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 Abstract − The main advantage of fuzzy rule-based systems 
over other non-linear models such as neural networks is their 
high interpretability. Fuzzy rules can be usually interpreted in a 
linguistic manner because they are described by linguistic values 
such as small and large. Fuzzy rule-based systems have high 
accuracy as well as high interpretability. A large number of 
tuning methods have been proposed to improve their accuracy. 
Most of those tuning methods are based on learning algorithms 
of neural networks and/or evolutionary optimization techniques. 
Accuracy improvement of fuzzy rule-based systems, however, is 
usually achieved at the cost of interpretability. This is because 
the accuracy improvement often increases the complexity of 
fuzzy rule-based systems. Thus one important issue in the design 
of fuzzy rule-based systems is to find a good tradeoff between 
the accuracy and the complexity. The importance of finding a 
good accuracy-complexity tradeoff has been pointed out in some 
studies in the late 1990s. Recently evolutionary multiobjective 
optimization algorithms were used to search for various fuzzy 
rule-based systems with different accuracy-complexity tradeoffs. 
Users are supposed to choose a final model based on their 
preference from the obtained fuzzy rule-based systems. Some 
users may prefer a simple one with high interpretability. Other 
users may prefer a complicated one with high accuracy. In this 
paper, we explain evolutionary multiobjective approaches to the 
design of accurate and interpretable fuzzy rule-based systems. 
We also suggest some future research directions related to the 
evolutionary multiobjective design of fuzzy rule-based systems. 

I.  INTRODUCTION 

A large number of tuning methods of fuzzy rule-based 
systems have been proposed to improve their accuracy in the 
literature [1]-[7]. Most of those tuning methods are based on 
evolutionary algorithms [8], [9] and/or learning schemes of 
neural networks such as the back-propagation algorithm [10]. 
Since fuzzy rule-based systems are universal approximators 
of nonlinear systems [11]-[13] as neural networks [14]-[16], 
we can improve the accuracy of fuzzy rule-based systems on 
training data by increasing their complexity. Complicated 
fuzzy rule-based systems with high accuracy on training data, 
however, do not necessarily have high generalization ability 
for unseen test data. In Fig. 1, we show a typical tradeoff 
relation between accuracy and complexity. As shown by the 

dotted curve in Fig. 1, training data accuracy of fuzzy rule-
based systems is monotonically improved by increasing their 
complexity. On the other hand, test data accuracy is first 
improved to its maximum point then degraded by the increase 
in their complexity as shown by the continuous curve in Fig. 
1. Such an undesirable deterioration in test data accuracy is 
known as the overfitting to training data [17]. Finding the 
optimal complexity with the maximum accuracy on test data 
(i.e., finding the optimal complexity S* in Fig. 1) is one of 
the main research issues in machine learning especially in the 
field of statistical learning theory [18]. 
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Fig. 1. A typical tradeoff relation between accuracy and complexity. 

The main advantage of fuzzy rule-based systems over 
other non-linear models such as neural networks is their high 
interpretability. From the point of view of interpretability, the 
optimal complexity with the maximum accuracy on test data 
(i.e., S* in Fig. 1) is not necessarily preferable. Some human 
users may prefer simpler fuzzy rule-based systems with 
higher interpretability than S* in Fig. 1 whereas others may 
prefer the optimal complexity S* with the maximum test data 
accuracy. 

From the above discussions, we can see that the design of 
fuzzy rule-based systems can be written as the following two-
objective optimization problem: 

Maximize Accuracy(S)  and  minimize Complexity(S),  (1) 

where S, Accuracy(S), and Complexity(S) are a fuzzy rule-
based system, an accuracy measure, and a complexity 
measure, respectively. It should be noted that Accuracy(S) is 
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usually calculated using training data.  
Many tuning methods of fuzzy rule-based systems were 

proposed to maximize the accuracy on training data in the 
1990s [1]-[7]. Those tuning methods can be viewed as 
optimizing the following single-objective problem: 

Maximize Accuracy(S).             (2) 

Since the late 1990s, the importance of interpretability in 
the design of fuzzy rule-based systems has been pointed out 
in a number of studies [19]-[31]. Whereas both accuracy and 
interpretability were considered, the finally obtained solution 
was a single fuzzy rule-based system in [19]-[31]. Those 
studies can be viewed as optimizing the following single-
objective problem: 

