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Abstract— In modern networks, the requirements towards
network equipment rise together with the bandwidth. Customers
and internet service providers ask for more and more services like
Voice-over-IP, IP-TV, and data services with a dependable quality.
To satisfy these demands, the requirements towards packet
classification as key functionality in network equipment, e.g.,
routers become overwhelming. We developed a packet classifier
based on an evolvable hardware hash function and investigated
its performance with real world data. The performance did show
a reasonable degradation compared to random numbers. The
computation time, which is required for evolving one generation
in the genetic algorithm, corresponds to the actual fitness. We did
find possibilities to maximize the speed of fitness evaluation by
taking advantage of the fact, that the whole packet classifier
including the fitness evaluation module is a pure hardware
implementation based on FPGA technology. We were thus able
to increase the performance of the evolvable packet classifier
significantly while limiting the additional required hardware
resources.

I. INTRODUCTION

Networking equipment hardware, of which routers are the
most widely known representatives, is the basis of any digital
communication network. This infrastructure controls all the
network traffic. Its performance and features determine the
services and quality of data communication. A prominent
example is the router. A router’s main task is to route incoming
data packets from input ports to proper output ports. A packet
consists of two parts, its header and its actual (user) data
content. In the simplest case, a router makes its routing
decisions based on some particular header information fields.
In more complex situations, the router may also consider some
of the packet’s user data content. Other examples are the
functionality of MAC Address Translation (MAT) [1] or MPLS-
Labeling [2] [3], which are utilized in Access Networks. These
functionalities to route or manipulate data packets base on
packet classification. In summary, a module processes every
incoming packet, modifies it, and forwards it to a desired
port particularly depending on the packet’s header fields. This
problem is known as the packet classification problem. In
addition, increasing numbers of input/output ports and raising
bandwidths on each port [4] as well as increasing quality-of-
service (QoS) demands request classifiers to process incoming
packets as fast as possible. Thus, designers have to construct
classifiers with very low latencies, in order to assure traffic and
QoS demands, for example, in a Voice-over-IP (VoIP) session.

Figure 1 illustrates a straight-forward approach: A classifier
maintains a potentially large data base, which defines how to
process incoming packets. A single rule of such a data base
can be formulated like:
if (frame.src MAC equals 00:14:22:F5:5A:FF)

then replace-by 00:24:F5:6D:33:0A.
In the remainder of this paper, a packet’s content that is
responsible for selecting a rule is referred to as the key.

Conversely, for each incoming packet, the classifier has to
search its data base until a rule matches, and then executes
the specified action(s), i.e., packet content manipulations and
routing to the predefined output port. With n denoting the
number of rules in the data base, a sequential search through the
data base requires an average of n/2 memory lookups resulting
in a search complexity of O(n). With a steady increase in both
the bandwidth and the number of ports, the size of the data base
and thus the number of data base lookups increase as well. With
a data base size of up to 160,000 [5] in state-of-the-art routers,
a sequential search might become too expensive in terms of
latency and throughput. In other words, the mechanisms for
finding the correct routing rule for a given key devotes particular
emphasis.

The concept of hash tables offers a powerful search mech-
anism, since they might yield a constant time complexity
O(1) � O(n) under certain circumstances [6]. Unfortunately,
the routing profile of a single router changes over time, which
would require adaptive hash tables in order to operate efficiently
in time. Accordingly, previous research [7] provides a proof-of-
concept that hash tables can be directly employed in hardware.
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Fig. 1. A packet classifier utilizes a data base to map every incoming packet
onto the proper output port.
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The required online adaptation can be achieved by an evolution-
ary algorithm, which can also be directly employed in the very
same hardware. Therefore, this intrinsic (evolvable) hardware
approach yields both mostly constant search time O(1) and
constant online adaptation to changing routing profiles. For
random numbers as keys in the data base, the developed
system did show very promising results [8]. Since this paper
investigates the behavior of the system with real world data and
possibilities of performance improvements, Section II provides
a detailed description of the developed hardware platform.
As the hardware platform has been developed and evaluated
for random numbers in previous research [7] [8], this paper
focuses on how the hardware platform behaves under real
world conditions and how to accelerate evolvement by utilizing
possibilities, offered by modern FPGA hardware. To this end,
Section III describes the experimental setup in full detail. The
results, as presented in Section IV, indicate that real world data
shows a performance degradation compared to random values
and thus deteriorates the speed of evolvement. In order to speed
up the evolutionary process, Section V describes the fitness
evaluation process in detail and presents different ways for
improving the evaluation process. Finally, Section VI concludes
with a brief discussion.

