determined by a clock
signal. However, the counter is enabled at time t = kT if and
only if ηe(kT) > ε where ε is a user-defined threshold. This
means the timer won’t necessarily decrement on every clock
pulse. If the timer reaches zero before say K clocks, then the
error has been too high for an excessive amount of time. In
this case the current control strategy is assumed to be faulty
and the fault recovery process described above begins. If the
count is not zero after K clocks, the timer is re-initialized to
N so another detection cycle can begin.

Once a candidate rule-base is downloaded to the FLC, the
system receives a series of step inputs. Each step input has a
different magnitude to ensure all input membership functions
are exercised. (The lookup table has the step response for these
step inputs as well.) The critic now uses ηe(kT) to compute a
fitness value for the configuration undergoing evaluation. The
fitness function is similar to one often used in optimal control
problems. Specifically, the fitness of an FLC configuration
equals 1/J where

J =
L∑

k=0

[Pη2
e(kT) + Qu2(kT)] (1)

P and Q are both scalars. P is the penalty for too large a
error between a fault-free system and the plant whereas Q is
the penalty for too large an input to the plant. The objective is
to find an FLC configuration with a minimum J value because
that configuration has the highest fitness.

Depending on the nature of the fault it may or may not be
possible to get ηe(kT) < ε even with an optimal FLC. In this
situation the user should choose some lower bound ηL where
any FLC that gives a ηe(KT) < ηL for k = 0, 1, . . . , L is
deemed acceptable. At this point the EA can terminate and
the error threshold ε is set equal to ηL. The lookup table can
remain unchanged.

C. FLC

Referring to Figure 1, the FLC has two inputs and one
output. Seven fuzzy sets

{NB,NM,NS,ZE,PS, PM,PB}
are used for each input and five fuzzy sets

{NB,NS,ZE,PS, PB}
are used for the output. The membership functions for both
inputs are fixed-width triangles whereas the output fuzzy sets
are singletons. (As a side note, this gives 549 possible rule-
bases.)

An FLC configuration requires a database and a rule-base. A
(µ, λ) ES tunes the membership functions in the database and
a (µ+λ) ES evolves the rules for the rule-base. Each individual
in the ES encodes either an entire database or a complete rule-
base with 49 total rules. Each individual is assigned a fitness
value, which is determined intrinsically. To do this intrinsic
evaluation the individual (database or rule-base) is physically
implemented in the FLC, and a series of steps are applied

to the physical system as described in the previous section.
This process is repeated for every individual in the population.
The evolutionary algorithms terminate when a suitable FLC
configuration is found.

Normally the rule-base is evolved first followed by database
tuning. But a database is still needed while the rule-base is
evolved. The simplest solution centers the ZE membership
function at 0 and then equally distributes the rest of the
triangular membership functions throughout the universe of
discourse.

IV. IMPLEMENTATION DETAILS

The FLC, the EAs and the critic can all be implemented in
software on a microcontroller. The microcontroller platform
must have the following features:

• a multi-channel analog-to-digital converter
• a digital-to-analog converter
• a watchdog timer (for the critic)
• multiply-accumulate circuitry (to do the fitness calcula-

tion)
• JTAG interface (to download code)

The above requirements are satisfied with a DSP micro-
controller. The Texas Instrument’s TMS320C24x family is an
excellent choice [5].

V. DISCUSSION

FLCs have been successfully used in control applications
ranging from washing machines to transmission systems in
automobiles, in aircraft sensor management systems and even
in nuclear fusion experiments. Experience shows a FLC yields
results superior to those obtained by conventional control
algorithms [3].

The novelty of my approach comes from several fronts:

1) FLC have previously been used for fault recovery, but
those FLCs were pre-designed and only served as a
backup for the primary controller should that controller
fail. In other words, the FLC was not designed to handle
faults in the plant. My FLC provides fault recovery for
faults in the primary controller or in the plant.

2) My FLC is self-organizing, which means no external
expert input is required to create the database or rule-
base needed for the fault recovery. Consequently, my
FLC can handle faults never anticipated by the original
designers.

3) The fault detection process is fully automatic requiring
no user involvement.

4) The rule-base is evolved through a stochastic process.
Nevertheless, the evolved rules are guaranteed safe.

5) All candidate FLC configurations are tested
intrinsically—i.e., in hardware and in the actual
operational environment. No simulation is required.

