
Swarm applications: a potential future 
application for evolvable hardware 

James Hereford 
Murray State University 

Department of Engineering and Physics 
Murray, KY 42071 

Abstract 

This paper looks at the applicability of using evolvable 
hardware principles to develop control strategies for 
swarm applications.  It discusses the expected hardware 
capabilities for each agent in the swarm, the advantages of 
using evolvable algorithms to program the swarm, and 
some of the evolvable approaches being investigated by 
researchers.  The paper concludes with a list of constraints 
that swarm applications place on the evolutionary 
algorithms and then analyzes which evolutionary 
algorithms are appropriate to derive controllers for 
swarms.

1. Introduction 

The principles of evolvable hardware (EHW) have proven 
successful at designing individual hardware components.  
Over the past several years, EHW researchers have 
derived/evolved circuits using both extrinsic [Koza 2003, 
Lohn 2004, among others] and intrinsic [Greenwood 2004, 
Hereford 2005, Stoica 2002, Higuchi 1999, Thompson 1996, 
among others] techniques.  This paper looks at the possibilities 
and potential of applying EHW principles to programming a 
swarm of agents/robots.  The challenge is to find an effective, 
practical method to derive cooperative behavior among the 
multiple agents.  We want to evolve an intelligent “swarm”.   

Intelligent swarms can be used in a number of applications. 
The U.S. military is investigating swarm techniques for 
controlling unmanned vehicles. NASA is investigating the use 
of swarm technology for planetary mapping. A 1992 paper 
discusses the possibility of using swarm intelligence to control 
nanobots within the body for the purpose of killing cancer 
tumors [Lewis 1992]. Swarm technology is particularly 
attractive because it is cheap, robust, and simple.  Swarm 
intelligence concepts can even be found throughout popular 
culture; examples include the science fiction novel Prey by 
Michael Crichton and the movie Jason X [wiki 2006].  

The idea of applying EHW concepts to swarms is related to 
swarm robotics.  Swarm robotics is the study of how large 
number of relatively simple physically embodied agents can 

be designed such that a desired collective behavior emerges 
from the local interactions among agents and between the 
agents and the environment. (This definition is taken from the 
swarm robotics web page [swarm].) It is a novel approach to 
the coordination of large numbers of robots. It is inspired from 
the observation of social insects ---ants, termites, wasps and 
bees--- which stand as examples of how a large number of 
simple individuals can interact to create collectively intelligent 
systems. Social insects are known to coordinate their actions 
to accomplish tasks that are beyond the capabilities of a single 
individual: termites build large and complex mounds, ants 
organize impressive foraging raids and can collectively carry 
large preys. Such coordination capabilities are still beyond the 
reach of current multi-robot systems. 

The challenge is to determine the best way to program the 
individual agents so that there is cooperative behavior among 
the agents/bots.  Cooperative behavior among individual bots 
will then allow the swarm to engage in meaningful tasks. 
Some of the possible tasks are: 

Move about and explore an area (body, building, 
warehouse, field) 
Monitor the environment 
Identify a target 
If desired, neutralize the target 
Track a plume  
Make a bridge 
Form an antenna pattern and communicate with 
another entity 

Note that each of the above tasks is considered a system-level 
activity.  Each individual bot is not responsible for exploring 
the entire region, finding every target and communicating the 
results.  Instead, the entire swarm, working in unison, is 
responsible for accomplishing the desired task. 

When there is a large number of agents in a swarm (say, 
>1000 agents), there are both programming issues and 
logistical issues.  The logistical issues include how to transport 
the agents, how to communicate with each one, how to 
provide power, how to upload new programs/data to each 
agent, and how to identify each agent (unique name?, unique 
ID?).  If there is a large number of agents, then even turning 
them on becomes logistically troublesome.  

72

Proceedings of the 2007 IEEE Workshop on 
Evolvable and Adaptive Hardware (WEAH 2007)

1-4244-0699-4/07/$20.00 ©2007 IEEE



In addition to the logistical issues, there are challenging 
programming issues.  One of the programming issues is how 
to how program the individual agents in the swarm.  Does one 
have identical programs in each agent/bot or can there 
possibly be slightly different programs?  And if each agent has 
the same program, how is that program derived?  Does a 
person take an algorithm that works with a swarm size of 1 
and just assume that it will work well with a swarm size of 
1000 or are there fundamental differences between the two 
sizes? How does one sift through the information from the 
agents to winnow out the redundant and unnecessary data and 
determine what is important? And, generally, one wants the 
algorithm to be scalable to different swarm sizes. The swarm 
size may be decreased because of individual bot failures. The 
swarm size may be increased due to merging of multiple 
swarms or an infusion of more bots to increase capabilities 
and/or decrease the search time.  How does a user derive a 
program when the number of agents/hardware elements is 
unknown ahead of time and may even change during the 
course of the operation?  EHW principles offer an interesting 
approach to deal with at least some of these programming 
issues.

