
Abstract: In the paper we present flexible neuro-fuzzy 
systems and a method for their reduction. The method is based 
on the concept of the weighted triangular norms. Moreover, 
a rough-neuro-fuzzy classifier working in the case of missing 
features is described. 

I. INTRODUCTION 
In the literature various classification methods have been 

proposed (see e.g. [5]). Some of them are based on neural 
networks, fuzzy systems and rough sets (see e.g. [6]-[12]). It 
is well known that traditional fuzzy systems suffer from the 
lack of learning properties. On the other hand neural 
networks are not able to incorporate a linguistic information 
coming from human experts. Neuro fuzzy systems presented 
by several authors (see e.g. [4], [6]-[10],[13]-[18]) exhibit 
advantages of neural networks and fuzzy systems. In this 
paper we develop a new class of neuro-fuzzy systems. It is 
well known that introducing additional parameters to be 
tuned in neuro fuzzy systems improves their performance 
and they are able to better represent the patterns encoding in 
data. Therefore, in this paper we introduce several flexibility 
concepts in the design of neuro fuzzy systems. Due to 
additional parameters incorporated into a neuro fuzzy 
system, we achieve an excellent performance of the 
classification. Moreover, a procedure for reduction of 
flexible neuro-fuzzy systems will be presented and tested. A 
high accuracy of a neuro fuzzy classifier is demonstrated in 
simulation examples. Another classifier will be studied in 
the case of missing data. The rough-fuzzy sets are 
incorporated into Mamdani type neuro-fuzzy structures and 
the rough-neuro-fuzzy classifier is derived. An experiment 
illustrating the performance of the rough-neuro-fuzzy 
classifier working in the case of missing features will be 
described. 

II. FLEXIBLE NEURO-FUZZY SYSTEMS 
We consider multi-input, single-output neuro-fuzzy 

system mapping YX → , where nRX ⊂  and RY ⊂ . The 
fuzzifier performs a mapping from the observed crisp input 
space nRX ⊂  to the fuzzy sets defined in X . The most 
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commonly used fuzzifier is the singleton fuzzifier which 
maps [ ] Xx ∈= nxx ,,1 …  into a fuzzy set X⊆′A  
characterized by the membership function 
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The fuzzy rule base consists of a collection of N  fuzzy 
IF-THEN rules in the form 
 ( ) kkk ByAR isTHENisIF: x  (2) 
where [ ] Xx ∈= nxx ,,1 … , Y∈y , k

n
kk AAA ,,, 21 …  are fuzzy 

sets characterized by membership functions ( )iA
xk

i
µ , 

whereas kB  are fuzzy sets characterized by membership 
functions ( )ykB

µ , respectively, Nk ,,1…= . 
The fuzzy inference determines a mapping from the fuzzy 

sets in the input space X  to the fuzzy sets in the output 
space Y . Each of N  rules (2) determines a fuzzy set 

Y⊂kB  given by the compositional rule of inference 
 ( )kkk BAAB →′= D  (3) 
where k

n
kkk AAAA ×××= …21 , and  
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where ( )⋅I  is an “engineering implication” (Mamdani 
approach) [7] or fuzzy implication [3]. 

Neuro-fuzzy architectures developed so far in the 
literature are based on the discretization of formula 
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where ry  denotes centres of the membership functions 
( )yrB

µ , i.e. for Nr ,,1…=  
 ( ) ( ){ }yy rr By

r
B

µµ
Y∈

= max  (7) 

It has been always assumed that number of terms in formula 
(6) is equal to the number of rules N . In this paper we relax 
that assumption and replace formula (6) by 
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where 1≥R . For further investigations we choose 
neuro-fuzzy systems of a logical type with an S-implication 
used in formula (4) and consequently the aggregation 
operator, applied in order to obtain the fuzzy set B′  based 
on fuzzy sets kB , is a t-norm. Moreover, we incorporate 
flexibility parameters [15], into construction new 
neuro-fuzzy systems. These parameters have the following 
interpretation: 
1) weights in antecedents of the rules [ ] 10,wτ

i,k ∈ , 

ni ,,1…= , Nk ,,1…= , 
2) weights in aggregation of the rules 

[ ] 10agr ,wk ∈ , Nk ,,1…= , 
3) soft strength of firing controlled by parameter τα k , 

Nk ,,1…= , 
4) soft implication controlled by parameter I

kα , 

Nk ,,1…= , 
5) soft aggregation of rules controlled by parameter agrα . 

