
 

 

Abstract—The majority of research in Evolvable Hardware is 

focused on evolving logic for deployment on reconfigurable 

hardware. There are far fewer reports concerned with the 

implementation of Evolutionary Algorithms (EAs) in hardware. 

The focus of our research is directed toward using reconfigurable 

hardware as a means to speed up evolutionary search, and in 

particular Evolutionary Multiobjective Optimization (EMO). 

Evolutionary Multiobjective Optimization utilizes an 

evolutionary search to find solutions to difficult multiobjective 

optimization problems. We present an implementation of an 

EMO algorithm in reconfigurable hardware, and discuss how it 

may be utilized in practical deployment situations. 

 
Index Terms—Evolutionary Multiobjective Optimization, 

Evolvable Hardware, Field Programmable Gate Array, Neural 

Networks. 

I. INTRODUCTION 

volutionary algorithms (EA) have been traditionally 

deployed on general-purpose computational systems.  

Parallel and distributed computing techniques have been 

employed on general-purpose computational systems to 

improve the computational efficiency of an evolutionary 

algorithm. Since evolutionary algorithms work with a 

population of solutions, parallelizing the fitness computation 

has the benefit of significant speedup. When the problem 

solving may be sped up by problem decomposition, distributed 

evolutionary computing techniques have been employed [1], 

[2]. However, for the efficient execution of applications 

requiring high-frequency multi-objective optimization 

constrained by the size of the computational unit, it is desirable 

to develop a multi-objective evolutionary technique that 

enables high optimization speed-ups with a small 

computational footprint. An example of such an application is 

in missile or unmanned vehicle control, where a high 

optimization speed is required, the computational hardware 

footprint and weight constraints are severe, and the domain 

demands simultaneous consideration and optimization of 

multiple conflicting objectives such as thrust and range given 

varying mission needs while operating with a finite fuel 

resource. Another example is in medical image reconstruction 

based on projections [3], where a high reconstruction speed 

and high quality image output are requirements. In this 

medical imaging domain application, the computational 

hardware footprint requirements are typically very severe. 

 

Most of the Evolvable Hardware (EH) research is concerned 

with evolving circuits for various functions. Extrinsic EH, 

Intrinsic EH, and Complete Hardware Evolution (CHE) are the 

three principal research areas, and are categorized based on the 

magnitude of the algorithm computation that is performed in 

hardware. Extrinsic EH uses no special hardware, but instead 

circuit simulations for the fitness evaluations of the evolved 

circuits. Intrinsic EH typically applies to situations when either 

a simulator is not available, not accurate enough, or not 

practical. So, each evolved circuit configuration is physically 

implemented and tested in its real operational environment. 

Executing the individuals directly in hardware also allows for 

the exploitation of the physics of the devices, as Thompson [4] 

has shown. CHE [5] utilizes reconfigurable hardware for all 

aspects of the evolution, including the EA in hardware. There 

has been considerably less work done in this area, as one of the 

principal practical bottlenecks has been the speed of the fitness 

evaluation in practical applications when the evolutionary 

process is implemented in hardware. If the fitness evaluation is 

compute-intensive and slow, that reduces or eliminates the 

speedup benefits of the evolutionary operational computations 

in hardware. What is needed is a framework wherein fast 

evolutionary operational computations are interfaced with fast 

and reliable fitness evaluations, to realize the benefits of 

evolutionary computation in hardware. 

 

Our work does not fall into either the Extrinsic or Intrinsic 

EH categories, but more closely follows the ideas of Complete 

Hardware Evolution. Our goal is not to evolve circuits, but 

rather to utilize a Field Programmable Gate Array (FPGA) as a 

means for implementing an Evolutionary Multiobjective 

Optimizer (EMO) in hardware. Our current goal is not the 

implementation of one particular EMO algorithm on hardware, 

but the demonstration of the deployment potential of a basic 

but generic EMO algorithm on hardware. An EMO in 

hardware would allow for much faster execution and open the 

door for applications in many new domains that require 

compact and fast real-time processing. In addition to the 

speedup benefit, the reduced size and power consumption will 

also allow for on-board real-time deployments such as in 

unmanned vehicles or in medical scanners. 