The FLC architecture I proposed here was described as
a software implementation. Some readers may believe it
therefore might not qualify as “EH”. On the contrary. First,
FLCs have been implemented in hardware for some time now

24

Proceedings of the 2007 IEEE Workshop on
Evolvable and Adaptive Hardware (WEAH 2007)

(e.g., see [4]). It therefore is entirely reasonable to expect
a FLC could be put into a suitable reconfigurable device,
such as an FPAA, and all of the concepts I presented would
still apply. Second, and more importantly, evolvable hardware
refers to hardware that can change its architecture and be-
havior dynamically and autonomously by interacting with its
environment [7]. Clearly my evolved fuzzy system controls
hardware behavior. All architectures are autonomously evolved
over time and verified intrinsically. Hence, my evolved fuzzy
system satisfies all of the criteria needed to qualify as EH.

Finally, the literature often refers to a FLC designed by an
evolutionary algorithm as a genetic fuzzy system. I purposely
changed that name because the word “genetic” implies a
GA did the evolution. My choice of “evolved” fuzzy system
indicates other evolutionary algorithms such as an ES or EP
could be used for the evolution.

VI. FINAL REMARKS

EH work is in two problem domains: original design and
adapting existing designs to compensate for failures or a
changing environment. Hoffman [1] gave an overview of
past evolvable fuzzy system research. All of this prior work
involved the original design of FLCs for robot control. But
Hoffman didn’t seem very impressed with the results obtained
from this prior research—and with good reason. None of the
results were really impressive and could even be considered
mediocre. Indeed, Hoffman’s assessment of his own work on
evolving a FLC to help a robot avoid obstacles summarizes
the state of evolvable fuzzy system research (as of 2001):

“. . . the purely reactive obstacle-avoidance behavior
did not pose a particularly challenging task, and
it remains an open question whether evolutionary
techniques are able to design more complex robot
behaviors that are otherwise difficult to conceive
manually.”

I surveyed papers on evolved fuzzy system robot con-
trol published in IEEE journals after Hoffman’s paper was
published and concluded nothing much has changed since
then. Wall following problems remain popular [8]–[10], but
those problems are only mildly interesting because they don’t
demonstrate any real complex behavior, and frankly don’t need
any either.

The true potential of evolvable fuzzy systems hasn’t yet
been determined. Hoffman’s open question will remain open
until the type of investigations currently done begins to change.
I am not convinced that contrived laboratory experiments are
helping to get any answers. Commercial, military and space
agencies currently have requirements for autonomous systems
that can’t be fulfilled because existing systems can’t provide
sufficiently complex behavior. That’s what researchers should
be working on now. A robot that can autonomously navigate
over open terrain would generate far, far more interest than a
wall following robot ever will.

APPENDIX: INTRODUCTION TO FUZZY LOGIC

CONTROLLERS

This appendix gives a brief introduction to FLCs. More
detailed information is available in a number of excellent
textbooks (e.g., see [2]).

Fuzzy control is based on fuzzy logic, which uses natural
language to express human thinking. A FLC implements a
control strategy with a set of linguistic control rules. Put
simply, a FLC takes an expert’s knowledge about how to
control a system, expressed in natural language as a set of
control laws, and converts that knowledge into an actual
control strategy.

Fuzzy logic sets differ from conventional Boolean sets. In
Boolean or crisp sets a parameter is either in the set (TRUE)
or not in the set (FALSE). In fuzzy sets a parameter can be
partially in a set and the degree to which it is in the set is
determined by a membership function. Let MA(·) denote the
membership function associated with the fuzzy set A. For a
crisp input x, v = MA(x) is on the unit interval where v = 0
means x /∈ A, v = 1 means x ∈ A and 0 < v < 1 means x is
partially in A.

Figure 3 shows membership functions for a parameter x
that might represent say a value from a pressure sensor. Note
the range of x values is normalized between -1 and 1. This
is a common practice. The range over which the membership
functions are defined is called the universe of discourse.

The dashed line shows the degree of membership a crisp
value of x = −0.44 has in two fuzzy sets. Notice x is partially
in the negative big set (NB) and partially in the negative small
set (NS) with membership values 0.24 and 0.52, respectively.
This captures the vagueness about accurately classifying x
values. The membership values says it is believed −0.44
belongs in both sets, but more so in the NS set than the NB set.
Both triangular and a trapezoidal membership functions are
depicted in the figure, but bell-shaped, gaussian and singleton
membership functions are also commonly used. Indeed, many
FLCs use singletons as the output fuzzy sets. The membership
function for singletons is

Msingleton(x) =
{

1 if x = u
0 otherwise

Fuzzy sets have behaviors similar to their crisp counterparts.
In fuzzy sets an AND operation of two inputs takes the smaller
value, the OR operation takes the larger value and NOT takes
one minus the input.

