
When the Plus Strategy Outperforms
the Comma Strategy—and When Not

Jens Jägersküpper and Tobias Storch
Department of Computer Science 2

University of Dortmund
44221 Dortmund, Germany

{jens.jaegerskuepper|tobias.storch}@cs.uni-dortmund.de

Abstract— Occasionally there have been long debates on
whether to use elitist selection or not. In the present paper
the simple (1,λ) EA and (1+λ) EA operating on {0, 1}n are
compared by means of a rigorous runtime analysis. It turns out
that only values for λ that are logarithmic in n are interesting.
An illustrative function is presented for which newly developed
proof methods show that the (1,λ) EA—where λ is logarithmic
in n—outperforms the (1+λ) EA for any λ. For smaller offspring
populations the (1,λ) EA is inefficient on every function with a
unique optimum, whereas for larger λ the two randomized search
heuristics behave almost equivalently.

I. INTRODUCTION

Evolutionary algorithms (EAs) belong to the broad class of
general randomized search heuristics. Their area of application
is as huge as their variety and they have been applied in
numerous situations successfully. Among the best-known and
simplest EAs are the (µ+λ) EA and (µ,λ) EA [1]. The “µ”
indicates that a parent population of size µ is used, whereas
“λ” denotes the application of an offspring population of
size λ. Whether the elements of the descendant population
are selected either from the parent and offspring population or
from the offspring population only is indicated by “+” and “,”
respectively. Thus, for the comma strategy necessarily λ ≥ µ
(for λ = µ, there is actually no selection).

Runtime analysis started with very simple EAs such as the
(1+1) EA on example functions [2], [3]. Nowadays, one is
able to analyze its runtime on practically relevant problems
such as the maximum matching problem [4]. However, for
more complex EAs and (typical) example functions, the ef-
fects of applying either a larger offspring or a large parent
population size were investigated theoretically [5], [6]. In this
paper, we aim at a systematic comparison of the plus and
the comma strategy with respect to the offspring population
size. These investigations improve our ability to choose an
appropriate selection method, which has been debated a long
time. Furthermore, they contribute to the discussion on the
effects of selection pressure in evolutionary computation. In
order to concentrate on these effects we consider simple EAs
that allow for a rigorous analysis, but avoid unnecessary
complications due to the effects of other EA components. Here
we consider the maximization of pseudo-Boolean objective
(fitness) functions f : {0, 1}n → R, n ∈ N. We investigate
the following optimization heuristics, known as (1+λ) EA and
(1,λ) EA, using a parent population of size one and standard

bit-mutation “mutate1/n(x)”, where each bit of x ∈ {0, 1}n is
flipped independently with probability 1/n, cf. [1], [5].

(1+λ) EA and (1,λ) EA
1) Set t := 1 and choose xt ∈ {0, 1}n uniformly at random.
2) Set t := t + 1 and let

yt,1 := mutate1/n(xt−1), . . . , yt,λ := mutate1/n(xt−1).
3) Choose yt ∈ {yt,1, . . . , yt,λ} arbitrarily among all

elements with largest f -value.
(1+λ) EA: If f(yt) ≥ f(xt−1), then set xt :=yt,

else set xt :=xt−1.
(1,λ) EA: Set xt :=yt.

4) Goto 2.

The number of f -evaluations which are performed until the
t(n)th step is completed, equals 1+λ ·(t(n)−1) for t(n) ≥ 1.
In contrast to the (1+λ) EA, the (1,λ) EA occasionally accepts
an element that is worse than the previous one (unless the func-
tion to be optimized is constant). This can avoid stagnation in
local optima. However, it may also cause a slow(er) movement
towards global optima. It was often argued that the difference
between an elitist (1+λ) EA and a non-elitist (1,λ) EA is
less important in {0, 1}n, e.g. [5]. Here we will point out in
detail when this is correct—but we also demonstrate when
this is definitely not the case. More precisely, in Section III
we show that a comparison of plus and comma strategy is
interesting in particular for offspring populations of size λ
with ln(n)/14 < λ = O(lnn). Investigating λ = 1 for
the (1+λ) EA does make sense, but for the (1,λ) EA it does
not: For any λ ≤ ln(n)/14, the comma strategy indeed
fails to optimize any function with a unique global optimum.
Furthermore, for λ = ω(lnn) (i.e., lnn/λ → 0 as n →∞) it
is rather unlikely to observe any difference in the populations
of the (1+λ) EA and the (1,λ) EA in a polynomial number
of steps. These observations are applied and extended for
a simple (unimodal) example function and (asymptotically)
tight bounds on the heuristics’ runtimes are obtained. In
Section IV we extend the well-known proof technique of
f -based partitions such that it can be applied to (1+λ) EA and
(1,λ) EA. With the help of this method we demonstrate the
algorithms’ different strengths and weaknesses. Namely, for a
simple (multimodal) example function we apply the method
and demonstrate the possible major disadvantage of the plus