In view of above assumptions, we derive a flexible 
neuro-fuzzy system given by 
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where 

 ( )
( ) ( ) ( )( )

( ) ( )  

,,

;,,

,,avg1

1

1

1

1

1































+

+−

=
∗

τ
n,k

τ
,k

nAA
k

nAAk

k

ww

xx
T

xx

k
n

k

k
n

k

…

…

…

µµ
α

µµα

τ
τ

τ

x  (10) 

 ( ) ( ) ( ) ( )( )
( ) ( ){ }  

,1

,1avg1
,, 














−+

+−−
=

r
Bk

I
k

r
Bk

I
kr

rk yS

y
yI

k

k

µτα

µτα

x

x
x  (11) 

( )
( ) ( ) ( )( )

( ) ( )  

,,

;,,,,

,,,,avg1

,agr
agragr

1

,,1agr

,,1
agr































+

+−

=
∗

N

r
rN

r
r

r
rN

r
r

r
r

ww

yIyI
T

yIyI

y

…

…

…

xx

xx

x
α

α
 (12) 

It is easily seen that system (9)-(12) contains 
( ) 153 +++ RnN  parameters to be determined in the 

process of learning. Using arguments similar to those in [17] 
the following result can be shown: 

Theorem 1 
The flexible neuro-fuzzy system given by formulas 

(9)-(12) is universal aproximator. 
Now we develop an algorithm of reduction of neuro-fuzzy 

systems. The algorithm is based on analysis of weights in 
antecedents of the rules [ ] 10,wτ

i,k ∈ , ni ,,1…= , Nk ,,1…= , 
and weights in aggregation of the rules 

[ ] 10agr ,wk ∈ , Nk ,,1…= . The flowchart of the algorithm is 
depicted in Fig. 1. 
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Fig. 1. The algorithm of reduction of neuro-fuzzy systems 

The flowchart in Fig. 1 comprises 3-parts. First, we 
determine performance of the initial system (before the 
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reduction process); for example, in a case of the 
classification we determine a percentage of mistakes of the 
system. The weights [ ] 10,wx

i ∈ , ni ,,1…=  are calculated 
using 
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In subsequent stages we reduce number of inputs, number 
of rules and number of antecedents. 

The neuro-fuzzy system is simulated on Heart 
problem [16]. 

The Heart problem contains 270 instances and each 
instance is described by thirteen attributes (age, sex, chest 
pain type, resting blood pressure, serum cholestoral in 
mg/dl, fasting blood sugar > 120 mg/dl, resting 
electrocardiographic result, maximum heart rate achieved, 
exercise induced angina, oldpeak = ST depression induced 
by exercise relative to rest, the slope of the peak exercise ST 
segment, number of major vessels colored by flourosopy, 
tha). There are two classes: absence or presence of heart 
disease. In our experiments, all sets are divided into a 
learning sequence (189 sets) and a testing sequence (81 
sets). 

The experimental results for the Heart Problem problem 
are depicted in tables I, II, III, IV, V. In Table I we show the 
percentage of mistakes in the learning and testing sequences 
before and after reduction, e.g. for 2=N  and 3=R  we have 
11.11%/11.11% for the learning sequence before and after 
reduction and 14.81%/14.81% for the testing sequence 
before and after reduction. In Table II we present number of 
inputs, rules, points of discretization, number of antecedents 
and number of parameters before and after reduction. In 
Table III we show degree of learning time reduction [%] and 
degree of learning time reduction per a single parameter [%] 
for a reduced system. In Table IV we present reduced inputs 
and antecedents. In Table V we depict percentage of 
neuro-fuzzy systems having a particular input (attribute) 
after the reduction process and percentage of inputs 
(attributes) corresponding to a particular neuro-fuzzy system 
after the reduction process. 