Optimize f(S) = f(Accuracy(S), Complexity(S)),     (3) 

where f(.) is a scalarizing function, which combines an 
accuracy measure Accuracy(S) and a complexity measure 
Complexity(S) into a single scalar objective function. In some 
of those studies, the objective function in (3) can be more 
appropriately written as 

Optimize f(S) = f(Accuracy(S), Interpretability(S)),    (4) 

where Interpretability(S) is an interpretability measure. 
An example of the scalarizing objective function f(.) in (3) 

is the following weighted sum: 

Maximize  f(S) = w1
.NCP(S) − w2

.Card(S),      (5) 

where w = (w1, w2), NCP(S) and Card(S) are a weight vector, 
the number of correctly classified training patterns by S, and 
the cardinality of S (i.e., the number of fuzzy rules in S), 
respectively. The weighted sum objective function in (5) was 
used in [19] to search for an accurate and interpretable fuzzy 
rule-based classifier. 

Single-objective search using the weighted sum objective 
function is illustrated in Fig. 2. As shown in Fig. 2, a single 
fuzzy rule-based system is obtained as a final solution by 
maximizing the weighted sum objective function. The search 
direction represented by the arrow in Fig. 2 is specified by 
the weight vector w = (w1, w2). The main difficulty of this 
approach is that the specification of the weight vector is not 
easy and problem-dependent whereas the finally obtained 
fuzzy rule-based system strongly depends on it.  
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Fig. 2. Single-objective search based on a weighted sum objective function. 
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Fig. 3. An accuracy-complexity tradeoff relation with a knee solution. 

If there exists a clear knee solution as shown in Fig. 3 (see 
Deb [32] for the concept of knee solutions), the finally 
obtained fuzzy rule-based system is the knee solution for a 
wide range of weight vectors. Unfortunately, the existence of 
a knee solution is problem-dependent. Some problems (e.g., 
with artificially given noise [33]) have clear knee solutions as 
in Fig. 3, other problems have no knee solutions as in Fig. 2. 

Whereas the finally obtained solution is a single fuzzy 
rule-based system in single-objective approaches based on 
scalarizing functions, evolutionary multiobjective approaches 
[34]-[40] search for a number of fuzzy rule-based systems 
with different accuracy-complexity tradeoffs as shown in Fig. 
4. More specifically, multiobjective approaches search for 
non-dominated fuzzy rule-based systems by solving the two-
objective optimization problem in (1). In some studies (e.g., 
[35], [37], [40]), two complexity measures were used. In 
those studies, non-dominated fuzzy rule-based systems were 
found by solving the following three-objective problem: 

Maximize Accuracy(S)  and   
minimize Complexity1(S) and Complexity2(S),     (6) 

where Complexity1(S) and Complexity2(S) are complexity 
measures. 
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Fig. 4. Evolutionary multiobjective approaches that search for a number of 
fuzzy rule-based systems with different accuracy-complexity tradeoffs. 

The following two-objective problem was used in [34] to 
search for a number of non-dominated fuzzy rule-based 
classifiers with respect to accuracy and complexity: 

Maximize  NCP(S) and minimize Card(S).       (7) 
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This is a two-objective version of the weighted sum objective 
function in (5). 

It should be noted that a large number of non-dominated 
fuzzy rule-based systems are obtained from a single run of 
evolutionary multiobjective approaches. The obtained fuzzy 
rule-based systems help human users to understand the 
accuracy-complexity tradeoff relation (see [41], [42] for 
further discussions on the accuracy-complexity tradeoff).  

 
II.  EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION 

Since Schaffer’s pioneering study [43], a large number of 
evolutionary multiobjective optimization (EMO) algorithms 
have been proposed and applied to various application tasks 
[32], [44], [45]. Currently EMO is one of the most active 
research areas in the field of evolutionary computation.  

A k-objective maximization problem is written as follows:  

  Maximize ))(...,),(),(()( 21 yyyyf kfff= ,     (8) 
  subject to Yy∈ ,              (9) 

where )(yf  is the k-dimensional objective vector, )(yif  is 
the i-th objective to be maximized, y is the decision vector, 
and Y is the feasible region in the decision space. 