25

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE



strategy compared to the comma strategy. The runtime bounds
to be presented are again tight. We finish with a summary
and some conclusions in Section V and continue with some
preliminaries in the following Section II.

II. PRELIMINARIES

The efficiency of a randomized algorithm is (usually) mea-
sured in the following way. For ? ∈ {“ + ”; “, ”} let T ?

fn,λ(x)
denote the random variable which corresponds to the number
of function evaluations—the runtime—of the (1?λ) EA to
create an optimum of fn : {0, 1}n → R, n ∈ N, for the
first time, where the initial element is x ∈ {0, 1}n. (We can
ignore a stopping criterion and analyze an infinite stochastic
process.) If for a sequence of functions f = (f1, . . . , fn, . . .)
the expected runtime of the (1?λ) EA to optimize fn, namely∑

x∈{0,1}n E[T ?
fn,λ(x)]/2n (since the initial element x is

chosen uniformly at random), is bounded by a polynomial
in n, then we call the (1?λ) EA efficient on f , whereas we
call it totally inefficient if the probability that an optimum is
created remains exponentially small even after an exponential
number of steps. In this case, a polynomially bounded number
of (parallel) independent multistarts of the algorithm is still
totally inefficient. For the notations on asymptotics see [7].

III. SMALL AND LARGE OFFSPRING POPULATIONS

A. Small Offspring Populations

We take a closer look at the smallest possible offspring pop-
ulation size. On the one hand, the (1+1) EA (can reasonably
be applied) optimizes any function in an expected runtime
O(nn), and functions are known where it needs an expected
runtime Θ(nn). On the other hand, the (1+1) EA optimizes
any linear function in an expected runtime O(n lnn), and it
needs an expected runtime Θ(n lnn) if the linear function
has a unique global optimum [2]. In contrast, the (1,1) EA
(cannot reasonably be applied) optimizes any function in an
expected runtime O(2n), but it also needs an expected runtime
Θ(2n) if the function has a unique global optimum [3]. This
is because the closer the search point xt of the (1,1) EA is to
the unique optimum, the larger the probability of xt+1 to be
located farther away from the optimum. Let us consider the
(1,λ) EA with larger offspring populations, yet λ ≤ ln(n)/14.
We demonstrate that a strong drift away from the optimum
still exists. Namely, if xt is reasonable close to the optimum,
then with a large probability all elements in the offspring
population are even farther away from the optimum. Since
comma selection is applied, one of these elements becomes
xt+1. Thus, it is time-consuming to create the optimum.

Theorem 1 Given a function f : {0, 1}n → R with a unique
global optimum x′ ∈ {0, 1}n and λ ≤ ε(n) ln(n)/7 with
ε(n) ∈ [7/ lnn, 1/2], with probability 1 − 2−Ω(n1−ε(n)) the
(1,λ) EA needs a runtime larger than 2n1−ε(n)

to optimize f .

With ε(n) := 7/ lnn we obtain for the (1,1) EA a lower
bound on the runtime to optimize f of 2Ω(n) which holds
not only in expectation (cf. the result in [3]) yet also with an

overwhelming probability. Even the (1,bln(n)/14c) EA (i.e.,
we choose ε(n) := 1/2) is still totally inefficient.

To prove Theorem 1, we recall a result on Markov processes
(and drift). A Markov process M on m < ∞ states, namely
0, . . . ,m− 1, is described by a stochastic m×m-matrix P of
transition probabilities (Pi,j , 0 ≤ i, j ≤ m − 1: probability
to transit from state i to state j) and a stochastic row vector
p ∈ [0, 1]m of initialization probabilities (pi, 0 ≤ i ≤ m− 1:
probability to initialize in state i). The ith entry of the
stochastic row vector pP t−1 corresponds to the probability
of M being in state i after the tth step for 0 ≤ i ≤ m−1 and
t ≥ 1. For more detailed investigations of Markov processes
see [7]. The following result was proven in [4] and goes back
to a result in [8].