This paper will look at the effectiveness of using evolvable 
hardware techniques to derive control startegies for swarm 
applications.  In Section 2 we will discuss the expected 
hardware capabilities for each agent in the swarm.  In Section 
3, we will look at the advantages of using evolutionary 
approaches to program hardware swarms.  Section 4 looks at 
the approaches researchers are currently using to evolve 
control strategies for swarm applications.  And in Section 5, 
we look at the specific characteristics that evolutionary 
algorithms must have to work with mult-agent/swarm type 
applications. 

2. Hardware system capabilities 

The hardware part of this evolvable hardware application 
consists of multiple interacting agents.  (We will often refer to 
the agents as bots, since they have behaviors similar to small 
robots.)  The hardware requirements for each agent in the 
swarm are discussed in this section.  At this point, we will 
assume that each agent has identical characteristics but will 
discuss that assumption more in Section 3.  

2.1 Requirements for the swarm 

There has been discussion on what the term "swarm robotics" 
should mean in relation to other terms such as "multi-robot 
systems", "distributed robotic systems", "collective robotics", 
etc.  For our purposes, we assume that a swarm meets the 
following set of requirements [swarm]: 

The robotic system should consist of large numbers 
of robots. 

The system should consist of homogeneous groups of 
robots, and that the number of robots in each group 
be large. 
The robots should be relatively simple and have 
simple capabilities such that the tasks tackled require 
the co-operation of the individual robots. 
The robots should only have localized and limited 
sensing and communication abilities.  
The swarm should be mobile – capable of moving. 

Based on these system capabilities, we list the requirements 
for each bot in the swarm. 

2.2 Requirements for each agent 

Each bot must be mobile and able to change positions.  It does 
not necessarily need to be fast, but it should be able to move 
based on the desired activity (form a cluster with other bots, 
transverse a ditch, search, etc.)  We also assume that the 
movement is “purposeful”.  That is, the bot does not randomly 
move around the search space (either in a Brownian motion 
fashion or via random jumps based on a spring-like trigger) 
but instead can move to a new position in the search space 
based on the controlling algorithm.  If the agents are 
stationary, then it is merely a wireless sensor network. 

Each bot needs to know its own position.  The position 
information can either be in an absolute coordinate system, via 
beacons or perhaps a Global Positioning System, or relative to 
other bots in the swarm.  If position is unknown, then there is 
no way for the bot to know which direction to move and how 
far; it would be just randomly moving about the search space 
without coordinated behavior. 

Each bot needs to be small in size.  Of course, small is a 
relative term and we do not presume to place a quantifiable 
number on the max size of each bot.  However, small size 
allows the swarm to be easily transported and, hopefully, will 
reduce the power consumption for each bot.  (If a swarm has, 
say, 1000 bots and each bot is the size of shoe box, then it 
would take a small trailer, 220 ft3 = 6.2 m3, to transport just the 
bots.) Plus, small bots will be able to maneuver 
around/through clutter and small areas such as ductwork better 
than larger robots.  As technology continues to advance and 
improvements are made in nano-technology, then we expect 
that the bots will naturally progress to smaller and smaller 
sizes.  Presently, processor systems the size of fingernails are 
available [science 2003] – which includes the wireless 
communications package and memory – which makes bots the 
size of beetles possible.  

The small size of each bot places limits on other components.  
The bot will have a small, and hence, simple processor with 
limited memory and a small power source.  The simple 
processor will thus require algorithms that require simple 
decision making and processing capability.  Because of the 

73

Proceedings of the 2007 IEEE Workshop on 
Evolvable and Adaptive Hardware (WEAH 2007)



small power source, the bot will have to be power efficient 
and/or be able to recharge its batteries.  