Let y and z be two feasible solutions of the k-objective 
maximization problem in (8)-(9). If the following conditions 
hold, z can be viewed as being better than y:  

  i∀ , )()( zy ii ff ≤   and  j∃ , )()( zy jj ff < .   (10) 

In this case, we say that z dominates y (equivalently y is 
dominated by z: z is better than y). 

When y is not dominated by any other feasible solutions 
(i.e., when there exists no feasible solution z that dominates 
y), the solution y is referred to as a Pareto-optimal solution of 
the k-objective maximization problem in (8)-(9). The set of 
all Pareto-optimal solutions forms the tradeoff surface in the 
objective space. This tradeoff surface is referred to as the 
Pareto front.  

One of the most well-known and frequently-used EMO 
algorithms is NSGA-II of Deb et al. [46]. In this paper, we 
use NSGA-II for multiobjective genetic fuzzy rule selection.  

Let P and popN  be the current population in NSGA-II and 
the population size, respectively (i.e., ||pop PN = ). Then the 
outline of NSGA-II can be written as follows:  

Step 1: P := Initialize (P) 
Step 2: while a termination condition is not satisfied, do 
Step 3:     P’ := Selection (P) 
Step 4:     P’’ := Genetic Operations (P’) 
Step 5:     P := Replace (P∪P’’) 
Step 6: end while 
Step 7: return (non-dominated solutions (P)) 

First popN  solutions are randomly generated to form an 
initial population P in Step 1 in the same manner as in 
standard single-objective genetic algorithms (SOGAs). Next 

popN  pairs of parent solutions are selected from the current 

population P to form a parent population P’ in Step 3. Then 
an offspring population P’’ is constructed in Step 4 by 
generating a single offspring solution from each pair of 
parent solutions in P’ by crossover and mutation. Genetic 
operations in Step 4 are the same as those in SOGAs. The 
next population is constructed in Step 5 by choosing the best 

popN  solutions from the pop2 N⋅  solutions in the current 
population P and the offspring population P’’. The parent 
selection in Step 3 and the generation update in Step 5 of 
NSGA-II are different from those in SOGAs. Pareto ranking 
and a crowding measure are used to evaluate each solution in 
each step. Binary tournament selection is used in Step 3 to 
choose parent solutions. For details of NSGA-II, see Deb [32] 
and Deb et al. [46]. 

 
III.  MULTIOBJECTIVE GENETIC FUZZY RULE SELECTION 

As an example of an evolutionary multiobjective approach 
to the design of fuzzy rule-based systems, we explain a basic 
form of multiobjective genetic fuzzy rule selection [35], [37]. 
A number of non-dominated fuzzy rule-based classifiers are 
found from a large number of candidate fuzzy rules. That is, 
multiobjective genetic fuzzy rule selection is performed as 
the following two-phase method: 
Phase 1: Heuristic candidate rule extraction (data mining) 
Phase 2: Rule selection (multiobjective optimization) 
 
A.  Classification problems 

Let us assume that we have m training (i.e., labeled) 
patterns =px )...,,( 1 pnp xx , mp ...,,2,1=  from M classes in 
the n-dimensional continuous pattern space where pix  is the 
attribute value of the p-th training pattern for the i-th attribute. 
For the simplicity of explanation, we assume that all the 
attribute values have already been normalized into real 
numbers in the unit interval [0, 1]. Thus our classification 
problem is an M-class problem with m training patterns in the 
n-dimensional unit hypercube [0, 1]n. 

 
B.  Fuzzy rules 

For our n-dimensional pattern classification problem, we 
use fuzzy rules of the following form [47]: 

  Rule qR : If 1x  is 1qA  and  ...  and nx  is qnA  
       then Class qC  with qCF ,    (11) 
where qR  is the label of the q-th fuzzy rule, )...,,( 1 nxx=x  
is an n-dimensional pattern vector, qiA  is an antecedent 
fuzzy set, qC  is a class label, and qCF  is a rule weight (i.e., 
certainty grade). We also denote the fuzzy rule qR  in (11) as 

qq CClass⇒A . The rule weight qCF  has a large effect on 
the accuracy of fuzzy rule-based classifiers as shown in [48], 
[49]. For other types of fuzzy rules for pattern classification 
problems, see [50]-[53]. 

