
Abstract- Evolvable Hardware (EH) has been described as a

composition of reconfigurable hardware and a learning

algorithm that optimizes configurations according to pre-

defined operational requirements. EH, to be most effective,

requires its users to surrender significant amounts of design

authority to an automated process. Even though EH has shown

significant promise in creating novel designs, working

engineers often show reluctance in relying on them.

Understanding the causes of such reluctance is a necessary step

toward constructing cogent arguments for the adoption of EH

methods in practice. In this paper, we will attempt to examine

some of the roots of observed reluctance and construct some

preliminary arguments to counter it.

I. INTRODUCTION

volvable Hardware (EH) [1-8] is an emerging

subspecialty within Evolutionary Computation [9-11] in

which one evolves designs for mechanical, computational, or

electrical devices. Evolvable Hardware can often be

distinguished from related practices in design optimization

by the degree to which automated methods are given control

over the final device configuration. In design optimization,

a human designer selects the basic form of a solution and

allows an automated technique to tune and adjust parameters

within the boundaries of that solution type. In EH, a human

designer surrenders large amounts of control over the form

of the solution. In effect, the automated optimizer is allowed

to assemble components in ways that admit solutions that

cross normally recognized type boundaries or which fall into

type categories not commonly part of engineering practice.

Consider the process of designing a controller to suppress

vibration in jet engine combustion chambers. A more

traditional design optimization approach might entail

construction of a model of the combustion chamber,

selection of a specific control strategy (E.G. Proportional-

Integral-Derivative, Linear Quadratic Regulator, etc.), and

then a combination of model-based and/or automated tuning

of strategy parameters to ensure the controlled system does

not vibrate dangerously while in operation. The parameter

tuning would be followed by both model-based and live

system verification. Long term stability and corner cases

that might not be testable in the live system would be

considered via examination of the coupled model/controller

system. Contrast this with an EH approach, in which a
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highly tunable reconfigurable controller substrate would be

evolved to better maintain the engine system in a desired

state without regard to remaining within the boundaries of

any pre-determined control strategy. Of course, though an

EH system’s ability to color outside the lines certainly opens

the door to novelty, it can also severely disadvantage the

necessary engineering tasks that come after a candidate

design is on the table. How does one verify and validate an

evolved device that might not follow any conventional

rules? EC and EH researchers tend to value novelty on its

own merits. Therefore, the discipline has collectively spent

a great deal of time demonstrating that novel and valuable

things can be evolved. Working engineers, however,

through training and necessity have come to value

predictability, reproducibility, and other practical concerns

at least as much. Sometimes, however, one can have too

much of a good thing. The author has observed in his

interactions with traditionally trained controls and aerospace

engineers a decided mistrust of EH methods. Ironically, the

same engineers that willingly field controllers based on

measured set-points and empirically generated lookup tables

balk at EH controllers grounded in at least as much hard

empirical data. There is no doubt in the author’s mind that

others have at least occasionally encountered similar

attitudes. The point of this paper is not to disparage those

attitudes – a healthy core of skepticism and conservatism is

necessary for an engineer. The point of this paper is to make

a provisional attempt at making explicit the causes of

engineering objections. Many in the EH community will

read this paper and quite correctly observe that all of it is

obvious. That’s good news – because it means that

reluctance to adopt EH methods is largely a function of poor

communication with those outside our community. This can

be fixed.

So, how do we fix these perceived communication

faults? First, we must realize that EH is well beyond the

proof-of-concept stage. There are sufficient results in the

literature to demonstrate that EH methods can produce novel

solutions that outperform those created using conventional

engineering methods. Further demonstrations of this fact

would, of course, be welcome and of huge interest to those

already convinced – but would do little to address the

concerns of the larger world outside our community.

Second, we must realize that lack of wider acceptance is

likely rooted in deeply held conventions that are learned

during an engineer’s early training and reinforced repeatedly

over his/her career. It would be both foolish and arrogant to

presume these conventions are somehow wrong. However,

sometimes conventions need to be reassessed upon the

coming of disruptive technology. EH certainly qualifies for
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that. Third, having realized the above two items, we might

consider characterizing current engineering convention and

determine in what ways EH may be perceived as violating it.

Having done that, we hopefully would be in a position to

offer justifications and mitigating arguments.