Figure 4 shows the basic components of a FLC. Essentially
fuzzy control involves three phases:

1) fuzzification (crisp input mapping to fuzzy sets)
2) inference (rule evaluation)
3) defuzzification (fuzzy set conversion to a crisp output)

The database holds problem specific information. It specifies
any scaling requirements for the inputs or outputs and it
defines the input and output membership functions. The fuzzi-
fication process takes a crisp input x, scales it if necessary, and

25

Proceedings of the 2007 IEEE Workshop on
Evolvable and Adaptive Hardware (WEAH 2007)

then determines it’s membership value in various fuzzy sets
using the membership functions in the database.

In FLCs the control strategy is specified in a rule-base
describing how an expert would do things. For example, in
a typical FLC a rule might be

if θ is large and negative AND the change
in θ (�θ) is large and negative

then the force F is positive and large
All rules are collected into a rule-base and all rules have

an if-then format. The if side is called the condition or
antecedent and the then side is called the conclusion, action
or consequent. A condition such as “θ is PB” is called a fuzzy
proposition and MPB(θ) represents the fuzzy equivalent of θ.
The consequent of a rule is also a fuzzy set.

Many rules, such as the example shown above, have more
than one condition in the antecedent. An aggregation oper-
ation determines the firing strength of the rule based on the
individual condition degree of membership. For instance, in
a rule with a fuzzy membership value for θ and one for �θ,
their aggregation might be

MNB(θ) and MNB(�θ) = min(MNB(θ),MNB(�θ))

The firing strength for the rule reflects an uncertainty about
how applicable that rule is. Remember there is only a vague
notion about the accuracy of conditions, which is reflected in
the membership in various fuzzy sets. If there is uncertainty
about the set membership, there is likewise uncertainty about
any rule that has those variables in its antecedent.

A decision table is frequently used to display a rule-base.
The if-then rule above is in the first row and first column of
the following decision table.

�θ
F NB ZE PB

NB PB ZE NB
θ ZE PB ZE NB

PB NB ZE ZE

Fig. 3. Example membership functions for −1 ≤ x ≤ 1.

Fig. 4. A basic FLC

The inference engine determines which rules are active
and combines their recommended action into a single fuzzy
conclusion. Inference modifies the shape of the output fuzzy
set, specified in the consequent, based on the degrees of
membership in the antecedent. These modified output fuzzy
sets are called implied fuzzy sets because they specify the
certainty with which the crisp output should take the i-th rule
into consideration.

A usable crisp output must be generated once the FLC
has applied the inputs to the rule-base. Defuzzification does
that. There are several defuzzification methods but center of
gravity (COG) and centroid are the most widely used. With
singletons the COG defuzzification is very straightforward and
computationally efficient. The crisp output value u is

u =
∑

i αisi∑
i αi

where si is the i-th singleton value and αi ∈ [0, 1] is the firing
strength of the i-th rule.

REFERENCES

[1] F. Hoffman. Evolutionary algorithms for fuzzy control system design.
Proceedings of the IEEE, 89(9):1318–1333, 2001.

[2] Z. Kovacic and S. Bogdan. Fuzzy Controller Design: Theory and
Applications. CRC Press, 2006.

[3] C. Lee. Fuzzy logic in control systems: fuzzy logic controller—part I.
IEEE Transactions on Systems, Man and Cybernetics, 20(2):404–418,
1990.

[4] M. Patyra (Guest Editor). Guest editorial: Fuzzy logic hardware
implementations. IEEE Transactions on Fuzzy Systems, 4(4), 1996.

[5] TI TMS320LF24X family of DSP microcontrollers. http://www-
s.ti.com/sc/ds/tms320lf2403a.pdf.

[6] S. Camazine, J. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, and
E. Bonabeau. Self-Organization in Biological Systems. Princeton
University Press, 2001.

[7] G. Greenwood and A. Tyrrell. Introduction to Evolvable Hardware: A
Practical Guide for Designing Self-Adaptive Systems. Wiley, 2006.

[8] S. Lee and S. Cho. Emergent behaviors of a fuzzy sensory-motor
controller evolved by genetic algorithm. IEEE Transactions on Systems,
Man and Cybernetics—Part B, 31(6):919–929, 2001.

[9] K. Sim, K. Byun, and D. Lee. Design of fuzzy controller using
schema coevolutionary algorithm. IEEE Transactions on Fuzzy Systems,
12(4):565–568, 2004.

[10] H. Hagras. A hierarchical type-2 fuzzy logic control architecture for
autonomous mobile robots. IEEE Transactions on Fuzzy Systems,
12(4):524–539, 2004.

26

Proceedings of the 2007 IEEE Workshop on
Evolvable and Adaptive Hardware (WEAH 2007)