Since we usually have no a priori information about an 
appropriate granularity of discretization (i.e., the number of 
antecedent fuzzy sets) for each attribute, we simultaneously 
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use multiple fuzzy partitions with different granularities as 
shown in Fig. 5. In addition to the 14 fuzzy sets in Fig. 5, we 
also use the domain interval [0, 1] itself as an antecedent 
fuzzy set in order to represent a don’t care condition. Thus 
we have the 15 possible antecedent fuzzy sets as qiA  for each 
attribute.  
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Fig. 5. Four fuzzy partitions used in our computational experiments. 

 
C.  Fuzzy rule generation 

Since we have the 15 antecedent fuzzy sets for each 
attribute of our n-dimensional pattern classification problem, 
the total number of combinations of the antecedent fuzzy sets 
is n15 . Each combination is used as the antecedent part qA  
of the fuzzy rule qR  in (11). Its consequent class qC  and 
rule weight qCF  are specified from compatible training 
patterns with qA  in the following heuristic manner.  

First we calculate the compatibility grade of each pattern 
px  with the antecedent part qA  by the product operation as  

  )(...)()( 11 pnApAp xx qnqq µµµ ⋅⋅=xA ,    (12) 

where )( ⋅qiAµ  is the membership function of qiA .  
Next the confidence of the fuzzy rule hq Class⇒A  is 

calculated for each class h as follows [53]-[55]:  

  
∑

∑

=

∈
=⇒ m

p
p

h
p

q

q

p
q

hc

1

Class

)(

)(

)Class(
x

x

A
A

x
A

µ

µ

.   (13) 

The consequent class qC  is specified by identifying the 
class with the maximum confidence:  

  })Class({)Class( max
,...,2,1

hcCc q
Mh

qq ⇒=⇒
=

AA .  (14) 

When there is no pattern in the fuzzy subspace defined by 
qA , we do not generate any fuzzy rules with qA  in the 

antecedent part. This specification method of the consequent 
class of fuzzy rules has been used in many studies since the 
early 1990s [47].  

It should be noted that the same consequent class as in 
(13)-(14) is obtained when we use the support of the fuzzy 
rule hq Class⇒A  instead of the confidence. The support is 
calculated as follows [53]-[55]: 

  
m

hs
h

p

q
p

q∑
∈

=⇒
Class

)(

)Class(
x

A x

A

µ

.   (15) 

Different specifications of the rule weight qCF  have been 
proposed and examined. We use the following specification 
because good results were reported in the literature [49]:  

 ∑

≠
=

⇒−⇒=
M

Ch
h

qqqq

q

hcCcCF
1

)Class()Class( AA . (16) 

D.  Rule discovery criteria for candidate rule extraction 
Using the above-mentioned procedure, we can generate a 

large number of fuzzy rules by specifying the consequent 
class and the rule weight for each of the n15  combinations of 
the antecedent fuzzy sets. It is, however, very difficult for 
human users to handle such a large number of generated 
fuzzy rules. It is also very difficult to intuitively understand 
long fuzzy rules with many antecedent conditions. Thus we 
only generate short fuzzy rules with a few antecedent 
conditions. It should be noted that don’t care conditions can 
be omitted from fuzzy rules. So the rule length means the 
number of antecedent conditions excluding don’t care 
conditions. We examine only short fuzzy rules of length 

maxL  or less (e.g., =maxL 3). This restriction is to find a 
compact set of fuzzy rules with high interpretability.  

Among short fuzzy rules, we only use fuzzy rules that 
satisfy both the minimum confidence and support as 
candidate rules in multiobjective genetic fuzzy rule selection. 
In the field of data mining (especially association rule mining 
[56] and classification rule mining [57]), these two rule 
evaluation criteria have been frequently used to generate 
meaningful association and classification rules. 

 
E.  Multiobjective genetic fuzzy rule selection 

Let S  be a subset of candidate fuzzy rules of the form in 
(11). That is, S is a fuzzy rule-based classifier. Each pattern 

px  is classified by a single winner rule wR , which is chosen 
from the rule set S as follows:  

  }|)(max{)( SRCFCF qqpwp qw ∈⋅=⋅ xx AA µµ . (17) 

As in our former studies [35], [37], we use the following 
three objectives in multiobjective genetic fuzzy rule selection: 

f1(S) : The number of correctly classified training patterns 
by S,  

f2(S) : The number of selected fuzzy rules in S, 
f3(S) : The total number of antecedent conditions in S (i.e., 

the total rule length in S). 
The first objective is maximized while the second and third 
ones are minimized. That is, our three-objective fuzzy rule 
selection problem is written as follows:  

    Maximize )(1 Sf , and minimize )(2 Sf  and )(3 Sf . (18) 

We apply NSGA-II [32], [46] to the three-objective fuzzy 
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rule selection problem in (18). For the implementation of 
three-objective genetic fuzzy rule selection, see [35], [37].  