II. WHERE TO START

If the goal is to help the wider community of engineers to

“stop worrying” and accept that evolvable hardware might

be useful, then we need to identify the causes of existing

impediments and attempt to remove them. There are two

basic ways of moving forward. The first way is to examine

those EH devices that have already been used to solve real

world problems and identify why they were acceptable to

their adopters. Study of successful adoptation can unveil

justifications and reasons that might be leveraged into other

situations. Philosophically, we could consider such study to

be an attempt to synthesize a posteriori justifications based

on the experience of successful cases. The second way is to

examine the process of engineering in and of itself and

attempt to construct “reasonable objections to EH” based

upon proceedural assumptions taken (rightly or not) as

axiomatic by engineers. Once we had straw man objections

in hand, we could examine the chain of reasoning leading up

to their creation and be in a position to argue that they either

do not apply to specific EH efforts, or that they do –but that

EH does not actually violate them. Philosophically, we

could consider such study to be an attempt to synthesize a

priori justifications based upon first principles.

Both a priori and a posteriori justifications will rely on
specific definitions of “engineering” and “evolvable
hardware”. To make some progress in attempting both, this
paper will provide its author’s definitions. It is understood,
however, that definitions might vary and with them, the
conclusions this paper will eventually arrive upon.
However, it is hoped that that even if the conclusions are
imperfect, the process by which they were reached at least is
seen as sufficienty sound for the reader to make his or her
own attempts with his or her own starting definitions.

III. ENGINEERING PROCESS

For purposes of argument, this paper will define engineering

as the application of scientific and economic principles to

the solution of technical problems. Practical engineering

processes contain most, if not all, of the following phases

which proceed roughly in the order indicated:

a) analysis phase in which solution requirements are

assessed

b) specification phase in which aspects of acceptable

solutions are enumerated

c) design phase in which one or more candidate designs that

satisfy specifications are generated

d) design evaluation phase in which one or more candidates

are analyzed for suitability – often using models or a

priori arguments. The goal of this phase is to determine if

solutions are even reasonable with respect to the

specifications and the constraints of physics and

economics. Issues evaluated can include, but are not

limited to, efficacy, economy, manufacturability, and

ethical acceptability.

e) design testing phase in which one or more candidates

passing a priori evaluation is subjected to empirical (a

posteriori) verification. Such verification might include

stress testing of actual, prototype, or simulated, products.

The goal of this phase is to ensure that the products will

operate as intended in both normal and unusual

environments. Issues tested can include, but are not

limited to, efficacy, manufacturability, safety under both

normal and exceptional conditions, and operational

lifetime.

In practice, this ordering is only roughly followed.

Individual engineering teams might revisit earlier stages if

later stages show no candidate design to be acceptable.

Also, the boundaries between phases can be somewhat fuzzy

and the specific means by which each is accomplished can

differ from discipline to discipline. Still, this paper will take

the position that nearly all engineers adopt some variation on

the above process and that asking them to leave out any of

them will tend to cause them discomfort and to doubt their

designs.

IV. EVOLVABLE HARDWARE

Specific Evolvable Hardware efforts in the literature are

diverse in intended application, goals, underlying

reconfigurable hardware, and choice of evolutionary /

learning algorithm. For purposes of argument, this paper

will presume the following commonalities among EH

projects:

a) Reconfigurable hardware used in EH work is knowingly

adopted and/or designed so that individual hardware

configurations can cut across the boundaries of

conventional solution types. EH hardware substrates

tend to be much more general and expressive than those

used in design optimization. For example, one can spin

the dials on a PID controller all day, but it never stops

being a PID controller. FPTAs [8] could evolve to act as

digital or analog circuits and definitely have the ability to

evolve on either side of the boundary, or even as some

odd hybrid of the two. CTRNNs [12-14] are universal

dynamics approximators and could in principle evolve to

embody any control law. They might evolve into an

expected control type – or they might evolve into

something that falls between the cracks of conventional

types. Similar observations can be made for nearly all

analog electrical circuit based EH. For digital circuit EH,

it is clear that at least when evolution is done at the gate

level, one could in principle evolve devices that cross
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boundaries of traditional MSI component types

(registers, counters, ALUs, etc.).

b) Adaptive Learning / Evolutionary Algorithms used in EH

efforts tend to be weakly constrained in what solutions

are allowable and/or acceptable. EH employs

evaluation functions that are some combination of a

priori and a posteriori acceptability tests of fit to a

behavioral specification of performance efficacy.

Both of the above are, within the EH community, generally

considered to be good things. Hardware substrates that

allow out-of-the-box solutions and powerful, but weakly

constrained searches, both contribute to an ability to

construct novel, perhaps superior, solutions to problems.

They also contribute to the ability to deliver systems that can

adapt on-the-fly to unexpected circumstances.