Lemma 2 Given a Markov process M on m states, a state
` ∈ {0, . . . ,m− 1}, and α(`), β(`), γ(`) > 0, if
1)

∑m−1
j=0 pi,j · e−α(`)·(j−i) ≤ 1− 1/β(`) ∀i ∈ {0, . . . , `},

2)
∑m−1

j=0 pi,j · e−α(`)·(j−`) ≤ 1 + γ(`) ∀i ∈ {`, . . . , m−1},
then the 0th entry of the m-vector pP t−1 is bounded from
above by t · e−α(`)·` · β(`) · (1 + γ(`)) +

∑`−1
j=0 pj .

In the following we prove Theorem 1:
Proof: The runtime is larger than 1 + λ · (t(n)− 1) ≥

t(n), if the unique optimum x′ is not created in the first
t(n) steps. We assume that, once the (1,λ) EA has created x′,
afterwards x′ would be kept forever. Thus, we are interested in
the event xb2n1−ε(n)c = x′. If its probability is 2−Ω(n1−ε(n)),
then we obtain the claimed result.

We describe a Markov process M on n + 1 states with the
following property. At least with the same probability, M is
in a state i, . . . , n after t(n) steps as the (1,λ) EA generates
an element xt(n) with Hamming distance H[xt(n), x

′] ≥ i
from the optimum x′. If this holds for all i ∈ {0, . . . , n},
the (1,λ) EA generates the optimum at most with the same
probability as M reaches state 0 (in a given number of steps).
With pi :=

(
n
i

)
/2n, M has the desired property for t(n) = 1

(even equality holds). If M is in state i after t(n) steps,
with at least the same probability holds H[xt(n), x

′] ≥ i for
the (1,λ) EA with xt(n). In this situation, assume that the
probability of creating xt(n)+1 is bounded above by pi,≤j ,
where H[xt(n)+1, x

′] ≤ j. Ensuring pi,0 + · · · + pi,j ≥ pi,≤j

is sufficient, so that M has the desired property also in the
following step. For j < i we set pi,j to (at least) the maximum
of the probabilities that an xt(n) generates xt(n)+1 with
H[xt(n)+1, x

′] = j, so that the inequality holds for j < i. We
set p0,0 := 1 and the inequality holds for i = 0. We set pi,i+1

for i ≥ 1 to (at most) the minimum of the probabilities that
xt(n) generates xt(n)+1 with H[xt(n)+1, x

′] ≥ i+1. Moreover,
pi,j := 0 for j ≥ i+2 a well as pi,i := 1−pi,i+1−

∑i−1
j=0 pi,j ,

so that the inequality holds for j ≥ i and i ≥ 1.
In order to apply Lemma 2 for M with ` := bn1−ε(n)c,

α(`) := 6/5, β(`) := 32`, and γ(`) := 1, we have to prove
that the following two conditions are fulfilled.
1)

∑n
j=0 pi,j · e−(6/5)·(j−i) ≤ 1 − 1/(32bn1−ε(n)c) for all

i ∈ {1, . . . , bn1−ε(n)c − 1}.

26

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



Firstly, we consider j < i and an element x with H[x, x′] =
i + k, 0 ≤ k ≤ n − i. In order to decrease the Hamming
distance from the optimum to j, for at least one of its λ
offspring, i + k − j out of i + k specific bits must flip.
Hence,

pi,j ≤ max{λ ·
(

i+k
i+k−j

)
/ni+k−j | k ∈ {0, . . . , n−i}}

≤ λ ·
(

i
i−j

)
/ni−j ,

since
(

i+k
i+k−j

)
=

(
i

i−j

)
· (i+k)···(i+1)

(j+k)···(j+1) ≤
(

i
i−j

)
· nk.

Furthermore, with
(

i
i−j

)
≤ ii−j it holds

λ ·
(

i
i−j

)
/ni−j ≤ λ · ii−j/ni−j

≤ λ · n(1−ε(n))(i−j)/ni−j = λ · n−ε(n)(i−j) .

Secondly, we consider j = i + 1 for i > 0 and an element
x with H[x, x′] = i + k, 0 ≤ k ≤ n− i.
• For k = 0 it is sufficient that each of its λ offspring

equals x except for one bit which is flipped such that
the Hamming distance to the optimum is increased.