Each bot will require a sensor or sensors to monitor 
environment.  The type of sensor used will be based on the 
type of interaction that is desired with the environment.  If the 
user wants the bot to interact with other bots and avoid 
obstacles, then sensors are required that can sense other bots 
and detect boundaries.  If the user wants to search, then the bot 
must have a sensor that is able to detect what is being 
monitored (chemical sensor, radiation sensor, etc). 

Each bot must be able to communicate with the other bots.  If 
there is no communication, then the swarm becomes a group 
of individual agents and there is no advantage to using a 
swarm other than just increasing the statistical probability of 
“hitting” the target.  Bot communications do not have to be 
wireless (communications could occur when 2 bots are joined 
together) but it simplifies the process. 

TABLE 1: EXPECTED HARDWARE CAPABILITIES FOR EACH 
AGENT/BOT IN THE SWARM 

Able to move 
Can determine position 
Small in size 
Simple processor 
Power efficient 
Able to communicate with other bots 
Able to monitor environment 

In addition to the above requirements, there are many desired 
attributes of each agent.  For example, it is desirable if each 
bot is (a) able to be mass produced, (b) interchangeable, and 
(c) disposable or, at least, replaceable.  We note that none of 
these characteristics is absolutely essential to building a useful 
swarm of agents.  Researchers may design swarms without 
one or more of these characteristics.   

3.0 Applicability of evolvable hardware 

3.1 Advantages of evolvable training algorithms 

There needs to be an algorithm that can guide/control the bots 
as they perform the desired operation.  It would be very 
inefficient to just turn on the bots and then hope that they “get 
lucky” and accomplish the mission.  To derive the control 
algorithm, evolutionary algorithms offer several advantages 
over traditional, manually-designed controllers for swarm 
applications.  The control algorithm itself is not (necessarily) 
an evolutionary algorithm but an evolutionary algorithm is 
used as a “learning algorithm” to obtain or refine the control 
algorithm. The advantages of using an evolutionary learning 
algorithm are listed in Table 2 and discussed in the following 
paragraphs. 

Table 2: Capabilities of evolvable algorithms that make them 
amenable to swarm applications. 

Able to derive a controller for unknown environment 
Able to evolve swarm behavior and not just individual 
behavior 
Possible for swarm to learn/adapt to changing 
environment 
Can find solutions in complicated applications 
Allow for unique or unexpected solutions 
Able to adapt to non-identical bots/agents 

First, it is difficult to design manually a controller when the 
physical environment is unknown ahead of time or when the 
physical environment changes over time.  Most real life 
applications of swarm systems will be in areas where the user 
does not have perfect knowledge of the physical layout.  
Either the building/area has not been scouted or there could be 
clutter due to fallen walls, overturned furniture, and people.  In 
addition, the swarm environment could be changing.  The bots 
will move and thus change their relative proximity to each 
other (distance, nearest neighbors change) and the target of the 
search may change (increase or decrease in intensity, move in 
location). Evolutionary algorithms can exploit the richness of 
possible solutions encountered in the agent-environment 
interactions.  In a multi-bot system, these dynamic/changing 
aspects are enriched not only by the presence of multiple bots, 
but also by the possibly changing physical environment 
[Dorigo 2004]. Generally, these aspects are difficult to exploit 
using manually-designed controllers.  Evolutionary algorithms 
can take advantage of these dynamic system properties to 
derive effective controllers. 

Second, there is a need to evolve group behavior and not an 
individual robot controller.  Evolutionary algorithms bypass 
the problem of decomposition at both the level of finding the 
mechanisms that lead to global behavior and at the level of 
implementing those mechanisms in a bot controller.  In fact, 
they rely on the evaluation of the system as a whole; that is, on 
the emergence of the desired global behavior [Dorigo 2004]. 

Third, evolvable hardware offers the possibility that the swarm 
can learn or get better over time.  The swarm can continually 
monitor the fitness value and thus improve performance.  For 
example, in a search scenario, the individual bots are 
monitoring, say, radiation intensity, and can thus track the 
highest value and close in on the source.  Or, the source may 
move over time and the swarm can continue to track it. 