TABLE I 
SIMULATION RESULTS 

HEART PROBLEM 
(algorithm for reduction based on analysis of weights) 

N R 
1 2 3 4 

2 13.22%/13.22% 
16.04%/16.04% 

12.16%/12.16% 
14.81%/14.81% 

10.58%/10.58% 
14.81%/14.81% 

11.64%/11.64%
12.34%/12.34%

3 13.22%/13.22% 
14.81%/14.81% 

11.11%/11.11% 
14.81%/14.81% 

10.58%/10.58% 
14.81%/14.81% 

10.58%/10.58%
12.34%/12.34%

4 13.22%/13.22% 
14.81%/14.81% 

11.11%/11.11% 
14.81%/14.81% 

9.52%/9.52% 
14.81%/14.81% 

12.34%/12.34%
9.87%/9.87% 

TABLE II 
SIMULATION RESULTS 

HEART PROBLEM 
(algorithm for reduction based on analysis of weights) 

N R 1 2 3 4 

2 13/1/2/13/47 
12/1/2/12/44 

13/2/2/26/91 
10/2/2/20/73 

13/3/2/39/135 
12/3/2/34/120 

13/4/2/52/179 
11/4/2/42/149 

3 13/1/3/13/48 
12/1/3/12/45 

13/2/3/26/92 
10/2/3/19/71 

13/3/3/39/136 
11/3/3/29/106 

13/4/3/52/180 
12/4/3/47/165 

4 13/1/4/13/49 
12/1/4/12/46 

13/2/4/26/93 
12/2/4/24/87 

13/3/4/39/137 
11/3/4/26/98 

13/4/4/52/181 
13/3/4/39/137 

TABLE III 
SIMULATION RESULTS 

HEART PROBLEM 
(algorithm for reduction based on analysis of weights) 

N R 
1 2 3 4 

2 11% 
5% 

32% 
17% 

20% 
10% 

29% 
16% 

3 5% 
-1% 

30% 
11% 

32% 
15% 

32% 
27% 

4 3% 
-2% 

29% 
25% 

34% 
10% 

23% 
-1% 

TABLE IV 
SIMULATION RESULTS 

HEART PROBLEM 
(algorithm for reduction based on analysis of weights) 

N R 
1 2 3 4 

2 4x  
4x , 

5x , 
8x  

2x , 1
4A , 1

5A  
4x , 

7x , 1
6A , 1

8A

3 4x  
1x , 

2x , 
4x , 1

13A  1x , 
4x , 1

5A , 1
6A , 

1
11A , 2

7A  4x , 1
5A  

4 1x  
4x  

1x , 
4x , 1

5A , 1
6A , 

1
7A , 2

6A , 2
7A , 

2
8A , 2

13A  
2rule  

 
TABLE V 

SIMULATION RESULTS 

HEART PROBLEM 
(algorithm for reduction based on analysis of weights)  

N 
R 

1 
2 

1 
3 

1 
4 

2 
2 

2 
3 

2 
4 

3 
2 

3 
3 

3 
4 

4 
2 

4 
3 

4 
4  

1x v v  v  v v   v v v 67% 

2x v v v v  v  v v v v v 83% 

3x v v v v v v v v v v v v 100%

4x   v    v     v 25% 

5x v v v  v v v v v v v v 92% 

6x v v v v v v v v v v v v 100%

7x v v v v v v v v v  v v 92% 

8x v v v  v v v v v v v v 92% 

9x v v v v v v v v v v v v 100%

10x v v v v v v v v v v v v 100%

11x v v v v v v v v v v v v 100%

12x v v v v v v v v v v v v 100%

13x v v v v v v v v v v v v 100%

 92% 92% 92% 77% 77% 92% 92% 85% 85% 85% 92% 100%  
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III. ROUGH-NEURO-FUZZY SYSTEMS 
In this section we will develop a new algorithm for 

classification in the case of incomplete knowledge about 
classified object. The main idea is to combine fuzzy methods 
with the rough set theory. The goal of classification is to 
determine if the object or state x  belongs to class jω  or not. 
The number of classes is m  and mj ,,1…= . Thus the 
classifier can take one of two decisions: jx ω∈  or jx ω∉ . 
The decision is taken based on known values of classified 
object features. The features can be represented as vector 

[ ]
DnD vvv ,,, 21 …=v , the values of features, as vector 

[ ]
DnD vvv ,,, 21 …=v . The Dn  is the number of known 

feature values. 
Let us assume that the neuro-fuzzy classifier comprises 

knowledge in the form of fuzzy rules and it works 
satisfactorily enough when its inputs receive the values of 
the attributes of all the classified objects, which were taken 
into account in the design process. Our goal involves 
developing a transformation of that classifier, so that it could 
also work when some data are unavailable.  

In definition of the rough sets a notion of equivalence 
class [ ]Rx  is very important. It is defined as follows: 

Definition 1 
The equivalence class [ ]Rx̂  is a set of elements X∈x  

which are related with object x̂  by relation R . It is 
expressed as follows 
 [ ] { }Rxxxx R ˆ:ˆ X∈= , (14) 
where R  is equivalence relation i.e. any relation satisfying 
reflexivity, symmetry and transitivity conditions. 