II. OVERVIEW ON SYSTEM ARCHITECTURE

This section describes the problem in more detail and
also provides a brief overview of previous research. The
presentation starts off with a brief description of hash functions
and their properties, before the developed hardware classifier
is described.

A. Hash Functions: Construction and Properties

In general, a search algorithm of any kind is required when
the domain is much larger than the elements to be stored, and/or
where the domain size exceeds the available memory capacity.
Assume, for example, an algorithm stores 100 different 16-
bit integer values. Then the domain would consist of 65,536
different values, and thus, a memory of 2×65, 536 bytes would
be way too excessive to merely store 100 integer values; more
than 99 % of the memory would not be used at all.

A hash function h(x) maps a value x onto a hash value,
which is usually from a much smaller domain card({h(x)}) �
card({x}) than the argument domain card({x}). Assume, for
example, a packet classifier (router) with 210=1024 rules and
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Fig. 3. This hardware classifier platform has been developed in previous
research [7]. A genome feeds lg n elements, which select two bit positions
from k-bit-wide keys by a number of multiplexers.

packets with 32-bit wide keys, which could represent the
destination IP addresses. Then, the hash function has to map
4,294,967,296 different values onto a new domain with 1024
entries. In order to work efficiently, the actual number of rules
would be less than or equal to 1024.

Since a hash function maps values from a large domain
onto a much smaller one, not all different values can have
different hash values. That is, it occurs that two hash values
h(x) = h(y 6= x) are equivalent even though their arguments
are not. In a practical application, such collisions must be
resolved. This can either be done by rehashing g(h(x)) the
hash value by another hash function g() or by searching for
a free memory entry. Such a (linear) search can be done by
adding a constant prime number, including the value 1, to the
hash value.

For a given set of values, the quality of a hash function
can be measured by the number of collisions that occur when
hashing all given keys into memory. A hash function that
maps all given values onto different hash values, i.e., memory
entries, is called perfect; in practical applications the number
of collisions does not vanish. The reason for this is that the
actual values be mapped are not known in advance.

The optimization task is thus to find a particular hash function
h(x) that maps all given n input values x1..n with as few as
possible collisions. Whether or not the number of collisions
vanishes depends on both the arguments and operators that can
be employed into the hash function.

B. Routing using Hash Functions

Figure 3 sketches the evolvable hardware platform that
has been developed in previous research [7]. The hardware
works as follows: A key parser extracts the key, i.e., the
destination IP address, from an incoming packet, and by means
of a switch, forwards it to the hash function that is entirely
realized in hardware. The hash function maps the key onto
the classification rule, which is consequently forwarded to the
actual routing unit (shown only in Figure 1). Because the hash
function also has to resolve conflicts, it always compares its
input key with that stored along each rule. And in case of a
collision, the hash function linearly searches the memory, as
has already been described in Subsection II-A.

The hardware platform shown in Figure 2 also features a
second hash function, which allows for online updates, and
thus, continious evolution in hardware. The hardware evolution
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model (bottom part of the figure) can apply variations to the
second hash function and can also monitor the performance,
i.e., number of collisions, of both. Depending on the actual
performance, the platform can utilize either of the two hash
functions by properly configuring the two switches. Each of
the two hash functions is defined by a bit string S consisting
of s = 2 lg(k) lg(n) bits, with k denoting the number bits to
code the input values x and n denoting the number of bits to
code the hash values h(x). In the example presented above,
the values were k = 32 and n = 1024. Thus, the hash function
uses two times lg k bits to select a bit position of the input
value for each of the lg n bits that code for the hash values.

For the evolutionary algorithm, the task is to find an optimum
in a search space with s = 2 lg(k) lg(n) dimensions, which
is s = 2 · 5 · 10 = 100 in the example discussed above. The
Subsection II-C explains how this configuration is done in
hardware.

