

Abstract—The majority of research in Evolvable Hardware is

focused on evolving logic for deployment on reconfigurable

hardware. There are far fewer reports concerned with the

implementation of Evolutionary Algorithms (EAs) in hardware.

The focus of our research is directed toward using reconfigurable

hardware as a means to speed up evolutionary search, and in

particular Evolutionary Multiobjective Optimization (EMO).

Evolutionary Multiobjective Optimization utilizes an

evolutionary search to find solutions to difficult multiobjective

optimization problems. We present an implementation of an

EMO algorithm in reconfigurable hardware, and discuss how it

may be utilized in practical deployment situations.

Index Terms—Evolutionary Multiobjective Optimization,

Evolvable Hardware, Field Programmable Gate Array, Neural

Networks.

I. INTRODUCTION

volutionary algorithms (EA) have been traditionally

deployed on general-purpose computational systems.

Parallel and distributed computing techniques have been

employed on general-purpose computational systems to

improve the computational efficiency of an evolutionary

algorithm. Since evolutionary algorithms work with a

population of solutions, parallelizing the fitness computation

has the benefit of significant speedup. When the problem

solving may be sped up by problem decomposition, distributed

evolutionary computing techniques have been employed [1],

[2]. However, for the efficient execution of applications

requiring high-frequency multi-objective optimization

constrained by the size of the computational unit, it is desirable

to develop a multi-objective evolutionary technique that

enables high optimization speed-ups with a small

computational footprint. An example of such an application is

in missile or unmanned vehicle control, where a high

optimization speed is required, the computational hardware

footprint and weight constraints are severe, and the domain

demands simultaneous consideration and optimization of

multiple conflicting objectives such as thrust and range given

varying mission needs while operating with a finite fuel

resource. Another example is in medical image reconstruction

based on projections [3], where a high reconstruction speed

and high quality image output are requirements. In this

medical imaging domain application, the computational

hardware footprint requirements are typically very severe.

Most of the Evolvable Hardware (EH) research is concerned

with evolving circuits for various functions. Extrinsic EH,

Intrinsic EH, and Complete Hardware Evolution (CHE) are the

three principal research areas, and are categorized based on the

magnitude of the algorithm computation that is performed in

hardware. Extrinsic EH uses no special hardware, but instead

circuit simulations for the fitness evaluations of the evolved

circuits. Intrinsic EH typically applies to situations when either

a simulator is not available, not accurate enough, or not

practical. So, each evolved circuit configuration is physically

implemented and tested in its real operational environment.

Executing the individuals directly in hardware also allows for

the exploitation of the physics of the devices, as Thompson [4]

has shown. CHE [5] utilizes reconfigurable hardware for all

aspects of the evolution, including the EA in hardware. There

has been considerably less work done in this area, as one of the

principal practical bottlenecks has been the speed of the fitness

evaluation in practical applications when the evolutionary

process is implemented in hardware. If the fitness evaluation is

compute-intensive and slow, that reduces or eliminates the

speedup benefits of the evolutionary operational computations

in hardware. What is needed is a framework wherein fast

evolutionary operational computations are interfaced with fast

and reliable fitness evaluations, to realize the benefits of

evolutionary computation in hardware.

Our work does not fall into either the Extrinsic or Intrinsic

EH categories, but more closely follows the ideas of Complete

Hardware Evolution. Our goal is not to evolve circuits, but

rather to utilize a Field Programmable Gate Array (FPGA) as a

means for implementing an Evolutionary Multiobjective

Optimizer (EMO) in hardware. Our current goal is not the

implementation of one particular EMO algorithm on hardware,

but the demonstration of the deployment potential of a basic

but generic EMO algorithm on hardware. An EMO in

hardware would allow for much faster execution and open the

door for applications in many new domains that require

compact and fast real-time processing. In addition to the

speedup benefit, the reduced size and power consumption will

also allow for on-board real-time deployments such as in

unmanned vehicles or in medical scanners.