Fourth, evolutionary techniques have shown the capability of 
finding the peak or optimum point in convoluted or difficult 
search environments [Eberhart 1995, Parsopoulos 2004, 
Hendtlass 2006].  The swarm application can be thought of as 
a search in a complicated environment.  For example, the 
unknown and perhaps cluttered physical environment is the 
search space and the swarm needs to find the “target”.  That 
target can either be a physical target, as is the case for search 
applications, or it could be a particular desired swarm 

74

Proceedings of the 2007 IEEE Workshop on 
Evolvable and Adaptive Hardware (WEAH 2007)



behavior among the range of possible swarm behaviors.  Thus, 
we expect that evolvable techniques will find solutions in 
complicated swarm applications as well. 

Fifth, evolvable hardware techniques also allow for the 
possibility that the swarm may find a unique solution to a 
problem that is not expected or predicted by human experts. In 
many traditional EHW applications, the evolutionary 
algorithm found a solution that was much different than the 
one by human-expert designers [Lohn 2004].  Thus, evolvable 
techniques may find a solution to a swarm problem that 
utilizes group interactions or other aspects that are unexpected. 

3.2 Variances among the bots 

We have assumed that each agent has identical hardware 
characteristics to every other agent.  This assumption 
simplifies the programming of the swarm.  However, the 
“identicality” assumption is not a limitation on using an EHW 
approach.  The swarm can still be programmed using 
evolutionary techniques even if there are some differences 
among the bots.  For example, bots may have different 
mobilities due to different hardware (dissimilar wheel sizes or 
axles) or due to the fact that one battery has run down and thus 
delivers a different voltage to the drive motors.  More 
substantive differences such as different sensors or different 
processor/memory setups can also be accounted for within a 
evolutionary learning environment.  The evolutionary learning 
system will gravitate toward the good solutions, independent 
of what type of hardware enhancements or deficiencies are 
present. 

4.0 Current evolvable hardware approaches to swarm 
applications 

Some researchers have begun to apply evolvable algorithms 
and EHW techniques to swarm robotic applications.  This 
section looks at two different approaches.  

4.1 Evolve individual controllers 

One approach researchers are taking to apply EHW principles 
to swarm intelligence is to evolve individual controllers for 
each agent/bot.  Dorigo et al. [Dorigo 2004] and Pugh et al. 
[Pugh 2005] use simulations to derive a good controller for 
each bot and then load that controller onto the hardware bot 
for actual experiments.  Dorigo et al. use a Genetic Algorithm 
to derive the weights for a neural network that controls the 
motors on the bot.  The evolvable controller allows the user to 
program the swarm to perform a variety of functions such as 
cluster together, cross a ditch, and search. 

Pugh et al. [Pugh 2005] use a modified Particle Swarm 
Optimization algorithm to derive the weights for a neural 
network controller for the bots.  They focus on the 
performance of the algorithm/bots in noisy environments.  The 
noise is due to sensor and actuator noise or local (mis-) 

perception of the bots.  Their fitness function was designed to 
avoid obstacles in the search space. 

When training a controller, researchers can either have the 
same weights (controller) for each bot or different weights for 
each bot.  Different weights in each bot allow the system to 
test several different controllers in “parallel”, but it leads to 
the credit assignment problem [Pugh 2006].  If a behavior is 
being learned and each robot is evaluating a different 
controller, the individual bot does not know whether a 
good/bad fitness score was due to its own performance or to 
that of other bots.  This effect is more pronounced in cases 
where robots do not explicitly share their intentions through 
communications channels.  

4.2 Evolve the swarm 

Another EHW approach to the swarm intelligence problem is 
to let each bot/agent in the swarm be one particle or member 
of the evolutionary algorithm. Thus, each bot is a “member” 
or candidate solution of the evolutionary algorithm.  In 
[Hereford 2006], each bot is one particle of the Particle Swarm 
Optimization (PSO).  Thus, each bot takes measurements and 
moves based on the PSO update equation.  In this approach, 
all the calculations are done “locally”, that is, on each local 
bot.  The only data that is potentially needed from other bots is 
the value and location of the global best – the best 
measurement found so far.  Thus, there are no 
communications unless one of the bots finds a point in the 
search space that is better than any point found up to that time 
during the search.   

Simulation results show that this approach is a very good way 
of coordinating simple bots for a search operation.  For target 
locations in the middle of the search space, bots find the target 
99 or 100 % of the time.  In addition, the algorithm appears to 
be scalable to large numbers of bots since the communications 
requirements do not increase as the number of bots is 
increased. 