• For k ≥ 1 it is sufficient, that each of its λ offspring
is a duplicate of x.

In these cases, the Hamming distance to the optimum is at
least i + 1. Hence,

pi,i+1 ≥ min{
(
n−i
1

)
· 1

n

(
1− 1

n

)n−1
,
(
1− 1

n

)n}λ

≥ (6/17)λ

because (1−1/n)n ≥ 6/17 and (n−i)/n·(1−1/n)n−1 ≥
(n−n1−7/ ln n)/(en) ≥ 6/17. Furthermore, using the fact
that ln(6/17) · 1/7 ≥ −1/6, we have

(6/17)λ ≥ (6/17)ε(n) ln(n)/7 ≥ n−ε(n)/6 .

It remains to prove that
∑i−1

j=0 λ ·n−ε(n)(i−j)e(6/5)·(i−j) +
(1−n−ε(n)/6−

∑i−1
j=0 λ ·n−ε(n)(i−j)) ·e(6/5)·0 +n−ε(n)/6 ·

e(6/5)·(−1) ≤ 1 − n−(1−ε(n))/32 for 0 < i < bn1−ε(n)c.
By an index transformation and due to the convergence
property of infinite geometric series

i∑
j=1

λ · n−ε(n)je
6j
5 ≤ λ

∞∑
j=1

(n−ε(n)e
6
5 )j =

λ

nε(n)e−
6
5 − 1

follows. Furthermore, with λ ≤ ε(n) ln(n)/7 it holds

λ

nε(n)e−6/5 − 1
≤ ε(n) ln(n)

7nε(n)e−6/5 − 7
≤ 2n−ε(n)/6

3

since ε(n) ≥ 7/ lnn and furthermore, with e5ε(n) ln(n)/6 ≥
1 + 5ε(n) ln(n)/6 it is

0 ≤ ε(n) ln(n) · (14
3
· 5
6
· e− 6

5 − 1) +
14
3

(e−
6
5 − e−

7
6 )

≤ 14
3
· e− 6

5 · n
5ε(n)

6 − 14
3
· n−

ε(n)
6 − ε(n) ln(n)

=
2n−

ε(n)
6

3
· (7nε(n)e−

6
5 − 7)− ε(n) ln(n) .

Since

1− n−ε(n)/6 −
i−1∑
j=1

λ · n−ε(n)j ≤ 1− n−ε(n)/6 ,

the inequality mentioned above is fulfilled with
2n−ε(n)/6/3 + (1 − n−ε(n)/6) + n−ε(n)/6e−6/5 ≤
1−n−ε(n)/6/32 ≤ 1−n−(1−ε(n))/6/32 since ε(n) ≤ 1/2.

2)
∑n

j=0 pi,j · e−(6/5)·(j−bn1−ε(n)c) ≤ 2 for all
i ∈ {bn1−ε(n)c, . . . , n}.
Similar to the proof that the first condition is met, we
have pi,j ≤ λ · n−ε(n)(bn1−ε(n)c−j) for j < i. Thus,∑bn1−ε(n)c−1

j=0 λ · n−ε(n)(bn1−ε(n)c−j)e(6/5)·(bn1−ε(n)c−j) +

(1 −
∑bn1−ε(n)c−1

j=0 λ · n−ε(n)(bn1−ε(n)c−j)) · e(6/5)·0 ≤
2n−ε(n)/6/3 + 1 ≤ 2 for bn1−ε(n)c ≤ i ≤ n.

To apply Lemma 2 we must finally estimate
∑`−1

j=0 pj . Since
` ≤ bn1−ε(n)c ≤ bn/e7c with ε(n) ≥ 7/ lnn,

`−1∑
j=0

(
n
j

)
/2n ≤

bn/e7c−1∑
j=0

(
n
j

)
/2n ≤ n ·

(
n

bn/e7c
)
/2n

≤ n ·
( en

n/e7

)n/e7

/2n = eln n+8n/e7−n ln 2 ≤ e−n/3 .

Now, applying Lemma 2 with t = b2n1−ε(n)c leads to a prob-
ability of at most b2n1−ε(n)c · e−(6/5)·bn1−ε(n)c · 32bn1−ε(n)c ·
(1 + 1) + e−n/3 = 2−Ω(n1−ε(n)) that M reaches state 0 in the
first b2n1−ε(n)c steps.