The platform as described above realizes all operations in
hardware, so that no software is involved at any place. Thus,
this packet classifier operates at a very high speed given that
the hash function is properly evolved.

C. Realizing Hash Functions in Hardware

The implementation is based on a Field Programmable Gate
Array (FPGA). The genome is fed to lg(n) equivalent elements.
Each single element utilizes 2 lg(k) bits to freely select two
arbitrary bits from the input key (using multiplexers denoted as
Mux in the figure). These two arbitrarily selected bits are then
processed by an exclusive-or gate, thus providing one single
bit to the hash function.

In this particular implementation, the hash function consists
of lg(k) pairs of exclusively ORed (XOR for short) input bits
arbitrarily chosen from the packet’s key. This way, the system
can realize 22 lg(k) lg(n) different hash functions. Thus, the
optimization goal for the application at hand is to find the
best one in a search space consisting of 22 lg(k) lg(n)=2100. For
further implementation details, the interested reader1 is referred
to the literature [7].

III. ALGORITHMS AND METHODS

This paper employs genetic algorithms to evolve hash
functions for the packet classification problem. Genetic al-
gorithms are a member of the class of heuristic population-
based search procedures known as evolutionary algorithms
that incorporate random variation and selection. Evolutionary
algorithms provide a framework that mainly consists of genetic
algorithms [9], evolutionary programming [10] [11], and
evolution strategies [12] [13].

A genetic algorithm maintains a population of µ individuals,
also called parents. In each generation, it generates λ offspring
by copying randomly selected parents and applying variation
operators, such as mutation and recombination. It then assigns
a fitness value (defined by a fitness or objective function) to
each offspring. Depending on their fitness, each offspring is
given a specific survival probability.

1VHDL code can be directly received by sending an email to Harald Widiger.

Since the problem at hand is already encoded in a bit string
S consisting of s = 2 lg(k) lg(n) bits, this paper directly uses
that bit string as the genome. The mutation operator flips
every bit randomly with a mutation probability of pm = 1/s.
Recombination is not applied, since previous research [8] did
show, that recombination has no positive effect in this certain
case.

Depending on the selection scheme, the algorithms are
either denoted as (µ,λ)-GA or (µ+λ)-GA for short. The first
selection scheme indicates that it choses the parents for the
next generation from the offspring only, whereas the second
one also considers the parents from the current one. When
using a (µ,λ)-GA, this paper also considers the best parent for
selection, in order to avoid any deterioration, also known as
elitism. In order to achieve a permanent online adaptation, the
hardware implementation of the genetic algorithm is an integral
part of the entire system. Since the goal of the optimization
process is to evolve a hash function with as few conflicts as
possible, the fitness function f is the sum of all conflicts. For
the evaluation, this paper uses a hash table with 65,365 entries
(i.e., lg n=16-bit wide table indices), and draws 32,768 keys
with a width of k = 32 bits from a data base of a BGP-Router
with 171,000 entries [14]. The fitness function then inserts the
32,768 keys one after the other into the hash table, and in
so doing, counts the number of conflicts. As described above,
the hardware platform has already been realized and used as
a proof of concept. This paper uses SystemC simulations, to
investigate the classifier’s performance. SystemC is a hardware
description language (HDL) extension of pure C++. We use a
SystemC model in order to remain consistent with the previous
research [8]. The simulation runs were performed with a (1+6)-
GA. Larger population sizes were not useful as one single run
with a λ = 6 over 1000 generations requires approximately
6 hours of simulation time. It may be mentioned here that
the resulting execution time is the only noteable difference
between the simulation and the actual hardware platform.

The evolution speed however, is evaluated with the actual
FPGA implementation. The limited resources of the develop-
ment board (Xilinx ML405 with Virtex4-FX20 FPGA [15])
restrict the possible number of keys to 32,768 as well. A
(4,12)-GA was implemented to investigate the effects of the
improvements for the evolution speed.

IV. SYSTEM PERFORMACE IN REAL WORLD ENVIRONMENT

With randomly generated keys, the evolvable hardware hash
function shows great performance [8]. No matter how many
keys were examined, the system never requires more than two
memory accesses in average to find the corresponding rule to
each key. The number of required accesses is nearly constant
between 4,096 and 131,072 keys.