V. ENGINEERING PROCESS AND EH

The EH community sees benefit in what it does. However, it

is the contention of this paper that to the extent that the

above mentioned aspects of EH cause real or perceived

violations of accepted engineering practice, it will also cause

resistance to wider adoption of EH methods. The paper has

also contended that we can begin to uncover these real and

perceived clashes through both a priori examination of the

engineering process and how it might clash with EH

methods on first principles and a posteriori examination of

EH case studies that have been found acceptable by

traditionally trained engineers.

Figure 1 is a summary of phases of a design process. We

have added two phases, “pre-process” and “post-process”.

These refer respectively to tasks that might take place before

or after the traditional design phases. So long as one

presumes that pre-process and post-process tasks are

independent of the traditional design phases and it can be

shown that they don’t make “things worse”, it is doubtful

that any traditional engineer would object. The five phases

in the middle can be considered to be the traditional product

design/life-cycle. Inclusion of EH methods into green

shaded tasks are considered to be unlikely to cause engineers

great concern. Inclusion of EH methods into yellow shaded

areas are considered to be potentially disturbing to

engineers. Let us now look at the intersection of each of the

seven defined phases and the two identified central aspects

of EH.

VI. EH AND PRE-PROCESS PHASE

Admittedly, at first blush it might appear a bit strange to

speak of engineering tasks that happen before engineering

tasks begin. However, because most engineered systems are

constructed of parts that were engineered at a lower level of

abstraction, we can certainly envision “pre-design” tasks that

produce the parts we need to build our product. An obvious

example is digital logic gates. Most digital designs rely on

pre-engineered gates that satisfy specific performance

requirements. In effect, pre-process tasks can be thought of

as recursively expanding the whole design process for each

part one wants to use in a design. If one were to use EH

methods to create novel, but “simple” devices that otherwise

do not run afoul of engineering ethic, then one could claim

to use EH to produce superior parts to be used by traditional

engineers. Of course, all the issues of the next sections

would be recursively inherited by any such “pre-process”

sub-designs.

VII. EH AND THE ANALYSIS/SPECIFICATION PHASES

In the analysis phase, a traditional engineer would be

attempting to assess and formally record the features

required in a solution (requirements). In the specification

phase, that engineer would be codifying features need in,

and constraints applied to, proposed solutions

(specifications). A traditional designer would, after

finishing these tasks, enter the design phase and rely on

experience and intuition to put forward candidate designs

that would be expected to pass the evaluation and test

phases. Those that “did the best” in the final phases would

be kept, those that did unacceptably well would be

discarded.

Design optimization approaches are fundamentally

identical, except that some limited parameters are tuned with

Figure 1: A conventional view of a design process. Gray phases designate areas where EH methods are
unlikely to cause concern, yellow phases designate areas where EH methods might cause disquiet.
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respect to tests about how well the design meets

specifications and requirements with respect to some subset

of evaluation and/or test phase measurements. In effect,

design optimization automates a product lifecycle loop from

the evaluation and/or test phases back to the design phase –

except that the designs are constrained into specific design

types/templates that are largely expected to be easily

evaluated, easily tested, and predictable in their behavior

both in time and across specific instantiations of individual

devices. Most importantly for the issues of this section, a

design optimization approach often solves satisfying

specification by insuring that the generic substrate and all

possible tunings of it are in spec. This leaves the tuning

algorithm only to deal with optimizing requirement

satisfaction.

In that EH methods largely use the same sorts of

automated testing of requirements/specifications that is done

in design optimization – it’s not likely that EH methods

would run afoul of most engineers so long as the methods

used to elicit an EH objective function were not vastly

different than those conventionally used in the field of the

application. It would be important, however, to show how a

combination of the EH objective function and inherent

immutable features of the underlying hardware substrate

together map into the full requirements and specifications

for a candidate machines. Failing this demonstration would

quite correctly raise engineering ire.

VIII. EH AND THE DESIGN PHASE

Oddly, this is perhaps the one phase where introducing EH

should not not cause much concern for traditional engineers.

Evolutionary Algorithms (EAs) are stochastic processes that

over time tend to improve solution quality with respect to

some pre-defined objective function. Within the inherent

limits of the EA and the expressiveness of the underlying

hardware components being combined, one can expect

continually improvements in solutions. One can, of course,

argue about the efficacy of search, the amount of

computational resources needed, the specific nature of the

underlying substrate, or any number of details. The basic

idea of “EH as idea generator”, however, shouldn’t be

objectionable so long as the EA generated ideas are

subjected fully to evaluation and test phases conventionally

accepted for the target application field. That’s where most

of the problems begin.