5.0 Impact on evolutionary algorithms/evolvable hardware 

5.1 Evolutionary algorithm characteristics 

As mentioned in section 3, evolutionary algorithms offer 
several advantages for deriving control algorithms for swarm 
applications. To meet the needs of evolvable hardware 
swarms, the evolutionary algorithms must have several 
characteristics.  The characteristics are summarized in Table 3.  
We are assuming that the evolutionary algorithm is embedded 
into the swarm itself.  That is, there is not an external agent 
that programs the swarm off-line and then the bots are 
released. Instead, all of the training is done within the swarm 
itself.

75

Proceedings of the 2007 IEEE Workshop on 
Evolvable and Adaptive Hardware (WEAH 2007)



TABLE 3: CHARACTERISTICS OF EVOLUTIONARY ROBOT FOR 
TRAINING SWARMS 

Distributed – no central agent 
Computationally simple 
Minimum amount of bot-bot communications 
Adapt to changing conditions 
Allow for asynchronous bot operation 
Number of hardware elements may change during 
operation 
Able to handle uncertainty and noise 
Evolve behavior of entire swarm 
Contiguous movement of bots – no hyperspace jumps 

1. There needs to be an algorithm that does not require a 
central agent or processor – the algorithm needs to be 
distributed among all of the bots.  If the algorithm is 
located in one robot, then the system will fail if that robot 
fails.  This provides a natural fault tolerance for the 
system.  The swarm/system will continue to function even 
if one or several bots become damaged or lose power.  
Also, there would be a lot of communications among the 
robots if each robot had to wait for movement commands 
from a central source.  Thus, the control algorithm and the 
learning algorithm need to be de-centralized. 

2. The control algorithm and the learning algorithm should 
be computationally simple.  The processor is small, has 
limited memory, and there is a limited power source (a 
battery) so the processor needs to be power efficient.  
Therefore, the processor will be a simple processor.  The 
control algorithm needs to be tailored to such a processor.  
Difficult or time-consuming operations such as FFTs and 
iterative solution methods will take a long time and not 
lead to a quick, effective search.  Even common 
mathematical operations such as trigonometric functions 
and square roots are time-consuming to implement on 
simple processors, so they should be minimized. 

3. The control and learning algorithms should have a 
minimum amount of communications among the robots.  
The algorithm needs to be scalable from one robot up to 
10’s, 100’s, even 1000’s of robots.  The upper limit on the 
number of robots will most likely be set by the 
communication links among the robots.  If each robot has 
to wait for information from all other robots, then the 
system will break down as the number of robots increases.  
Instead, there needs to be a way to share information 
among the robots without requiring lots of 
communication traffic.  For example, we do not want an 
algorithm where every bot communicates to every other 
bot because then the number of communications links is 
equal to N(N-1)/2, where N is the number of bots.  As N 
becomes large, this is an O(N2) process and thus severely 
limits the scalability of the system. 

4. The control algorithm needs to be able to adapt to 
changing conditions.  The bots will encounter 
environments and circumstances that will change over 
time.  The evolutionary algorithm needs to be able to 
continually monitor the overall fitness and update the bots 
as necessary.  This might be as simple as continuing to 
monitor the environment to improve a search or adjust a 
parameter or as complicated as initiating a new training 
cycle if there is a cataclysmic event.   

5. The evolutionary algorithm needs to allow for 
asynchronous operation of the agents.  It is logistically 
difficult to have a synchronous clock for all of the bots 
because (a) there is no centralized agent to generate a 
clock signal, (b) we want to reduce the number of 
communications links and a clock would require a lot of 
communications packets and (c) the movement of the bots 
will change the distances between the bots and thus affect 
the timing delays. Approaches based on Time-Triggered 
Architecture (TTA) concepts may be appropriate  but they 
require a minimum of four sources and would require a 
mechanism for distribution which would raise the  
communication overhead.  Therefore, the evolutionary 
algorithm must allow the bots to function semi-
independently with only intermittent coordination with 
the rest of the bots. 

6. The evolutionary algorithm needs to be able to work with 
different amounts of hardware elements.  The number of 
hardware elements in the swarm will vary from situation 
to situation.  In fact, the swarm size will probably change 
during the operation as some bots fail and other bots join.  
Therefore, the evolutionary needs to be handle a changing 
swarm size. 

7. The evolutionary algorithm needs to be able to handle 
uncertainty and noise. This is true for any swarm control 
algorithm.  