Definition 2 
Let us assume that A  is a set defined in space X . The 

rough set A  is defined as a pair of sets ( ) ( )( )ARAR ,  where 

( )AR  is R -lower approximation of set A  and ( )AR  is R -
upper approximation of set A . They are defined as follows 
[11], [12] 
 ( ) [ ]{ }AxxAR R ⊆∈= :X  (15) 

and 
 ( ) [ ]{ }∅≠∩∈= AxxAR R:X . (16) 
The set A  and its lower and upper approximations fulfill the 
inequality 
 ( ) ( )ARAAR ⊆⊆  (17) 
Description of each object X∈x  is realized through a set of 
n  features { }nvvvQ ,,, 21 …= . The features can be also 
written down as a vector [ ]nvvv ,,, 21 …=v . The value of the 
features is depicted as a vector [ ]nvvv ,,, 21 …=v . The value 
of feature iv  of object x  is expressed as value of 
information function family xf  
 ( )ixi vfv = , (18) 

where ni ,,1…= , iiv V∈  and nVVVV ×××= …21 . The 
quadruple { }fQSI ,,, VX=  is called information system 
[11], [12]. 

Let us isolate the subset QD ⊆  of features. Then we can 

define the D~ -indiscernibility relation as follows 
 ( ) ( )ixixi vfvfDvxDx ˆ;ˆ~ =∈∀⇔ , (19) 
where X∈xx ˆ, . 

When we apply the D~ -indiscernibility relation as 
equivalence relation in Definitions 1 and 2, we can define 
the D~ -lower approximation of set A  and the D~ -upper 
approximation of set A  as 
 ( ) [ ]{ }AxxAD D ⊆∈= ~:~ X  (20) 
and 

 ( ) [ ]{ }∅≠∩∈= AxxAD D~:~ X . (21) 
Definition 3 
Fuzzy set A  defined in nonempty universe X  is a set of 

pairs 
 ( )( ){ }X∈= xxxA A ;, µ , (22) 
where 
 [ ]1,0: 6XAµ  (23) 
is the membership function. 

Referring to terms defined above in this section we can 
equate object x  membership with its features value 

[ ]nvvv ,,, 21 …=v  membership. So we can use 
interchangeably x  or [ ]nvvv ,,, 21 …=v  and we may as well 
define fuzzy set as 
 ( )( ){ }Vvvv ∈= ;, AA µ  (24) 
where 
 [ ]1,0: 6VAµ  (25) 
is the membership function. 

Let we note that object x  is not equal to its features 
values v , however 

 ( ) ( ) ( )iA

n

iAA vTx
i

µµµ
1=

== v , (26) 

where nAAAA ×××= …21 , T  is any t-norm. 
Definition 4 
The rough-fuzzy set is a pair ( )ARAR ,  of fuzzy sets. AR  

is a R -lower approximation and AR  is a R -upper 
approximation of fuzzy set X⊆A . The membership 
functions of AR  and AR  are defined as follows 
 ( )

[ ]
( )xx AxxAR

R

µµ
ˆ

infˆ
∈

= , (27) 

 ( )
[ ]

( )xx A
xx

AR
R

µµ
ˆ

supˆ
∈

= . (28) 

For future deliberations let us consider the case when the 
features iv  are the real numbers. 

Theorem 2 
If we assume that fuzzy set A  is defined by equations 

(26) then the membership function of its D~ -lower 
approximation is given as follows 
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The membership function of its D~ -upper approximation is 
given by formula 
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The description of the neuro-fuzzy classifier is given by 
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Obviously, equation (31) is almost identical to (6), except 
for variable r

jz  instead of r
jy . However, using assumption 
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we can pass over the connection in structure when 0=r
jz . 

So we obtain description of a much simpler architecture of 
neuro-fuzzy classifier: 
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In this section we study the neuro-fuzzy classifier in a 
specific situation i.e. when not complete information about 
object is available. Let we assume that: 

a) The classifier is set up and was developed for n  
features of classified objects. Q  denotes the set of all 
features of objects used in the course of system developing. 

b) In the course of object x  classification only values of 
nnD ≤  features are known. QD ⊆  denotes the set of 

features which values are known. DQG \=  denotes the set 
of features whose values are unknown. 