Evolutionary Multiobjective Optimization on a Chip

Stefano Bonissone and Raj Subbu

General Electric Global Research, One Research Circle, Niskayuna, NY 12309

bonisson@research.ge.com, subbu@research.ge.com

E

61

Proceedings of the 2007 IEEE Workshop on
Evolvable and Adaptive Hardware (WEAH 2007)

1-4244-0699-4/07/$20.00 ©2007 IEEE

Section II presents a brief overview of some recent and

relevant EH research and shows how our research fits into the

current literature. Section III describes the EMO on FPGA

hardware concept, including a description of the language

used, algorithm modules, and the overall algorithm design.

Section IV describes the test problem used and experimental

results. Also shown is a performance comparison to a

corresponding software implementation of the EMO

algorithm. Section V presents conclusions and future work for

deployment-level demonstrations.

II. BACKGROUND

A. Evolvable Hardware

Research in the field of Evolvable Hardware is typically

concerned with evolving circuits for reconfigurable hardware

devices. Complete Hardware Evolution, as described earlier,

refers to every aspect of the evolutionary approach existing

and executing on a hardware device. While we are not

concerned with evolving circuits, we chose to use an FPGA as

a means to speed up the evolutionary search. There has been

less research done in this area.

Tufte and Haddow [5] implemented a complete hardware

evolution scheme in an attempt to evolve logic solutions

directly on the hardware device. Kramer et al. [6] implemented

different versions of a Compact Genetic Algorithm (CGA) [7]

to compare performance on a series of benchmark problems.

CGAs have a very compact representation and small memory

footprint. Rather than attempting to maintain an entire

population of individuals, the CGA methods represent a

population as a bit probability chromosome. A probability

exists for each bit in the chromosome, which represents the

likelihood of a 1 residing in that bit for the entire population.

Members of the population are created on the fly utilizing this

distribution of bits. This representation of the population

makes these algorithms attractive for hardware

implementation. So and Wu [8] implemented a four-step

genetic search algorithm for use in video processing. Hamid

and Marshall [9] have implemented a Genetic Algorithm (GA)

in FPGA hardware for grey-scale soft morphological filters

(SMF). Their motivation was one of speeding up the search

algorithm, which would otherwise take considerably longer to

run. Perkins et al. [10] present another instance of

implementing all components of an EA in hardware. In this

work, an EA is implemented in hardware to design a stack

filter that alters a corrupted signal in an attempt to reconstruct

the original signal as closely as possible. A speedup in

execution was the main motivation for these authors to

implement such an EA in hardware.

Scott et al. [11] appear to be one of the first to implement a

GA in hardware. In their proof of concept, the VHDL

language was used to implement Goldberg’s Simple Genetic

Algorithm (SGA) in an FPGA. Several simple test functions

were used to compare the hardware implementation and a

software implementation of the same algorithm. Glette and

Torrensen [12] also attempted to perform on board intrinsic

evolution of logic. Slightly different from Tufte and Haddow’s

approach [5], Glette and Torrensen utilized the PPC

microprocessor on the Xilinx FPGA board to run the GA,

while configuring the FPGA logic to evaluate the individuals

of the population. Similar to Scott et al. [11], Glette and

Torrensen utilize an SGA style algorithm and representation

for the search process.

There are a few important characteristics that unify all of

these above on-chip EAs. The most important unifying

characteristic is the binary representation. A binary

representation was used as an encoding for a configuration bit

stream in some implementations, and in others it was used to

represent the value of a variable. There are a few exceptions

where logic elements were evolved, and even an instance of a

hardware-based Genetic Program (GP) evolving a function and

terminal set [13].

What has not been attempted thus far was to create a

hardware implementation of a real-valued EA, and in

particular a real-valued multiobjective EA. In software

implementations, real-valued EAs show better performance

across many types of optimization problems than compatible

binary encoded EAs.