VIII. EH AND THE EVALUATION AND TEST PHASES

Here be dragons. It is in these phases that many traditionally

trained engineers will see EH methodology falling off the

edge of the world, or at least falling far enough outside of

accepted practice to be less worthy of trust. Consider that,

like with design optimization, EH creates an automated loop

from evaluation and test back to design. If one desired to be

more specific, one could argue that intrinsic EH closed an

automated loop from test to design and extrinsic EH closed

an automated loop from evaluation to design. Hybrid

intrinsic/extrinsic approaches would close a loop including

all three of design, test, and evaluation. The difference

between EH of any kind (intrinsic, extrinsic, etc.) and design

optimization is the extent to which the automatically

generated candidates are likely to remain predictable,

amenable to evaluation, and amenable to test. Here is where

the fundamental aspects of EH can cause problems.

Hardware substrates that can jump the tracks among solution

types can become impossible (or at least very difficult) to

evaluate in the sense defined in section III, item (d). A

design optimized LQR will always be an LQR that can be

evaluated for theoretical reliability using accepted methods.

Hardware that can jump the tracks, or fall in the uncharted

spaces between the tracks can confound such analysis. This

basic problem can exist independently of intrinsic or

extrinsic methodology. A solution constructed of unusual

parts that satisfies a loosely specified objective function will

not of necessity pass muster in conventional evaluation and

test phases. Intrinsic EH can introduce its own unique

problems. Presuming the reconfigurable substrate is subject

to significant variation from device to device, it would be

easy for an EA to exploit specific device peculiarities that

are not only difficult to model, but fundamentally

unknowable by any direct means. This is not an

uncommonly observed problem, and it only exacerbates

possible difficulties in maintaining predictability of an

evolved design.

IX. EH AND THE POST-PROCESS

In this phase we would include EH methods that are active

after traditional design approaches are exhausted and/or not

applicable. In short, this would include any such

applications that would attempt fault recovery after

catastrophic failure. Once a system has failed, as long as it

can be shown that semi-random experimentation can not

make things worse, allowing the system to go into an EH

learning mode certainly at least gives a chance of recovery at

little or no cost. Many “exotic” applications are of this

nature.

X.POTENTIAL A-PRIORI JUSTIFICATIONS

One could generate a list of possible justifications for the use

of EH by examining the problems/opportunities created by

the intersections of the “key features” of EH and the

elements of the standard design process. Some that can be

extracted are:

a) One can safely use EH to create parts to be used in

traditional designs as long as the novel parts created are

sufficiently simple and/or understandable to survive

traditional verification and test in their own right.

(Intersection of EH and “pre-process” design phase)

b) The process of creating an objective function entails

elicitation of a formal statement of design requirements

and specifications. In principle this is not different from,
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nor is it any more dangerous than, conventional means of

formalizing requirements and specifications.

(Intersection of EH and “analysis and specification

phases”)

c) Allowing an automated process to have a seat at the

brainstorming table to generate candidate designs is no

more dangerous than having another human at the table,

so long as the machine created candidates are as fully

vetted with testing and verification. (Intersection of EH

and “design phase”)

d) Extrinsic EH should not be problematic under the

following conditions:

1) Accurate models of hardware components exist

2) The EH system is constrained to not violate model

assumptions

3) Systems constructed of the modeled components can

be verified through analytical techniques

4) Hardware instantiations of evolved systems are

directly testable, or can be inferred to function

because of tight coupling between models of and

actuality of component behavior and interaction.

(Intersection of EH and “Evaluation and Test

Phases”)

e) EH used as a course of last resort (I.E. to correct problems

that persist after any and all possible human engineering

efforts have been exhausted) should not be problematic.

A system that has a chance of doing something is better

than one that has a certainty of doing nothing.

XI. A WHOLE LOT OF OBVIOUS

This paper has not stated anything that most EH practitioners

do not already know or have not already considered to at

least some degree in the development of their own projects.

In fact, there are EH projects in the literature that make

either explicit or implicit appeal the above a-priori

justifications, nearly all of which could have been just as

easily extracted via a posteriori analysis of the literature.

Justification (a) is quite well illustrated by work in evolved

antennas [15] and high-temperature logic gates [16].

Justification (d) is implicit in much of Koza’s work on

evolved electrical circuits [2] as well as in nearly all digital

circuit based EH. Justification (e) is implicit in all work

related to self-repair and/or adjusting to fabrication faults.

Of course, at least part of the point is that these

justifications are obvious, can be made, and have been made.

The community can do a great deal toward increasing the

acceptability of EH in the minds of line engineers simply by

making what is obvious to us clear to them in an organized

manner via a systematic analysis of the intersections of

stages of a design process and characteristics of EH.