The classifier defined by (6) does not work in such 
situation. Our goal is to define the special version of neuro-
fuzzy classifier which could work in the described situation. 
In the proposed classifier we use the rough-fuzzy set, so the 
system is called rough-neuro-fuzzy classifier. 

It is obvious that if we assume various values of unknown 
features Dv , we obtain various values of jz  as the output of 
neuro-fuzzy classifier. In most cases it is not possible to test 
all values of vector Dv . However, it is enough to find the 
smallest possible value of jz  denoted as jz  and the highest 

one denoted as jz . This notation refers to notation of rough 

sets and rough-fuzzy sets. Value jz  is the membership 

degree of the object x  to D~ -lower approximation of class 
jω  

 ( ) jD zx
j

=ωµ ~  (34) 

and jz  is the membership degree of object x  to D~ -upper 
approximation of class jω  

 ( ) jD
zx

j
=

ω
µ ~  (35) 

Theorem 3 
Let us consider the neuro-fuzzy classifier defined by 

equation (6). When assumptions a) and b) are satisfied, the 
lower and upper approximation of the membership of object 
x  to class jω  is given by 
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and 
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where rAL and rAU  are defined as follows 
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When in equations (36) and (37) we replace rAL  and rAU  
with (38) and (39), respectively, taking into account 
assumption (32) we obtain a more general description of 
rough-neuro-fuzzy classifier: 
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and 
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where r
j

r
j zz −=¬ 1 . 

If we need a crisp answer we should apply an appropriate 
defuzzification method. We suggest to use the following 
method 

Definition 5 
Let ( )xz

jDj ωµ ~=  be the lower approximation of 

membership degree of object x  to class jω  and 

( )xz
jDj ω

µ ~=  be its upper approximation. Let as fix two 
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numbers (thresholds) INz  and OUTz  such that 
01 >≥> OUTIN zz . Then the crisp decision is defined as 

follows 
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When we assume that 2
1== OUTIN zz , equation (42) takes 

the form 
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The performance of rough-neuro-fuzzy classifier (40), 
(41) will be tested on the Wisconsin Breast Cancer problem 
(WBCD). Data contain 699 instances (of which 16 instances 
have a single missing attribute) and each instance is 
described by nine attributes (clump thickness, uniformity of 
cell size, uniformity of cell shape, marginal adhesion, single 
epithelial cell size, bare nuclei, bland chromatin, normal 
nucleoli, mitoses). We removed those 16 instances and used 
the remaining 683 instances. Out of 683 data samples, 444 
cases represent benign breast cancer and 239 cases describe 
malignant breast cancer. The problem is to classify whether 
a new case is a benign (class 1) or malignant (class 2) type 
of cancer. In our experiments, all sets are divided into a 
learning sequence (478 sets) and a testing sequence (205 
sets). 

Table VI contains the eight demonstration instances 
patient. The first four instances come from sequence used 
for designing of system and the other four instances come 
from testing sequences. For each instance we take the value 
of each feature and membership of particular classes ( illω  
and healthyω ). Tables VII-XI show the result of classification 
in case when various set of attributes is available. In Tables 
XII and Figure 1 we show the percentage of correct 
classification, no classification and incorrect classification 
for different sets of known features, both for sequence used 
for designing (d) of system and sequence used for testing (t). 

IV. FINAL REMARKS 
In the paper two neuro-fuzzy systems have been studied. 

Flexible neuro-fuzzy system presented in Section II are 
universal approximators. Rough-neuro-fuzzy systems 
derived in Section III can be applied in the case of missing 
data. 

 