 

Evolutionary Multiobjective Optimization on a Chip 

Stefano Bonissone and Raj Subbu 

General Electric Global Research, One Research Circle, Niskayuna, NY 12309 

bonisson@research.ge.com, subbu@research.ge.com  

E

61

Proceedings of the 2007 IEEE Workshop on 
Evolvable and Adaptive Hardware (WEAH 2007)

1-4244-0699-4/07/$20.00 ©2007 IEEE



 

Section II presents a brief overview of some recent and 

relevant EH research and shows how our research fits into the 

current literature. Section III describes the EMO on FPGA 

hardware concept, including a description of the language 

used, algorithm modules, and the overall algorithm design. 

Section IV describes the test problem used and experimental 

results. Also shown is a performance comparison to a 

corresponding software implementation of the EMO 

algorithm. Section V presents conclusions and future work for 

deployment-level demonstrations. 

II. BACKGROUND  

A. Evolvable Hardware 

Research in the field of Evolvable Hardware is typically 

concerned with evolving circuits for reconfigurable hardware 

devices. Complete Hardware Evolution, as described earlier, 

refers to every aspect of the evolutionary approach existing 

and executing on a hardware device. While we are not 

concerned with evolving circuits, we chose to use an FPGA as 

a means to speed up the evolutionary search. There has been 

less research done in this area. 

 

Tufte and Haddow [5] implemented a complete hardware 

evolution scheme in an attempt to evolve logic solutions 

directly on the hardware device. Kramer et al. [6] implemented 

different versions of a Compact Genetic Algorithm (CGA) [7] 

to compare performance on a series of benchmark problems. 

CGAs have a very compact representation and small memory 

footprint. Rather than attempting to maintain an entire 

population of individuals, the CGA methods represent a 

population as a bit probability chromosome. A probability 

exists for each bit in the chromosome, which represents the 

likelihood of a 1 residing in that bit for the entire population. 

Members of the population are created on the fly utilizing this 

distribution of bits. This representation of the population 

makes these algorithms attractive for hardware 

implementation. So and Wu [8] implemented a four-step 

genetic search algorithm for use in video processing. Hamid 

and Marshall [9] have implemented a Genetic Algorithm (GA) 

in FPGA hardware for grey-scale soft morphological filters 

(SMF). Their motivation was one of speeding up the search 

algorithm, which would otherwise take considerably longer to 

run. Perkins et al. [10] present another instance of 

implementing all components of an EA in hardware. In this 

work, an EA is implemented in hardware to design a stack 

filter that alters a corrupted signal in an attempt to reconstruct 

the original signal as closely as possible. A speedup in 

execution was the main motivation for these authors to 

implement such an EA in hardware. 

 

Scott et al. [11] appear to be one of the first to implement a 

GA in hardware. In their proof of concept, the VHDL 

language was used to implement Goldberg’s Simple Genetic 

Algorithm (SGA) in an FPGA. Several simple test functions 

were used to compare the hardware implementation and a 

software implementation of the same algorithm. Glette and 

Torrensen [12] also attempted to perform on board intrinsic 

evolution of logic. Slightly different from Tufte and Haddow’s 

approach [5], Glette and Torrensen utilized the PPC 

microprocessor on the Xilinx FPGA board to run the GA, 

while configuring the FPGA logic to evaluate the individuals 

of the population. Similar to Scott et al. [11], Glette and 

Torrensen utilize an SGA style algorithm and representation 

for the search process.   

 

There are a few important characteristics that unify all of 

these above on-chip EAs. The most important unifying 

characteristic is the binary representation. A binary 

representation was used as an encoding for a configuration bit 

stream in some implementations, and in others it was used to 

represent the value of a variable. There are a few exceptions 

where logic elements were evolved, and even an instance of a 

hardware-based Genetic Program (GP) evolving a function and 

terminal set [13].  