Hopefully, that exercise can be completed in more detailed

and more application area specific ways as we move into

new application domains.

XII. A WHOLE LOT OF NOT SO OBVIOUS

We can make significant inroads by just making some of the

obvious explicit. However, a secondary exercise of potential

import would be to carefully examine those EH projects that

just violate convention to such a degree that it doesn’t seem

possible to reconcile them at all to those conventions. At

some level, EH is gamed to be able to cross conventional

boundaries or solution type. Very often, solution types and

or templates exist at least in part because they can be

understood via reductionistic method and functional

decomposition. For example, there is no inherent reason why

microprocessors must be built as parings of data path and

microcontroller – generally, however, we do so that we can

employ functional decomposition and reductionism to

manage complexity. If one were to leverage EH maximally,

then she/he would in principle allow the evolution of

solutions that might not have reductionistic explanations

associated. Many of the previously given justifications will

still hold, but any related to the verification/test process will

fail. What then?

Traditional engineering has at its core reliance upon and

an affinity toward reductionism. It is unlikely that such

reliance should be abandoned entire. On the other hand,

there are instances where society has come to trust less than

completely understood systems in life-critical applications.

Seeing eye dogs, for example, receive about four months of

training before they are literally entrusted with the lives of

their owners. In addition, much of what passes for

reductionistic analysis in engineering is anything but.

Lookup table based engine controllers, for example, are

based on rote lookups of effector efforts that produce desired

set-point behaviors. It might appear that the controller is

easily understood – after all – it’s a lookup table. However,

every tuple in the table is an empirically determined bit of

“common sense” that in itself is not further reducible.

Further examples could be synthesized, the point is that

there are plenty of systems that both society in general and

engineers in particular accept as useful even though they

lack the sorts of reductionistic explanations that engineers

have come to covet. This suggests two alternative

justification strategies for EH adoption.

a) Find and observe situations in the world where not-

completely understood systems are trusted with critical

situations. Extract from those situations why people have

come to accept the systems. Attempt to recreate those

justification methods in the context of EH applications.

b) When attacking a new application area with EH,

carefully study existing solutions to identify sub-systems

and/or practices that inherently admit empiricism. Attempt

to confine EH methods to creating better empirically

determined blocks. One could argue that EH could explore

empirical strategies far more extensively than could a

human. Also, since the EH would be replacing essentially
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empirical components anyway, little would be lost in terms

of expected reliability and understandability.

XIII. DISCUSSION

It is the author’s hope that the better part of the discussion

on these topics not appear here, but rather, starts here and is

improved upon with the attention and assistance of the

community. This brief paper has made a number of

observations on why such discussion is necessary and a

number of suggestions as to how the discussion could start.

First, it was observed that traditionally trained engineers

very often feel discomfort in adopting EH. It is believed that

at this stage of development of the field, overcoming this

discomfort is far more vital than producing additional

demonstrations of efficacy. We know that engineers

ultimately care about more than mere efficacy. We also

know that engineers are human and can, like everyone else,

adopt procedure for good reasons, then forget the reasons

and convert the guidance of procedure for the shackles of

ritual. For both types, those that remain unconvinced due to

a perceived lack of attention to issues beyond efficacy and

automated novelty, and those that unfortunately have

transformed common sense convention into inviolate

doctrine, further “look, it works” demonstrations will not be

convincing. It is to our benefit to consider how both camps

could be convinced. Second, it was suggested that one could

attempt both a priori and a posteriori justifications of EH.

This paper attempted both in imperfect and shortened form.

However, it is believed that particularly powerful a-priori

apologetics could be formed by systematically intersecting

the steps inherent in traditional engineering and the aspects

of EH we hold so dear to uncover places where engineers

might feel uncomfortable. This paper accomplished that in a

general sense, however, there is no reason a similar process

could not be done with more detailed formalized engineering

processes used in specific application areas. Once a priori

justifications are in place, one could mine the EH literature

for efforts that are of similar character. These could be used

as a posteriori justifications that are all the more powerful

for having been explicitly tied to new, application specific,

design process.

Afterwards, this paper briefly considered that the

ultimate form of EH would very likely defy deeply set

engineering methods no matter how hard we worked to

justify them. It suggested places we could mine for other

means of coming to trust systems that are life critical, yet not

fully understood in a manner acceptable to line engineers. It

is unlikely that many would be convinced to adopt EH in the

short term on the weight of such speculations – save in the

cases when inherent empericism is already identified in a

particular engineering method. However, such speculation

should be undertaken as a means of better understanding the

boundaries of acceptable and unacceptable technical solution

of real world problems.
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