B. Evolutionary Multiobjective Optimization

Many interesting and important real world problems cannot

be well characterized by a single measure of fitness. These

problems require multiple, sometimes conflicting, measures of

fitness that need to be optimized simultaneously. Often when

solving these problems, the multiple criteria are condensed

into a single function to be optimized. These singleton

functions can then be minimized or maximized using a

classical GA. Condensing multiple objectives results in a loss

of information and is often inappropriate, subsequently leading

to a reduced or inaccurate space of solutions. By leaving the

objectives separate, an EA can optimize solutions for all

objectives and identify those that lie on or close to the Pareto

frontier. Non-domination can be used as a comparison measure

between two candidate solutions. Using the definition of non-

dominance defined in (1), a dominates b given a minimization

problem.

∀i ∈ 1,...,n{ } : f i(a) ≤ f i(b) ∧

∃j ∈ 1,...,n{ } : f j (a) < f j (b)
 (1)

In most EMO algorithms, dominance is the criteria used for

the selection function since a single fitness value cannot

describe the quality of a solution. The NSGA-II algorithm that

Deb et al. proposed in [14] sorts the population of solutions

first based on dominance, and then again based on crowding

within a neighborhood. This non-dominated sorting selection

method ensures that the best solutions based on all fitness

62

Proceedings of the 2007 IEEE Workshop on
Evolvable and Adaptive Hardware (WEAH 2007)

functions advance to the next generation. The secondary sort

based on crowding is an attempt to reduce the gaps in the non-

dominated front that the algorithm produces. The set of non-

dominated solutions from the final population is what the

NSGA-II algorithm returns. Two other EMO algorithms in the

literature that incorporate non-domination as part of their

selection or archival functions are the SPEA2 [15] and PAES

[16]. The use of dominance as a selector is a principal

component of our algorithm implementation on hardware. Our

current implementation is however restricted to encapsulating

the basic characteristics of an EMO, and does not seek to

implement some of the more intensive computations of these

above referenced algorithms.

III. EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION ON

FIELD PROGRAMMABLE GATE ARRAYS

A. Implementation Language

Many of the program implementations in FPGA hardware

are designed in VHDL, a hardware description language.

There has been one published implementation of Genetic

Programming (GP) in FPGA hardware created by Martin [13]

programmed in a higher-level language called Handel-C.

Handel-C is a subset of the ANSI-C language with special

constructs for parallelism and FPGA hardware access.

There are aspects of the Handel-C language that make it

possible to exploit the inherent parallelism of reconfigurable

devices. The language has implicit timing whereby each

assignment takes 1 clock cycle to execute. This allows for a

quick and simple analysis of the algorithm during the design

process. The parallel construct of the language allows each

operation and assignment in that block of code to be executed

in the same clock cycle. The compiler/synthesizer creates all

the necessary logic in order to perform these operations in

parallel.

B. Representation

The structure that is chosen to represent candidate solutions

is perhaps the most important feature of an EA. The method of

representation determines the type of random variation

operators to be implemented and affects the manner in which

the fitness landscape is traversed. The fitness landscape is also

dependent on the representation scheme based on the decoding

procedure used to evaluate an individual. Binary

representations of real valued numbers tend to perform worse

for EAs. It is for this reason that a real valued representation is

considered. Many EAs when solving for a function that

requires several real valued variables encode the genome as a

series of real valued numbers. The binary alternative is to

encode all numbers as a lengthy bit string. This bit string

representation is unwieldy, increases the search time, and can

even prevent the EA from converging to a good solution.

Solutions to many multiobjective optimization problems can

be represented using a real valued chromosome. However, real

valued numbers have certain limitations when represented in

hardware. The precision of the real valued numbers is the main

concern, as more bits are required for a given precision.

Utilizing floating point numbers is avoided due to the complex

logic necessary for their implementation. This increased

logical complexity would also be the limiting factor for the

overall clock speed of the device. The alternative to floating

point numbers is fixed point numbers. Fixed point requires

much less logic, but is unable to represent solutions with as

much precision. If the problem requires a large range of

numbers, more bits can be used to represent the integer

portion. If on the other hand more fractional precision is

necessary, more bits can be utilized in the fractional portion of

the numbers. This is a problem dependent portion of the EMO

algorithm, in the same way the fitness function formulation is

problem dependent.