8. For best performance, the evolutionary learning algorithm 
needs to evolve group behavior and not individual robot 
controller.  The main reason is because of the credit 
assignment problem, where a good fitness score can occur 
even if an individual bot does poorly. The second reason 
is the time required to transfer an effective evolved 
control algorithm to all of the other agents in the swarm.  
If one bot has the best controller, then that must be 
communicated to all of the other bots which greatly 
increases the learning time.   

9. The control algorithm must allow for contiguous 
movement of the robots.  There are search algorithms that 
work well in simulation (e.g., genetic algorithms) but they 
require “step” changes in the solutions at each iteration.  
This would not be feasible in this application. 

76

Proceedings of the 2007 IEEE Workshop on 
Evolvable and Adaptive Hardware (WEAH 2007)



5.2 Restraints on evolutionary algorithms 

The list of characteristics in section 5.1 narrows the possible 
evolutionary algorithms that can be used to program a 
controller for a swarm.  The primary conclusion is that the 
generic generation-based Genetic Algorithm (GA) is not 
appropriate.  If a user tries to have each bot in the swarm be 
one member of the GA, then the crossover operation will 
require lots of communication packets between parent bots.  In 
addition, crossover and mutation cause each member of the 
population to “jump” to different places in the search space, 
rather than allow continuous movement of the bot.   

Even if a GA is used to monitor the output of the swarm as a 
whole, there are issues.  It requires a central processor to store 
and rank the fitness for each generation and it requires all of 
the bots to operate synchronously (so that fitness can be 
calculated for each generation).  Thus, we conclude that a 
standard GA embedded in the swarm will not be effective at 
deriving a good controller. 

Variants of the generic GA, however, may be appropriate for 
swarm learning.  An evolution strategy (ES) that requires only 
mutation and no crossover [Beyer 2002] will help with the 
scalability/communication problem.  An evolutionary strategy 
may also allow for asynchronous operation since each member 
of the GA could track its own fitness.  There is still the 
problem of contiguous bot movement, even with the ES.  
However, a modified ES could perhaps overcome this hurdle. 

Other types of evolvable algorithms appear to be more useful 
for deriving control algorithms for swarms.  The Ant Colony 
Optimization (ACO) algorithm is based on swarm behavior – 
ants [Dorigo 2006].  It has proven successful at optimization 
problems but has not yet been applied to program an artificial 
swarm of bots. 

The PSO has shown promise as an optimization technique 
[Eberhart 1995].  Hereford has already shown decent results 
using a PSO as a search algorithm for a swarm [Hereford 
2006].  The PSO focuses on system-level output (the global 
best or best solution found so far) and can be modified to 
minimize the number of bot-bot communications.  Plus, it can 
easily incorporate different numbers of bots in the swarm via 
the concept of neighborhoods.  There is a question, however, 
as to how to extend the PSO to more complicated swarm 
operations such as coordinated movement, bridge building, 
etc.

6.0 Conclusions 

This paper looked at the applicability of using evolvable 
hardware principles to develop control strategies for swarm 
applications.  There are a number of advantages of using 
evolvable algorithms to program the swarm: evolutionary 
algorithms are able to find unique solutions in noisy, changing 

environments and are able to evolve swarm behavior and not 
just individual behavior.  It appears that genetic algorithms are 
a bad fit for evolving the swarm behavior because of their 
need of a central processor and the “jump” changes required 
by the agents.  (However, genetic algorithms have been shown  
to be useful for evolving individual bot behavior.)  The PSO 
appears to have the most promise to derive an effective control 
strategy for swarm behavior.

References 

[Beyer 2002] H. Beyer, H. Schwefel, “Evolution strategies: A comprehensive 
introduction”, Natural computing, vol 1, pp. 3 – 52, 2002. 

[Lewis 1992] M. Lewis and G. Bekey, “The behavioral self-organization of 
nanorobots using local rules”, Proc. 1992 IEEE/RSJ Int. Conf. Intelligent 
Robots and Systems, pp. 1333-1338, 1992. 

[Dorigo 2004] M. Dorigo, V. Trianni, E. Sahin, R. Gross, T. Labella, G. 
Baldassarre, S. Nolfi, J. Deneubourg, F. Mondada, S. Floreano, L. 
Gambardella, “Evolving self-organizing behaviors for a swarm-bot”, 
Autonomous Robots, vol 17, pp. 223-245, 2004. 