 
F.  Computational experiments 

We applied multiobjective genetic fuzzy rule selection to 
some problems in the UCI machine learning repository. 
Incomplete patterns with missing values were not used. 

We divided each data set into two subsets of the same 
size: training data and test data. Using training data, first we 
extracted fuzzy rules satisfying the minimum confidence 0.6 
and the minimum support 0.01. The maximum rule length 
was specified as three in the rule extraction phase. All the 
extracted fuzzy rules were used as candidate rules.  

Then we applied NSGA-II to the extracted candidate rules 
to search for Pareto-optimal rule sets (i.e., Pareto-optimal 
subsets of the candidate rules) with respect to the three 
objectives using the following parameter specifications:  
Population size: 200 strings, 
Crossover probability: 0.9 (uniform crossover), 
Mutation probability: 0.05 ( 01→ ), 

       1/N ( 10→ ,  N: string length), 
Termination condition: 1000 generations. 

In our multiobjective genetic fuzzy rule selection, string 
length N is the same as the number of the candidate rules 
because their subsets are represented by binary strings of 
length N. We use biased mutation where changes from 1 to 0 
and from 0 to 1 have different mutation probabilities. We also 
use a hill-climbing procedure to remove unnecessary rules 
from each string (for details, see [35], [37]). 

Experimental results by a single run on the Wisconsin 
breast cancer data set (Breast W) are summarized in Fig. 6 
where error rates on training data and test data are depicted in 
each plot. In Fig. 6 (a), we can observe a clear accuracy-
complexity tradeoff relation on training data. On the other 
hand, the overfitting to test data is clearly observed in Fig. 6 
(b). The same rule sets are also shown in Fig. 7 using the total 
rule length as the horizontal axis. Two fuzzy rules in a rule 
set marked by A in Fig. 6 and Fig. 7 are shown in Fig. 8 
where real numbers in parentheses in the last column denote 
rule weights. Fig. 8 is an example of a very simple fuzzy rule-
based classifier with high interpretability. Another rule set 
with two fuzzy rules marked by B is shown in Fig. 9. On the 
other hand, a rule set with eight rules marked by C in Fig. 6 is 
shown in Fig. 10. The main advantage of multiobjective 
approaches over single-objective ones is that a number of 
non-dominated fuzzy rule-based systems are obtained by 
their single run as shown in Fig. 6. Some are very simple and 
interpretable (Fig. 8 and Fig. 9), and others are complicated 
and accurate on training data (Fig. 10). 

On the other hand, experimental results by a single run on 
the Cleveland heart disease data set (Heart C) are summarized 
in Fig. 11 in the same manner as Fig. 6. As in Fig. 6 (a), we 
can observe a clear accuracy-complexity tradeoff relation for 
training data in Fig. 11 (a). The overfitting to training data in 
Fig. 11 (b), however, seems to be less severe than Fig. 6 (b). 
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Fig. 6. Obtained non-dominated fuzzy rule sets (Breast W). 
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Fig. 7. The same data sets as Fig. 6 with a different horizontal axis. 

DC

Class 1
(0.82)

Class 2
(0.23)

x1 x4

R1

R2

Consequent

DC  

Fig. 8. Rule set A in Fig. 6 and Fig. 7. 

Class 1
(0.99)

Class 2
(0.23)

x1 x2 x6

R1

R2

Consequent

DC

DC

DC
 

Fig. 9. Rule set B in Fig. 6 and Fig. 7. 
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Fig. 10. Rule set C in  Fig. 6 and Fig. 7. 
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Fig. 11. Obtained non-dominated fuzzy rule sets (Heart C). 