C. Algorithm Modules

In order to implement an EMO algorithm in hardware, one

must take into consideration how to construct different

modules. A random number generator and non-dominance

filter are two necessary modules. The random number

generator must be able to produce both uniformly distributed

random numbers and Gaussian distributed random numbers for

use in mutation. A simple but elegant way of generating

uniformly distributed random numbers is to use several

Cellular Automata (CA). Many researchers choose to use

Logical Feedback Shift Registers (LFSRs) for their

implementations within a small logic footprint. An LFSR

however, does not produce very good random numbers—the

numbers generated become predictable and sequential. Martin

[17] performed a comparison of different random number

generators taking into account simplicity in implementation

and randomness of numbers generated. His analysis

determined that although LFSRs are simple to implement in

hardware, they do not produce “random enough” numbers for

evolutionary search. A single cellular automaton also yields

similar performance, but several CAs or several LFSRs

produced much better random numbers and improved the

evolutionary search. To extract a random number from a bank

of CAs, one composes the number by taking a single bit from

each CA. For example, if there are 10 CAs of 16 bits each,

then 16 different 10 bit numbers are generated. The advantage

of using multiple CAs is that each cell’s new value can be

computed independently of any other cell’s new value. This

parallel computation allows for one to generate many random

numbers in a single clock cycle given sufficient logic.

Apart from generating uniformly distributed random

numbers, Gaussian distributed random numbers are also

desirable for mutation. Many techniques to generate Gaussian

distributed random numbers utilize multiple uniformly

distributed random numbers that are additively combined

based on the Central Limit Theorem. Software techniques that

utilize two uniform random numbers to generate one or more

Gaussian distributed random numbers require the use of

63

Proceedings of the 2007 IEEE Workshop on
Evolvable and Adaptive Hardware (WEAH 2007)

trigonometric functions and the square root function. The

implementation of trigonometric functions in an FPGA

requires a large logic footprint, and reduces the overall clock

speed of the final design. It is for this reason that we choose to

use a different approach. Since the bank of CAs generate many

uniformly distributed random numbers each clock cycle, we

exploit the Central Limit Theorem to combine them into a

single Gaussian distributed random number. Four numbers

from the bank of CAs are summed together and divided by

four in order to obtain a number that is of approximate

Gaussian distribution. Four numbers are utilized because a

division by four can occur with very little logic by shifting by

two bits. Further, utilizing the Handel-C language constructs

specific to FPGA hardware, we are able to reduce the cycle

cost of averaging four numbers to a single clock cycle.

The second major module necessary for an EMO

implementation is a dominance/non-dominance filter. A simple

test for non-dominance has a computational complexity of

O(n2) in a sequential programming language. In the worst

case, each individual needs to be compared to every other

individual in order to establish non-dominance. Fortunately,

this is one area that can be greatly reduced in complexity

through parallelization. The non-dominance filter compares

each individual in parallel to every other individual. The

individuals that remain are the non-dominated individuals of

the population. This filtering process takes place on the parent

and child populations so that the non-dominated solutions

from a generation are stored in the archive. This non-

dominated set is what comprises the new population for the

subsequent generation.

Crossover is implemented using an arithmetic crossover

scheme with a α value of 0.5, which allows for very simple

implementation in device logic. The general definition of

arithmetic crossover is given in (2) below.

()

() 212

211

**1

1

ppc

ppc

αα

αα

+−=

−+=
 (2)

With α = 0.5, each parent is divided by two, and then summed.

These two operations can be completed in two cycles, with the

entire crossover operation occurring in 5 cycles. Utilizing an α

value of 0.5 produces a single individual instead of two

distinct individuals from crossover. This fits well into the non-

dominated selection scheme that is utilized in the EMO

algorithm.

The mutation of individuals is performed through a Gaussian

mutation procedure. The selected individual to be mutated is

multiplied by a Gaussian random number to introduce a

perturbation in value. Unfortunately, multiplication is

expensive in hardware, so parallelism is avoided for this aspect

of the EMO and the logically expensive multiplier is not

duplicated many times in the hardware. Fortunately, fixed

precision is used for individuals so the logic for an even more

complex and expensive floating-point multiplier is avoided.