 

What has not been attempted thus far was to create a 

hardware implementation of a real-valued EA, and in 

particular a real-valued multiobjective EA. In software 

implementations, real-valued EAs show better performance 

across many types of optimization problems than compatible 

binary encoded EAs.   

B. Evolutionary Multiobjective Optimization 

Many interesting and important real world problems cannot 

be well characterized by a single measure of fitness. These 

problems require multiple, sometimes conflicting, measures of 

fitness that need to be optimized simultaneously. Often when 

solving these problems, the multiple criteria are condensed 

into a single function to be optimized. These singleton 

functions can then be minimized or maximized using a 

classical GA. Condensing multiple objectives results in a loss 

of information and is often inappropriate, subsequently leading 

to a reduced or inaccurate space of solutions. By leaving the 

objectives separate, an EA can optimize solutions for all 

objectives and identify those that lie on or close to the Pareto 

frontier. Non-domination can be used as a comparison measure 

between two candidate solutions. Using the definition of non-

dominance defined in (1), a dominates b given a minimization 

problem. 

 

               
∀i ∈ 1,...,n{ } :   f i(a) ≤ f i(b)  ∧   

∃j ∈ 1,...,n{ } :   f j (a) < f j (b)
 (1) 

 

In most EMO algorithms, dominance is the criteria used for 

the selection function since a single fitness value cannot 

describe the quality of a solution. The NSGA-II algorithm that 

Deb et al. proposed in [14] sorts the population of solutions 

first based on dominance, and then again based on crowding 

within a neighborhood. This non-dominated sorting selection 

method ensures that the best solutions based on all fitness 
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functions advance to the next generation. The secondary sort 

based on crowding is an attempt to reduce the gaps in the non-

dominated front that the algorithm produces. The set of non-

dominated solutions from the final population is what the 

NSGA-II algorithm returns. Two other EMO algorithms in the 

literature that incorporate non-domination as part of their 

selection or archival functions are the SPEA2 [15] and PAES 

[16]. The use of dominance as a selector is a principal 

component of our algorithm implementation on hardware. Our 

current implementation is however restricted to encapsulating 

the basic characteristics of an EMO, and does not seek to 

implement some of the more intensive computations of these 

above referenced algorithms. 

III. EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION ON 

FIELD PROGRAMMABLE GATE ARRAYS 

A. Implementation Language 

Many of the program implementations in FPGA hardware 

are designed in VHDL, a hardware description language. 

There has been one published implementation of Genetic 

Programming (GP) in FPGA hardware created by Martin [13] 

programmed in a higher-level language called Handel-C. 

Handel-C is a subset of the ANSI-C language with special 

constructs for parallelism and FPGA hardware access. 

 

There are aspects of the Handel-C language that make it 

possible to exploit the inherent parallelism of reconfigurable 

devices. The language has implicit timing whereby each 

assignment takes 1 clock cycle to execute. This allows for a 

quick and simple analysis of the algorithm during the design 

process. The parallel construct of the language allows each 

operation and assignment in that block of code to be executed 

in the same clock cycle. The compiler/synthesizer creates all 

the necessary logic in order to perform these operations in 

parallel. 

B. Representation 

The structure that is chosen to represent candidate solutions 

is perhaps the most important feature of an EA. The method of 

representation determines the type of random variation 

operators to be implemented and affects the manner in which 

the fitness landscape is traversed. The fitness landscape is also 

dependent on the representation scheme based on the decoding 

procedure used to evaluate an individual. Binary 

representations of real valued numbers tend to perform worse 

for EAs. It is for this reason that a real valued representation is 

considered. Many EAs when solving for a function that 

requires several real valued variables encode the genome as a 

series of real valued numbers. The binary alternative is to 

encode all numbers as a lengthy bit string. This bit string 

representation is unwieldy, increases the search time, and can 

even prevent the EA from converging to a good solution. 

 

Solutions to many multiobjective optimization problems can 

be represented using a real valued chromosome. However, real 

valued numbers have certain limitations when represented in 

hardware. The precision of the real valued numbers is the main 

concern, as more bits are required for a given precision. 