When selecting a (1+6)-GA and 32,768 random 32-bit wide
keys, the first generation has a fitness of about 100,000. That
means, the 32k keys create 100,000 collisions, when being
inserted into a memory. After evolving the genome for 1,000
generations, the fitness value reaches about 12,500, as Figure
4 indicates. That results in less than 0.5 collisions per key or
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Fig. 4. The Behaviour of a (1+6)-GA with real world data versus 32k randomly generated keys.

1.4 memory accesses on average. These results however, have
only limited significance. Data bases of target applications,
i.e., router’s forwarding data bases (FDBs), are usually not
as equally distributed in the search space as random values.
The FDB of the BGP-Core router, which we use for the
measurements of a real world environment contains 171,000
entries. Each entry consists of a destination IP address (key)
and an output port (rule). All keys have a value of x.x.x.0.
Effectively, a core router uses only the first 24 bits of an address
to make its decision. Thus, there are only 24 bit, which contain
usable information for packet classification. We thus expect
the performance to be worse with that real world data.

With BGP router data the packet classifier does not function
as well as with random numbers. As Figure 4 clearly shows,
already the first fitness value of the (1+6)-GA is 28 times larger
than the one for random numbers. 2.8 million collisions are the
average initial value over 10 simulation runs. The final fitness
value after evolving 1,000 generations is with 350,000 quite a
drawback compared to the random numbers as well. However,
considering the size of the data base that is being searched,
finding each memory entry with 12 memory accesses is still
a good value. A more crutial detriment is that the number of
required memory accesses is not independent from the size of
the database any more. The random numbers always showed
approximately 1.4 or less memory accesses per key, no matter
if the data base size was 4k or 128k. But with the real world
data, the system behaves differently. Figure 5 clarifies this
observations. It appears, there is a roughly linear dependency
between the size of the data base and the required memory
accesses for the higher values. 32k keys required 12, 64k keys
23, and 128k keys 40 memory accesses per key.

A better start-off in the first phase would help the router
particularly in its start-up phase, also called bootstrapping.
Since during that stage, a non-optimized hash function cannot
be expected to perform well. Therefore, a smart initialization
(SI) process is used that abandons random initializations.
It rather initializes the parents of the first generation in
dependence of some properties of the initial data base’s rule
set. As derives from the research presented in [8], for random
data, SI does have a positive effect on the hash performance in
the earliest stages of the evolutionary process. Although there
is no positive effect in latter stages, this behaviour enables the

system to function properly and with high performance from
the very beginning after the start. SI has a positive influence
on real data as well. However, with an increasing number of
keys, the positive effect diminishes rapidly. When computing
128k keys, a randomly generated genome creates a slightly
fitter first generation than the genome created by SI. It can
be concluded, that SI has no advantage over simple random
genome initialization for large keysets.

These results lead to the following consequences for further
research: First, the overall performance for real world data
must be improved. That might be possible by modifying the
architecture of the hash function. Second, the evolution process
itself must be accelerated. That is because the speed of the
fitness evaluation and thus of the whole GA depends on the
number of collisions each genome causes. The consequence
for real world data are very slow evolution and very poor
classification results in early stages of the evolutionary process.
Furthermore, adoption processes to changes in the key set are
very slow. The following section deals with the problem of
accelerating the fitness evaluation.

V. ACCELERATION OF FITNESS EVALUATION

The fitness of each individual of the offspring is determined
by the number of collisions that occur when inserting all keys
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into a memory. The number of collisions, i.e., the fitness is
computed by a hardware module. The structure of that module
is drawn in Figure 6. There is a one bit wide memory in the
module. It consists of as many entries as there are memory
positions in the key memories, i.e., two times the number of
keys. Each bit denotes, if the memory position is already used
by a key or if it is void. Before evaluation of an offspring begins,
each entry is reset to ’0’. Before evaluating the fitness of one
offspring, the actual genome is written to the hash function
in order to configure it properly. The evaluation process is
achieved by presenting all existent keys one after the other to
the fitness evaluation module. Each key is hashed by the hash
function with the offspring’s actual genome. Then, the memory
at address h(key) is read. If it is free, i.e., the entry has the value
’0’, the value is set to ’1’. If the memory is already occupied
(the entry is ’1’), another key has been inserted at the actual
memory position. Thus, a collision counter is incremented,
the next memory address is set to h(key)+constant, i.e., the
collision resolution is performed, and the memory entry is read
again. This way, all keys are inserted into the memory and
all collisions that occurred during that process are counted in
the collision counter. When all keys are inserted, the collision
counter thus specifies the quality of the actual genome. This
fitness value together with the actual genome is presented to
the next functional module performing the parent selection.
The fitness derives directly from the collision counter.