D. Algorithm Overview

The overall basic EMO algorithm is depicted in Figure 1

below. The algorithm incorporates an archive that stores the

non-dominated solutions from the parent and solution

populations from each generation. The archive size is fixed

due to implementation limits, and so once the archive stores its

last individual, the next non-dominated solution to be included

in the archive replaces the first individual in the archive. The

reason for the archival replacement is one of implementation

on the FPGA hardware. To create an arbitrarily large archive

is much more difficult and most likely not worth the resulting

significant slowdown. This replacement continues in a

sequential manner. This archival strategy also retains the most

recently found individuals, which are known to generally

dominate the individuals found earlier in the evolutionary

search.

The multi CA random number generator depicted in Figure 1

constantly generates new bit strings each cycle independently

of the rest of the EMO. These bit strings are accessible from

the different modules since they reside in RAM on the device.

This allows the crossover and mutation operations access to

randomly generated numbers for use in their operation.

Figure 1: Architecture of the basic EMO algorithm

IV. EXPERIMENTAL RESULTS

To test the EMO on a chip concept, a simple multiobjective

optimization problem is used as a benchmark. At the time of

this research, we did not have access to FPGA hardware to

synthesize the algorithm, so we were limited to running it in a

realistic simulation environment. We were constrained mostly

by the complexity of the test problem because of the speed of

the simulator compilation. Due to this simulation constraint,

we chose to use Schaffer’s test function [18]. It is a two-

criteria test function that requires a single search variable to be

constrained to a specified range. The problem definition is

given in (3) with the overall search space depicted in Figure 2

below.

64

Proceedings of the 2007 IEEE Workshop on
Evolvable and Adaptive Hardware (WEAH 2007)

f1 x()= x
2

f2 x()= x − 2()
2

−8 ≤ x ≤ 8

 (3)

Figure 2: Schaffer’s two-objective one-variable function,

with the Pareto frontier shown circled.

The EMO design takes a relatively small percentage of the

logic and memory in the Xilinx family of FPGA devices. This

suggests that a much more complex fitness function could be

utilized and the hardware EMO could be used to tackle a real

world problem. The EMO design takes 10519 logic cells and

145Kb of distributed RAM. Based on an FPGA specification

sheet for the Xilinx Virtex-4 family of devices [19], this design

would fit on the second smallest member of the Virtex-4

family, namely the XC4VLX25 device. Should a more

complex fitness evaluator be necessary, a device with more

logic would most likely meet the requirements. On the largest

device of the family, the XC4VLX200, the logic blocks of the

EMO take up only 5% of the device and only 10% of the total

distributed memory. At the time of the research, this was the

top of the line that Xilinx offered. However, now the Virtex-5

family exists which allows access to even greater resources at

possibly a faster clock speed.

Table 1: Performance benchmarking of the EMO on a Chip

versus a high-level language implementation.

Software FPGA

Population 100 100

Resolution N/A 16 bits

Archive size 500 500

CA size N/A 400

Clock (MHz) 3,000 41

Cycles N/A 42,203

Time (sec) 0.3381 0.001029

Speedup 1 328.46

 In order to benchmark the hardware EMO, it is compared

against an equivalent Matlab version of the algorithm applied

to the same test problem. This comparison serves as a measure

of the speed benefit of the hardware implementation versus a

software implementation. Though the EMO is implemented in

a hardware simulator, the simulator accurately tracks clock

cycles, and the corresponding run-time in a hardware

deployment may be calculated. Table 1 summarizes the

differences between the two implementations.

All algorithm parameters are kept the same across the two

implementations in order to allow for a fair comparison. Only

the resolution of variables differed—a floating-point

representation in Matlab and fixed-point representation in

hardware. The population size, number of generations and

archive size were all made smaller for the simulation. This was

to reduce the compilation time for the hardware simulator.