Utilizing floating point numbers is avoided due to the complex 

logic necessary for their implementation. This increased 

logical complexity would also be the limiting factor for the 

overall clock speed of the device. The alternative to floating 

point numbers is fixed point numbers. Fixed point requires 

much less logic, but is unable to represent solutions with as 

much precision. If the problem requires a large range of 

numbers, more bits can be used to represent the integer 

portion. If on the other hand more fractional precision is 

necessary, more bits can be utilized in the fractional portion of 

the numbers. This is a problem dependent portion of the EMO 

algorithm, in the same way the fitness function formulation is 

problem dependent. 

C. Algorithm Modules 

In order to implement an EMO algorithm in hardware, one 

must take into consideration how to construct different 

modules. A random number generator and non-dominance 

filter are two necessary modules.  The random number 

generator must be able to produce both uniformly distributed 

random numbers and Gaussian distributed random numbers for 

use in mutation. A simple but elegant way of generating 

uniformly distributed random numbers is to use several 

Cellular Automata (CA). Many researchers choose to use 

Logical Feedback Shift Registers (LFSRs) for their 

implementations within a small logic footprint. An LFSR 

however, does not produce very good random numbers—the 

numbers generated become predictable and sequential. Martin 

[17] performed a comparison of different random number 

generators taking into account simplicity in implementation 

and randomness of numbers generated. His analysis 

determined that although LFSRs are simple to implement in 

hardware, they do not produce “random enough” numbers for 

evolutionary search. A single cellular automaton also yields 

similar performance, but several CAs or several LFSRs 

produced much better random numbers and improved the 

evolutionary search. To extract a random number from a bank 

of CAs, one composes the number by taking a single bit from 

each CA. For example, if there are 10 CAs of 16 bits each, 

then 16 different 10 bit numbers are generated. The advantage 

of using multiple CAs is that each cell’s new value can be 

computed independently of any other cell’s new value. This 

parallel computation allows for one to generate many random 

numbers in a single clock cycle given sufficient logic. 

 

Apart from generating uniformly distributed random 

numbers, Gaussian distributed random numbers are also 

desirable for mutation.  Many techniques to generate Gaussian 

distributed random numbers utilize multiple uniformly 

distributed random numbers that are additively combined 

based on the Central Limit Theorem. Software techniques that 

utilize two uniform random numbers to generate one or more 

Gaussian distributed random numbers require the use of 
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trigonometric functions and the square root function. The 

implementation of trigonometric functions in an FPGA 

requires a large logic footprint, and reduces the overall clock 

speed of the final design. It is for this reason that we choose to 

use a different approach. Since the bank of CAs generate many 

uniformly distributed random numbers each clock cycle, we 

exploit the Central Limit Theorem to combine them into a 

single Gaussian distributed random number. Four numbers 

from the bank of CAs are summed together and divided by 

four in order to obtain a number that is of approximate 

Gaussian distribution.  Four numbers are utilized because a 

division by four can occur with very little logic by shifting by 

two bits. Further, utilizing the Handel-C language constructs 

specific to FPGA hardware, we are able to reduce the cycle 

cost of averaging four numbers to a single clock cycle.    

 

The second major module necessary for an EMO 

implementation is a dominance/non-dominance filter. A simple 

test for non-dominance has a computational complexity of 

O(n2)  in a sequential programming language. In the worst 

case, each individual needs to be compared to every other 

individual in order to establish non-dominance. Fortunately, 

this is one area that can be greatly reduced in complexity 

through parallelization. The non-dominance filter compares 

each individual in parallel to every other individual. The 

individuals that remain are the non-dominated individuals of 

the population. This filtering process takes place on the parent 

and child populations so that the non-dominated solutions 

from a generation are stored in the archive. This non-

dominated set is what comprises the new population for the 

subsequent generation.   

 

Crossover is implemented using an arithmetic crossover 

scheme with a α value of 0.5, which allows for very simple 

implementation in device logic.  The general definition of 

arithmetic crossover is given in (2) below. 
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With α = 0.5, each parent is divided by two, and then summed. 