Subsequently, a genome forms a perfect hash function when
the collision counter is zero. The time required for evaluating
one individual depends on the number of memory accesses
required, i.e., on the number of keys k and the number of
collisions occurring:

Ti =
k∑

j=1

τ · (1 + collj) (1)

The computation time thus decreases from generation to
generation, as the fitness improves. To evaluate one generation,
the whole offspring has to be computed:

T =
λ∑

i=1

Ti + Treconf ;∀j < k : Tj < Tk (2)

In case the fitness improves from one generation to another,
it is required to rehash the memories for the lookup. This
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Fig. 6. Architecture of Fitness Evaluation Module

reconfiguration time has to be taken into account for the
overall evaluation process. This part of the equation cannot
be optimized as it is not a direct part of the fitness evaluation
process. It is rather constant.

As Figure 8 shows, the original hardware prototype required
roughly 250 seconds to evaluate 200 Generations with a (4,12)-
GA. We made ten runs with a random selection of 32768 keys
out of the 171000 keys from the data base. As can be expected,
the evaluation process speeds up rapidly from generation to
generation. The latter generations are much fitter than the
earliest ones and the number of collisions thus decreases. The
actual configuration of the classifier required 5416 Slices and
18 BRAMS of hardware resources. These performance data
refers to the initial system without any optimizations in the
fitness evaluation process.

A. Early Termination of Fitness Evaluation

In the standard implementation, the fitness values of all
offspring are evaluated completely. After determination of all
fitnesses, the next parent generation is selected out of the
offspring and the fittest parent. This procedure is unnecessary
inefficient. As the selection scheme is static, no further fitness
evaluation of an offspring is required, if its fitness is already
below the fitnesses of µ other offspring. In that case, the actual
offspring cannot be selected for the next generation, even
if its fitness value would not rise through further evaluation.
Continuing the evaluation process is thus just a waste of time
and has to be cancelled. The next individual of the offspring
can be instantly evaluated. In the non-optimized case, the time
to evaluate all offspring for one generation arises from (2). By
early termination (ET), in the best case, the time required for
evaluation the whole offspring is given in (3).

T =
µ∑

i=1

Ti + (λ− µ) · Tµ + Treconf (3)

That is the case, if the µ fittest individuals of the offspring
are evaluated first. Of course, if the µ fittest individuals of the
offspring are evaluated last, no improvement can be reached
by ET. That is, because in the worst case, still every offspring
has to be evaluated completely. However, the probability that
no improvement is reached in a single generation is very low.
The probability, that with µ parents and an offspring of λ
is: µ!/λ!. Thus, for a (4,12)-GA that probability is 1

19958400 .
That means, there is an improvement in nearly any case. This
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optimization can even be expanded. As stated above, the parent
selection uses a (µ,λ)-elitist scheme. Meaning the fittest parent
is evaluated for the next generation together with the offspring.
Thus, the fittest parent is used for determination of ET of the
fitness evaluation as well. If there are already µ fitter indiviuals
of the new generation including the fittest parent than the actual
individual, the fitness evluation has to be stopped. Because there
is no chance for being selected for the next generation. Figure
8 illustrates the performance gain, which was accomplished
by implementing ET for fitness evaluation. It pictures the
degree of improvement over time when evolving the classifier
with 32k real world values. The x-axis shows the number of
generations evaluated. The y-axis shows the real computation
time required for evolving 200 generations. While the classifier
with the original configuration required averaged 250 seconds,
the performance with ET improved the speed by 25% to 200
seconds. That can be considered a substantial gain!