Though the hardware implementation utilizes a much lower

clock speed compared to the software implementation, the

hardware implementation is able to leverage the parallelization

very well. The execution time in seconds for the FPGA EMO

is calculated by measuring the number of cycles from the

simulator’s cycle counter. This cycle count is divided by the

maximum clock speed that the deployment “place and route”

algorithm determined that the EMO design could run at.

Based on this calculated execution time and measured

execution time for the software version, there is a speedup of

over 300 times.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 3: EMO generated Pareto frontier shown using star

symbols superimposed over the mathematically defined Pareto

frontier.

The EMO converged well to the Pareto frontier for this

particular problem, something that is certainly desirable.

Figure 2 shows the overall search space for the test problem

with the location of the Pareto front circled. Figure 3 shows

the mathematically defined Pareto front as a line and solutions

in the archive as superimposed star symbols for a given run of

the EMO. Although much larger designs would easily fit onto

the FPGA hardware, the simulator required simple designs in

65

Proceedings of the 2007 IEEE Workshop on
Evolvable and Adaptive Hardware (WEAH 2007)

order to be able to compile in a reasonable amount of time.

The compilation time for the simulation of a population size of

10 individuals, 32 generations and an archive size of 64 took

over 2 hours.

V. DISCUSSION AND CONCLUSIONS

Our research is directed toward using reconfigurable

hardware as a means to speed up evolutionary search, and in

particular Evolutionary Multiobjective Optimization.

Evolutionary Multiobjective Optimization utilizes an

evolutionary search to find solutions to difficult multiobjective

optimization problems. We presented an implementation of a

basic EMO algorithm in reconfigurable FPGA hardware.

One of the principal practical bottlenecks in the hardware

implementation of evolutionary algorithms has been the speed

of the fitness evaluation when the evolutionary process is

implemented on hardware. If the fitness evaluation is compute-

intensive and slow, that reduces or eliminates the speedup

benefits of the evolutionary operational computations

performed in hardware. In this paper, we outlined an initial

method and framework to implement an EMO on an FPGA

device, and demonstrated its potential for the efficient

execution in applications requiring high-frequency multi-

objective optimization constrained by the size of the

computational unit. However, what is needed is a flexible

representation for a fitness function that can accommodate

efficient hardware implementation and simultaneously be

utilized to represent arbitrary fitness function models. What is

also needed is a fitness function representation that is flexible

enough to rapidly adapt should the model of the domain

change. Implementing the fitness functions as a set of neural

network models has these beneficial characteristics, and

further the combination of an EMO with an onboard bank of

neural network models may be used to successfully model and

optimize complex dynamic systems [20].

There is much work that can be done to elaborate on this

hardware EMO implementation. Most importantly,

synthesizing the simulated design is the next immediate step.

The cycle accurate simulation and analysis of the compiled

design show that it is possible to implement an EMO in an

FPGA. Synthesis onto hardware will allow for large

population and archival sizes to be used. It will also allow for

the EMO to tackle harder, more interesting problems. Our

current implementation demonstration is restricted to

encapsulating the basic characteristics of an EMO, and did not

seek to implement some of the more intensive computations

such as fitness sharing in algorithms such as the NSGA-II [14].

This is a topic for future work.

REFERENCES

[1] R. Subbu and A. C. Sanderson. “Modeling and Convergence Analysis of

Distributed Coevolutionary Algorithms”, IEEE Transactions on

Systems, Man, and Cybernetics (Part-B), 34(2), 2004.

[2] R. Subbu and A. C. Sanderson, “Network-Based Distributed Planning

using Coevolutionary Agents: Architecture and Evaluation,” IEEE

Transactions on Systems, Man, and Cybernetics (Part-A), 34(2), 2004.

[3] X. Li, T. Jiang, and D. J. Evans, “Medical Image Reconstruction Using

a Multi-objective Genetic Local Search Algorithm,” International

Journal on Computer Mathematics, 74:301—314, 2000.

[4] A. Thompson, Hardware Evolution: Automatic design of electronic

circuits in reconfigurable hardware by artificial evolution,

Distinguished dissertation series, Springer-Verlag, 1998.