These two operations can be completed in two cycles, with the 

entire crossover operation occurring in 5 cycles. Utilizing an α 

value of 0.5 produces a single individual instead of two 

distinct individuals from crossover.  This fits well into the non-

dominated selection scheme that is utilized in the EMO 

algorithm. 

 

The mutation of individuals is performed through a Gaussian 

mutation procedure. The selected individual to be mutated is 

multiplied by a Gaussian random number to introduce a 

perturbation in value. Unfortunately, multiplication is 

expensive in hardware, so parallelism is avoided for this aspect 

of the EMO and the logically expensive multiplier is not 

duplicated many times in the hardware.  Fortunately, fixed 

precision is used for individuals so the logic for an even more 

complex and expensive floating-point multiplier is avoided. 

D. Algorithm Overview 

The overall basic EMO algorithm is depicted in Figure 1 

below.  The algorithm incorporates an archive that stores the 

non-dominated solutions from the parent and solution 

populations from each generation. The archive size is fixed 

due to implementation limits, and so once the archive stores its 

last individual, the next non-dominated solution to be included 

in the archive replaces the first individual in the archive. The 

reason for the archival replacement is one of implementation 

on the FPGA hardware. To create an arbitrarily large archive 

is much more difficult and most likely not worth the resulting 

significant slowdown. This replacement continues in a 

sequential manner. This archival strategy also retains the most 

recently found individuals, which are known to generally 

dominate the individuals found earlier in the evolutionary 

search. 

 

The multi CA random number generator depicted in Figure 1 

constantly generates new bit strings each cycle independently 

of the rest of the EMO. These bit strings are accessible from 

the different modules since they reside in RAM on the device. 

This allows the crossover and mutation operations access to 

randomly generated numbers for use in their operation. 

 

 

Figure 1: Architecture of the basic EMO algorithm 

IV. EXPERIMENTAL RESULTS 

To test the EMO on a chip concept, a simple multiobjective 

optimization problem is used as a benchmark. At the time of 

this research, we did not have access to FPGA hardware to 

synthesize the algorithm, so we were limited to running it in a 

realistic simulation environment. We were constrained mostly 

by the complexity of the test problem because of the speed of 

the simulator compilation. Due to this simulation constraint, 

we chose to use Schaffer’s test function [18]. It is a two-

criteria test function that requires a single search variable to be 

constrained to a specified range.  The problem definition is 

given in (3) with the overall search space depicted in Figure 2 

below. 
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f1 x( )= x
2

f2 x( )= x − 2( )
2

−8 ≤ x ≤ 8

 (3) 

 

 
Figure 2: Schaffer’s two-objective one-variable function, 

with the Pareto frontier shown circled. 

 

The EMO design takes a relatively small percentage of the 

logic and memory in the Xilinx family of FPGA devices. This 

suggests that a much more complex fitness function could be 

utilized and the hardware EMO could be used to tackle a real 

world problem. The EMO design takes 10519 logic cells and 

145Kb of distributed RAM. Based on an FPGA specification 

sheet for the Xilinx Virtex-4 family of devices [19], this design 

would fit on the second smallest member of the Virtex-4 

family, namely the XC4VLX25 device. Should a more 

complex fitness evaluator be necessary, a device with more 

logic would most likely meet the requirements. On the largest 

device of the family, the XC4VLX200, the logic blocks of the 

EMO take up only 5% of the device and only 10% of the total 

distributed memory. At the time of the research, this was the 

top of the line that Xilinx offered. However, now the Virtex-5 

family exists which allows access to even greater resources at 

possibly a faster clock speed. 

 

Table 1: Performance benchmarking of the EMO on a Chip 

versus a high-level language implementation. 