To implement ET into the evolution process, only minor
changes to the fitness evaluation module are required (Figure
7). In addition to the standard logic, a register set need to
be implemented. It stores the fitness values of the µ fittest
individuals of the offspring and the fittest parent. The collision
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Fig. 9. Fitness Evaluation Module with Memory Interleaving

counter is compared against the worst of those fittest individuals.
When the fitness gets worse, the termination of the actual
evaluation is signalized and the evaluation stops immediately.
The classifier with implemented evaluation termination required
5592 slices of hardware resources. Compared to the 5416 slices
of the original system, the size of the system increases by only
3%. With a speed-up of about 20%, the additionally required
hardware resources are negligible.

B. Memory Interleaving

Another way of utilizing the advantages of a hardware
implementation is checking for many collisions in parallel. In
the ordinary system a memory position is checked to determine,
if it is already used or if it is void. In case it is used, the memory
is searched until an empty memory position is found to insert
the actual entry. This process can (partially) be parallelized.
When checking not only the memory position at h(key) but,
for example, the next three possible entries as well, lots of
memory accesses can be saved. The evaluation time is reduced
from

Ti =
k∑

j=1

τ · (1 + collj) (4)

to

Tn
i =

k∑
j=1

τ ·
(

1 +
⌊

collj
n

⌋)
(5)

with n denoting the degree of the memory interleaving. This im-
provement can be reached with virtually no additional hardware
costs. The required Block RAM needs only to be reconfigured
from 1 × number of keys · 2 to n × number of keys·2

n . The
additional logic resources are a 32-bit adder and an n-bit
comparator. In the implementation, the memory interleaving
(MI) extensions require maximal 3% of extra logic. On the other
hand, the acceleration of evolution is impressive compared to
the expense. As emanates from Figure 10, the use of 2-bit MI
speeds up the process by nearly 40%. The use of a 4-bit MI
reduces the computation time from 250 seconds to even 108
seconds. We did not expand the memory interleaving to 8-bit
MI. Even though, we do not expect a substantial rise in the
hardware requirements, the minimal clock rate of the hardware
implementation of the classifier was not reached with eight-bit
interleaving. However, in next generaration FPGAs or with
higher speed grades, the use of 8-bit or even 16-bit MI is not
an issue.

C. Parallel Fitness Evaluation

As described above, the fitness evaluation computes all
offspring serially in the original system. However, the fitness
of every offspring can be evaluated independently from the
other individuals. Being a hardware implementation enables
parallel fitness evaluation (PFE) for the offspring. Thus, the
evaluation process for every generation can be accelerated
significantly. The time an evolution process requires is given in
(2). It represents the sum of all evaluation times the individuals
of the offspring require. In the extreme case, PFE can be
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applied to all individuals of the offspring. That would require
λ hardware modules for fitness evaluation. Each one computes
the fitness of one individual. The size of the hardware system
rises by 10 and 32% when using 2× or 4× PFE. However,
the overall computation time cannot decrease from T to T/λ
as could be expected. There are two reasons for this: First,
the time for reconfiguring the memories and for rehashing
Treconf is constant and cannot be reduced. Second, the fitness
evaluation is based on virtually hashing all keys. After on
key is evaluated, the next one enters the functional module
and so on. The evaluation process works as follows: The key
is transferred to all evaluation modules. It is hashed to each
individual memory. Collisions are resolved. Finally the memory
entry is done. This task has to be performed by every PFE
module individually. Only when all individuals have hashed
the actual key successfully, the next key can be read. Thus,
the time required for evaluating a single key depends on the
individual generating most collisions (6).

k∑
i=1

λ
max
j=1

(Ti,j) + Treconf (6)

We can expect that the degree of improvement aligns to T/λ
in the process of evolution. How far depends on the fitness of
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Fig. 12. Time required to evaluate 200 generations with a (4,12)-GA with
implemented PFE and 32K keys in hardware

each single individual of the offspring (7).

lim
coll→0

λ
max
j=1

(Ti,j) =
λ

min
j=1

(Ti,j) (7)

How the increase of speed through parallel fitness evaluation
behaves in the simulations is presented in Figure 12. For both
2× and 4× PFE, an improvement can be determined. However,
with 12 and 15% respectively, the speed gain compared to
the resource investment is surprisingly low. The drawbacks,
which were discussed above, have obviously a very high
influence when the individuals of the offspring cause a relatively
high number of collisions. Consequently, one must state that
compared to the costs in hardware the speed gain does not
suffice. That is at least, if no combination with MI is utilized.