TABLE VI 
SELECTED SAMPLES OF WBCD 

x  v  correct conclusion 

1x  [3,1,1,1,2,1,3,1,1] healthyill ωω ∈∉ xx ,  

2x  [8,3,3,1,2,2,3,2,1] healthyill ωω ∈∉ xx ,  

3x  [8,9,9,5,3,5,7,7,1] healthyill ωω ∉∈ xx ,  

4x  [5,3,3,3,6,10,3,1,1] healthyill ωω ∉∈ xx ,  

5x  [4,3,3,1,2,1,3,3,1] healthyill ωω ∈∉ xx ,  

6x  [6,8,8,1,3,4,3,7,1] healthyill ωω ∈∉ xx ,  

7x  [10,4,3,1,3,3,6,5,2] healthyill ωω ∉∈ xx ,  

8x  [5,3,3,1,3,3,3,3,3] healthyill ωω ∉∈ xx ,  

TABLE VII 
RESULT FOR ALL AVAILABLE FEATURES 91 ,, vv …  

x  
illill zz ,  healthyhealthy zz ,  conclusion 

1x  0.06, 0.06 0.94, 0.94 healthyill ωω ∈∉ xx ,  

2x  0.53, 0.53 0.47, 0.47 healthyill ωω ∉∈ xx ,  

3x  1.00, 1.00 0.00, 0.00 healthyill ωω ∉∈ xx ,  

4x  0.74, 0.74 0.26, 0.26 healthyill ωω ∉∈ xx ,  

5x  0.35, 0.35 0.65, 0.65 healthyill ωω ∈∉ xx ,  

6x  0.61, 0.61 0.39, 0.39 healthyill ωω ∉∈ xx ,  

7x  0.88, 0.88 0.12, 0.12 healthyill ωω ∉∈ xx ,  

8x  0.73, 0.73 0.27, 0.27 healthyill ωω ∉∈ xx ,  

TABLE VIII 
RESULT FOR EIGHT AVAILABLE FEATURES 971 ,,, vvv …  

x  
illill zz ,  healthyhealthy zz ,  conclusion 

1x  0.05, 0.23 0.77, 0.95 healthyill ωω ∈∉ xx ,  

2x  0.41, 0.69 0.31, 0.59 no conclusion 

3x  1.00, 1.00 0.00, 0.00 healthyill ωω ∉∈ xx ,  

4x  0.59, 0.85 0.15, 0.41 healthyill ωω ∉∈ xx ,  

5x  0.17, 0.53 0.47, 0.83 no conclusion 

6x  0.58, 0.61 0.39, 0.42 healthyill ωω ∉∈ xx ,  

7x  0.86, 0.92 0.08, 0.14 healthyill ωω ∉∈ xx ,  

8x  0.60, 0.76 0.24, 0.40 healthyill ωω ∉∈ xx ,  

TABLE IX 
RESULT FOR EIGHT AVAILABLE FEATURES 931 ,,, vvv …  

x  
illill zz ,  healthyhealthy zz ,  conclusion 

1x  0.04, 0.24 0.76, 0.96 healthyill ωω ∈∉ xx ,  

2x  0.26, 0.63 0.37, 0.74 no conclusion 

3x  0.99, 1.00 0.00, 0.01 healthyill ωω ∉∈ xx ,  

4x  0.29, 0.82 0.18, 0.71 no conclusion 

5x  0.22, 0.46 0.54, 0.78 healthyill ωω ∈∉ xx ,  

6x  0.44, 0.72 0.28, 0.56 no conclusion 

7x  0.42, 0.98 0.02, 0.58 no conclusion 

8x  0.25, 0.82 0.18, 0.75 no conclusion 
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TABLE X 
RESULT FOR SEVEN AVAILABLE FEATURES 71 ,, vv …  

x  
illill zz ,  healthyhealthy zz ,  conclusion 

1x  0.04, 0.29 0.71, 0.96 healthyill ωω ∈∉ xx ,  

2x  0.22, 0.78 0.22, 0.78 no conclusion 

3x  1.00, 1.00 0.00, 0.00 healthyill ωω ∉∈ xx ,  

4x  0.33, 0.93 0.07, 0.67 no conclusion 

5x  0.12, 0.61 0.39, 0.88 no conclusion 

6x  0.53, 0.77 0.23, 0.47 healthyill ωω ∉∈ xx ,  

7x  0.61, 1.00 0.00, 0.39 healthyill ωω ∉∈ xx ,  

8x  0.23, 0.86 0.14, 0.77 no conclusion 

TABLE XI 
RESULT FOR FIVE AVAILABLE FEATURES 961 ,,, vvv …  

x  
illill zz ,  healthyhealthy zz ,  conclusion 

1x  0.01, 1.00 0.00, 0.99 no conclusion 

2x  0.05, 1.00 0.00, 0.95 no conclusion 

3x  0.82, 1.00 0.00, 0.18 healthyill ωω ∉∈ xx ,  

4x  0.02, 0.97 0.03, 0.98 no conclusion 

5x  0.01, 0.99 0.01, 0.99 no conclusion 

6x  0.05, 0.98 0.02, 0.95 no conclusion 

7x  0.03, 1.00 0.00, 0.97 no conclusion 

8x  0.02, 0.98 0.02, 0.98 no conclusion 
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Fig. 2. The average percentage participation of classification in dependence 

of number of available features 
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