 

Software FPGA

Population 100 100

Resolution N/A 16 bits

Archive size 500 500

CA size N/A 400

Clock (MHz) 3,000 41

Cycles N/A 42,203

Time (sec) 0.3381 0.001029

Speedup 1 328.46

 In order to benchmark the hardware EMO, it is compared 

against an equivalent Matlab version of the algorithm applied 

to the same test problem. This comparison serves as a measure 

of the speed benefit of the hardware implementation versus a 

software implementation. Though the EMO is implemented in 

a hardware simulator, the simulator accurately tracks clock 

cycles, and the corresponding run-time in a hardware 

deployment may be calculated. Table 1 summarizes the 

differences between the two implementations. 

 

All algorithm parameters are kept the same across the two 

implementations in order to allow for a fair comparison. Only 

the resolution of variables differed—a floating-point 

representation in Matlab and fixed-point representation in 

hardware. The population size, number of generations and 

archive size were all made smaller for the simulation. This was 

to reduce the compilation time for the hardware simulator. 

Though the hardware implementation utilizes a much lower 

clock speed compared to the software implementation, the 

hardware implementation is able to leverage the parallelization 

very well.  The execution time in seconds for the FPGA EMO 

is calculated by measuring the number of cycles from the 

simulator’s cycle counter. This cycle count is divided by the 

maximum clock speed that the deployment “place and route” 

algorithm determined that the EMO design could run at.  

Based on this calculated execution time and measured 

execution time for the software version, there is a speedup of 

over 300 times. 
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Figure 3: EMO generated Pareto frontier shown using star 

symbols superimposed over the mathematically defined Pareto 

frontier. 

 

The EMO converged well to the Pareto frontier for this 

particular problem, something that is certainly desirable.  

Figure 2 shows the overall search space for the test problem 

with the location of the Pareto front circled.  Figure 3 shows 

the mathematically defined Pareto front as a line and solutions 

in the archive as superimposed star symbols for a given run of 

the EMO.  Although much larger designs would easily fit onto 

the FPGA hardware, the simulator required simple designs in 
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order to be able to compile in a reasonable amount of time.  

The compilation time for the simulation of a population size of 

10 individuals, 32 generations and an archive size of 64 took 

over 2 hours.  

V. DISCUSSION AND CONCLUSIONS 

Our research is directed toward using reconfigurable 

hardware as a means to speed up evolutionary search, and in 

particular Evolutionary Multiobjective Optimization. 

Evolutionary Multiobjective Optimization utilizes an 

evolutionary search to find solutions to difficult multiobjective 

optimization problems. We presented an implementation of a 

basic EMO algorithm in reconfigurable FPGA hardware. 

 

One of the principal practical bottlenecks in the hardware 

implementation of evolutionary algorithms has been the speed 

of the fitness evaluation when the evolutionary process is 

implemented on hardware. If the fitness evaluation is compute-

intensive and slow, that reduces or eliminates the speedup 

benefits of the evolutionary operational computations 

performed in hardware. In this paper, we outlined an initial 

method and framework to implement an EMO on an FPGA 

device, and demonstrated its potential for the efficient 

execution in applications requiring high-frequency multi-

objective optimization constrained by the size of the 

computational unit. However, what is needed is a flexible 

representation for a fitness function that can accommodate 

efficient hardware implementation and simultaneously be 

utilized to represent arbitrary fitness function models. What is 

also needed is a fitness function representation that is flexible 

enough to rapidly adapt should the model of the domain 

change. Implementing the fitness functions as a set of neural 

network models has these beneficial characteristics, and 

further the combination of an EMO with an onboard bank of 

neural network models may be used to successfully model and 

optimize complex dynamic systems [20]. 

 

There is much work that can be done to elaborate on this 

hardware EMO implementation. Most importantly, 

synthesizing the simulated design is the next immediate step.  

The cycle accurate simulation and analysis of the compiled 

design show that it is possible to implement an EMO in an 

FPGA. Synthesis onto hardware will allow for large 

population and archival sizes to be used.  It will also allow for 

the EMO to tackle harder, more interesting problems. Our 

current implementation demonstration is restricted to 

encapsulating the basic characteristics of an EMO, and did not 

seek to implement some of the more intensive computations 

such as fitness sharing in algorithms such as the NSGA-II [14]. 

This is a topic for future work. 
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