D. Combination of all Improvements

All three aforementioned methods for acceleration of the
evolution speed (ET, MI, PFE) are independent of each other.
It is thus unproblematic to combine all approaches. When
combining MI and PFE the two approaches can be expected
to influence each other positively. The positive influence of ET
on the evolution process on the other hand is reduced when
combined with PFE. In the extreme case, when λ parallel
modules are used, there cannot be any gain at all caused by
ET. Utilizing MI causes the gain by PFE to be better than
PFE vs. the original implementation. That can be clarified

Module Slices Increase BRAMs Evolution Speed
[%] Time [sec] Gain [%]

Original 5416 - 18 251 -
ET 5592 3.25 18 200 25

2x PFE 5945 9.77 22 223 12
4x PFE 7203 32.99 30 219 15
2x MI 5531 2.12 18 152 67
4x MI 5572 2.88 18 108 132

Combination 7473 37.98 30 85 230

TABLE I
RESOURCE CONSUMPTION FOR DIFFERENT IMPLEMENTATION VARIATIONS
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with an example. Considering two genomes create with the
same key 1 and 7 collisions: In the original implementation
2 + 8 (1 + 1 insertions and 1 + 7 for collisions) sequential
memory accesses are required to resolve the collisions. Using
a PFE scheme with two modules leads to 8 sequential memory
accesses. That is because the 2 accesses of the first genome are
executed in parallel to the 8 accesses of the second genome.
However, the first hardware module has to wait until the second
one has computed the key. Implementing just 4× MI reduces
the accesses to 1 + 2. But combining MI and PFE reduces
the sequential memory accesses to just 2. Consequently, MI
and PFE together reduce the idle-time of the parallel modules
significantly, and thus increase the evaluation speed. A fitness
evaluation with 4× MI, 4× PFE, and ET was implemented on
the target platform. The hardware costs amount to 7473 slices
and 30 BRAMS, which means an increase of about 38 and 67%
respectively. As shown in Figure 13, the necessary computation
time on the other hand reduces from 251 to 85 seconds. Thus,
a total speed-up of 230% is finally accomplished!

VI. CONCLUSION

In order to address the problem of fast packet classification
in state-of-the-art network routers, this paper has applied real
world router data from a BGP-router on an evolvable packet
classifier. It turned out that compared to randomly generated
keys the performance of such a system decreases. However,
on a 32k large data base and with 12 memory accesses per
key it is still reasonably fast.

Since it allows for faster adaptation to changing rule data
bases, the evolution process was accelerated. To achieve
this goal, different acceleration methods were developed,
implemented in hardware, and investigated on a development
board. All three of them (ET, MI, and PFE) turned out to
have positive effects on the speed of the evolution process and
acceptable additional costs in terms of hardware resources. The
combination of all methods increased the evolution process by

230% in total. The costs increased by only 38% for slices of
logic and 67% for Block RAMs of the selected FPGA.

The packet classifier with the improved fitness evaluation
algorithm has been implemented in hardware using the VHDL
description language. In a Xilinx Virtex4-FX20 FPGA [15],
the system consumes 7473 slices of logic and runs at a clock
speed of 120 MHz. At this speed, the classifier is capable of
performing more than 10 million classifications per second,
when assuming 12 memory accesses per classification (as
indicated by the simulation results).

Further research will be dedicated to an analysis, if changes
in the architecture of the hardware hash function can improve
the quality of the packet classification of real world data
significantly. It will also be investigated if an adaptive mutation
rate has a positive effect on the results and/or the speed of
the evolution process. Further research will also be dedicated
to the effects of changing the fitness function towards the
consideration of the frequentness of different keys in the data
path of the classifier. That is because it would be better if
commonly occurring keys would be looked up quicker than
seldom occurring keys. That traffic profiling is supposed to
have positive effects on the system’s throughput, even if the
actual fitness function would not indicate it.
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