[5] G. Tufte and P. Haddow, “Prototyping a GA pipeline for complete

hardware evolution,” In A. Stoica, D. Keymeulen, and J. Lohn, editors,

Proceedings of the First NASA/DoD Workshop on Evolvable

Hardware, IEEE Computer Society, 1999.

[6] G. R. Kramer, J. C. Gallagher, and M. Raymer, “On the Relative

Efficiencies of *cGA variants for intrinsic Evolvable Hardware:

Population, Mutation, and Random Immigrants, Proceedings of the

2004 NASA/DoD Conference on Evolution Hardware, 2004.

[7] G. Harik, F. Lobo, and D. Goldberg, “The compact genetic algorithm,”

IEEE Transactions on Evolutionary Computation, 3(4), 1999.

[8] M. So, and A. Wu, “FPGA Implementation of Four-Step Genetic Search

Algorithm,” Proceedings of the 6th IEEE International Conference on
Electronics, Circuits and Systems, 1999.

[9] M. Hamid, and S. Marshall, “FPGA Realisation of the Genetic

Algorithm for the Design of Grey-Scale Soft Morphological Filters,”

Proceedings of the International Conference on Visual Information

Engineering, 2003.

[10] S. Perkins, R. Porter, and N. Harvey, “Everything on the chip: a

hardware-based self-contained spatially-structured genetic algorithm for

signal processing,” In J. Miller, A. Thompson, P. Thomson, and T.

Fogarty, editors, Proceedings of the 3rd International Conference on

Evolvable Systems: From Biology to Hardware, 2000.

[11] S. D. Scott, S. Sharad, and S. Ashok. A hardware engine for genetic

algorithms, Technical Report UNL-CSE-97-001, University of

Nebraska-Lincoln, 1997.

[12] K. Glette and J. Torresen, “A Flexible On-Chip Evolution System

Implemented on a Xilinx Virtex-II Pro Device,” Proceedings of Sixth

International Conference on Evolvable Hardware, Springer LNCS

3637, 2005.

[13] P. Martin, “A Hardware Implementation of a Genetic Programming

System using FPGAs and Handel-C,” Genetic Programming and

Evolvable Machines, 2(4):317—343, 2001.

[14] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, A Fast Elitist Non-

Dominated Sorting Genetic Algorithm for Multi-Objective

Optimization: NSGA-II, KanGAL Technical Report 200001, Indian

Institute of Technology, Kanpur, India, 2000.

[15] E. Zitzler, M. Laumanns, and L. Thiele, SPEA2: Improving the Strength

Pareto Evolutionary Algorithm, Technical Report 103, Computer

Engineering and Networks Laboratory, Swiss Federal Institute of

Technology (ETH), Zurich, Switzerland, May 2001.

[16] J. D. Knowles, and D. W. Corne, “The Pareto Archived Evolution

Strategy: A New Baseline Algorithm for Pareto Multiobjective

Optimisation,” Proceedings of the Congress on Evolutionary

Computing, Washington DC, 1999.

[17] P. Martin, An Analysis of Random Number Generator for a Hardware

Implementation of Genetic Programming using FPGAs and Handel-C,

www.celoxica.com/techlib/files/CELW0307171J2F -23.pdf, 2002.

[18] J. D. Schaffer, “Multiple Objective Optimization with Vector Evaluated

Genetic Algorithms,” In Genetic Algorithms and their Applications:

Proceedings of the First International Conference on Genetic

Algorithms, Lawrence Erlbaum, 1985.

[19] Xilinx, Inc. Xilinx Virtex-4 specification sheet,

http://direct.xilinx.com/bvdocs/publications/ds112.pdf.

[20] R. Subbu, P. Bonissone, N. Eklund, W. Yan, N. Iyer, F. Xue, and R.

Shah, “Management of Complex Dynamic Systems based on Model-

predictive Multi-objective Optimization,” Proceedings of the 2006

IEEE International Conference on Computational Intelligence for

Measurement Systems and Applications, 2006.

66

Proceedings of the 2007 IEEE Workshop on
Evolvable and Adaptive Hardware (WEAH 2007)