G. Some extensions 
The choice of candidate rules has a dominant effect on the 

performance of multiobjective genetic fuzzy rule selection. 
For example, good rule sets with high accuracy are not likely 
to be found when good fuzzy rules are not used as candidate 
rules. The computation load for multiobjective genetic fuzzy 
rule selection directly depends on the number of candidate 
rules as well as the size of data sets. Thus the choice of a 
tractable number of promising candidate rules is an important 
issue for the success of rule selection. 

For low-dimensional classification problems with four or 
less attributes, we can use all combinations of antecedent 
fuzzy sets to extract candidate rules. On the other hand, the 
prescreening of only promising candidate rules is necessary 
for high-dimensional problems. One idea is to choose a pre-
specified number of the best candidate rules for each class 
with respect a pre-specified rule evaluation criterion. We 
used this idea in our former studies [35], [37]. It is, however, 
not easy to choose an appropriate rule evaluation criterion. 
This is because the choice of an appropriate rule evaluation 
criterion is problem-dependent [58]. 

In this paper, we use the minimum support and confidence 
for candidate rule prescreening as in data mining [56], [57]. 
The choice of appropriate threshold values of the two rule 
evaluation criteria is not easy. The number of extracted rules 
and their accuracy strongly depend on these two parameter 
values [58]-[60]. An idea of extracting only Pareto-optimal 
rules with respect to the support and the confidence [61]-[63] 
can be used in multiobjective genetic fuzzy rule selection as a 
prescreening procedure [64]. 

For accuracy improvement, asymmetric antecedent fuzzy 
sets in inhomogeneous fuzzy partitions [65] can be used for 
candidate rule extraction. Learning algorithms of antecedent 
fuzzy sets and/or rule weights [4]-[6], [53], [66] can be also 
incorporated in the candidate rule extraction phase as well as 
the multiobjective genetic rule selection phase.  

IV.  FUTURE RESEARCH DIRECTIONS 

The following seem to be interesting future research 
directions related to evolutionary multiobjective design of 
fuzzy rule-based systems: 

 (1) Interpretability measures: It is an interesting and 
challenging issue to mathematically formulate various aspects 
of the interpretability of fuzzy rule-based systems (for further 
discussions on interpretability, see [41], [42], [67], [68]). 
 (2) Accuracy improvement: Various tuning methods can 
be incorporated into evolutionary multiobjective design 
methods. Evolutionary multiobjective clustering [69] can be 
also used to generate candidate rules or initial fuzzy rules.  
 (3) Theoretical tradeoff analysis: Theoretical tradeoff 
analysis between complexity and accuracy on test data seems 
to be needed to find a fuzzy rule-based system with high 
generalization ability (for such a theoretical tradeoff analysis 
for non-fuzzy systems, see [18]).  
 (4) Handling of large data sets: Data mining is a very 
active research area. Only a few approaches, however, have 
been proposed to evolutionary multiobjective fuzzy data 
mining [70], [71]. Those approaches were proposed to search 
for Pareto-optimal fuzzy rules. Whereas a large number of 
evolutionary approaches have already been proposed for data 
mining [72], it is not easy to apply evolutionary algorithms to 
large data sets due to their large computation cost. Some 
tricks for decreasing computational costs such as data set 
subdivisions [73] seem to be needed in the handling of large 
data sets. 
 (5) Applications to non-fuzzy machine learning and data 
mining: Recently the concept of multiobjective optimization 
has been used to develop multiobjective machine learning 
and data mining methods [74], [75]. Evolutionary techniques 
developed for the multiobjective design of fuzzy rule-based 
systems can be utilized as multiobjective machine learning 
and data mining techniques. 
 (6) Incorporation of users’ preference: It is not easy for 
evolutionary multiobjective optimization algorithms to find a 
good non-dominated solution set that approximates the entire 
Pareto front of a large-scale multiobjective combinatorial 
optimization problem [76], [77]. It is a good idea to focus the 
multiobjective search on a particular area of the Pareto front 
using users’ preference [78], [79]. 

V.  CONCLUDING REMARKS 

We first explained the basic idea of evolutionary multi-
objective design of fuzzy rule-based systems. Then we 
demonstrated that a number of non-dominated fuzzy rule-
based classifiers with different accuracy-complexity tradeoffs 
were obtained by a single run of multiobjective genetic fuzzy 
rule selection. Finally we pointed out some future research 
directions related to multiobjective fuzzy system design. 
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