[Dorigo 2006] M. Dorigo, M. Birattari, T. Stutzle, “Ant colony optimization: 
Artificial ants as a computational intelligence technique,” IEEE 
Computational Intelligence Magazine, vol. 1, pp. 28 – 39, November 2006. 

[Eberhart 1995] R. Eberhart, J. Kennedy,  “A new optimizer using particle 
swarm theory”, Proceedings of the sixth international symposium on micro 
machine and human science, Japan, pp. 39-43, 1995. 

[Greenwood 2004] G. Greenwood, D. Hunter, E. Ramsden, “Fault recovery in 
linear systems via intrinsic evolution”, 2004 NASA/DoD Conference on 
Evolvable Hardware, Seattle, WA, Zebulum et al. (ed.), 2004, pp. 115 – 122.  

[Hendtlass 2006] T. Hendtlass, “A particle swarm algorithm for complex 
quantized problem,” 2006 Congress on Evolutionary Computation, 
Vancouver, BC, July 2006. 

[Hereford 2005] J. Hereford, C. Pruitt, “Robust sensor systems using 
evolvable hardware”, 2004 NASA/DoD Conference on Evolvable Hardware, 
Seattle, WA, Zebulum et al. (ed.), 2004, pp. 161 – 168. 

[Hereford 2006] J. Hereford, “A distributed Particle Swarm Optimization 
algorithm for swarm robotic applications”, 2006 Congress on Evolutionary 
Computation, Vancouver, BC, pp. 6143 – 6149, July 2006. 

[Higuchi 1999] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. 
Murakawa, I. Kajitani, E. Takahashi, K. Toda, M. Salami, N. Kahihara, N. 
Otsu, “Real-World applications of analog and digital evolvable hardware”, 
IEEE Transactions on Evolutionary Computation, Vol. 3, No. 3, pp. 220 – 
235, September 1999. 

[Koza 2003] J. Koza, M. Keane, M. Streeter, W. Mydlowec, J. Yu, G. Lanza, 
Genetic Programming IV: Routine Human-Competitive Machine Intelligence,
Kluwer, 2003. 

[Lohn 2004] J. D. Lohn, D. S. Linden, G. D. Hornby, W. F. Kraus, A. 
Rodriguez, S. Seufert, "Evolutionary Design of an X-Band Antenna for 
NASA's Space Technology 5 Mission," Proc. 2004 IEEE Antenna and 
Propagation Society International Symposium, Vol. 3, pp. 2313-2316, 2004.

[Parsopoulos 2004] K. Parsopoulos, M. Vrahatis, “On the computation of all 
global mimizers through particle swarm optimization”, IEEE Transactions on 
Evolutionary Computation, vol. 8, pp. 211 – 224, June 2004.  

[Pugh 2005] J. Pugh, A. Martinoli, Y. Zhang, “Particle swarm optimization 
for unsupervised robotic learning,” Proceedings of the 2005 Swarm 
Intelligence Symposium, pp. 92 – 99, June 2005. 

77

Proceedings of the 2007 IEEE Workshop on 
Evolvable and Adaptive Hardware (WEAH 2007)



[Pugh 2006] J. Pugh, A. Martinoli, “Multi-robot learning with particle swarm 
optimization,” Proceedings of the fifth international joint conference on 
Autonomous agents and multiagent systems (AAMAS), pp. 441 – 448, May 
2006. 

[science 2003] “Researchers create wireless sensor chip the size of glitter,” 
Science Daily, 
http://www.sciencedaily.com/releases/2003/06/030616091423.htm, June 16, 
2003. 

[Stoica 2002] A. Stoica, R. Zebulum, M. I. Ferguson, D. Keymeulen, V. 
Duong, X. Guo, “Evolving circuits in seconds: Experiments with a stand-
alone board-level evolvable system”, 2002 NASA/DoD Conf. on Evolvable 
Hardware, July 2002, pp. 67-74. 

[swarm] http://www.swarm-robotics.org/

[Thompson 1996] A. Thompson, I. Harvey, P. Husbands, “The natural way to 
evolve hardware”, Proceedings IEEE International Symposium on Circuits 
and Systems, 1996, pp. 37 – 40. 

[wiki 2006] http://en.wikipedia.org/wiki/Swarm_intelligence 

78

Proceedings of the 2007 IEEE Workshop on 
Evolvable and Adaptive Hardware (WEAH 2007)