B. Large Offspring Populations

With an offspring population size λ of any appreciable size,
the (1+λ) EA and the (1,λ) EA will not differ significantly in
the way they search {0, 1}n. This was claimed in [5] since in
this situation . . . the offspring population will almost surely
contain at least one exact copy of the parent. We extend
this statement and make it more precise in the following.
Therefore, let f be a function and for t(n) ≥ 1 let

st(n) := x1, y2,1, . . . , y2,λ, y2, x2, y3,1, . . . , y3,λ, y3,

. . . , xt(n), yt(n)+1,1, . . . , yt(n)+1,λ, yt(n)+1

be a sequence of (λ + 2) · t(n) elements from {0, 1}n. The
(1?λ) EA observes st(n) (while optimizing f ) if with positive
probability the following holds: The elements x1, . . . , xt(n)

appear as the first t(n) parents and, for t ∈ {2, . . . , t(n)+1},
yt can appear as the selected offspring out of the λ offspring
yt,1, . . . , yt,λ of xt−1. We consider a sequence st(n) observed
by the (1?λ) EA. Recall that the (1?λ) EA and the (1?̄λ) EA
differ only in step 3, where ?̄ denotes the other of the two
symbols {“ + ”; “, ”}.

If ∀ t ∈ {2, . . . , t(n)} : f(yt) ≥ f(xt−1), then the condition
in step 3 is always fulfilled. The (1?λ) EA and (1?̄λ) EA
observe with equal probability: the same x1 and with the
same parent xt−1 the same sequence of offspring yt,1, . . . , yt,λ

and even the selected offspring yt is determined identically.
Thus, the (1?λ) EA and (1?̄λ) EA observe the sequence st(n)

27

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



with equal probability while optimizing f . The set of these
sequences is denoted by S+, ,f,t(n).

If ∃ t ∈ {2, . . . , t(n)} : f(yt) < f(xt−1), then the condition
in step 3 is in step t not fulfilled. In case f(yt) < f(xt−1)
also yt 6= xt−1 and the (1?λ) EA and (1?̄λ) EA surely select
different elements to be xt. Thus, the sequence st(n) is not
observed by the (1?̄λ) EA while optimizing f . The set of these
sequences is denoted by S?,f,t(n).

We bound the probability to observe a sequence of S+, ,f,t(n)
by the (1+λ) EA and (1,λ) EA. If at least one of the offspring
yt,1, . . . , yt,λ is a duplicate of its parent xt−1, then necessarily
f(yt) ≥ f(xt−1). Its probability is bounded from below by
1−

(
1−(1−1/n)n

)λ ≥ 1−
(
1−6/17)λ = 1−(11/17)λ for n

large enough. With probability at most (t(n)− 1) · (11/17)λ,
this does not happen for at least one t ∈ {2, . . . , t(n)}.

Lemma 3 Given f : {0, 1}n → R and n large enough, with
probability at least 1− (t(n)− 1) · (11/17)λ the (1+λ) EA as
well as the (1,λ) EA (with an arbitrary x1) observe a sequence
from S+, ,f,t(n) for t(n) ≥ 1.

This lemma helps to transfer success probabilities and even
expectation values for optimization from the (1+λ) EA to the
(1,λ) EA and vice versa. In particular, when the offspring
population is large – with respect to the period considered.

We consider a runtime of `(n) with 1 ≤ `(n) ≤ 1 + λ,
i.e. at most two steps. For any λ, the (1?λ) EA and (1?̄λ) EA
optimize a function f within the first `(n) function evaluations
with equal probability in this case.

We consider a runtime `(n) with 2+λ ·(t(n)−1) ≤ `(n) ≤
1+λ · t(n) for t(n) ≥ 2, i.e. at most t(n)+1 steps. Let E? be
the event that the (1?λ) EA has not optimized the function
f in the first `(n) function evaluations. This event occurs
iff the (1?λ) EA observes a sequence st(n) where all `(n)
elements x1, y2,1, . . . , y2,λ, y3,1, . . . , y3,λ, . . . , yt(n)+1,1, . . . ,
yt(n)+1,`(n)−λ·(t(n)−1)−1 are non-optimal. We decompose E?

into two disjoint events E?
1 , that st(n) ∈ S+, ,f,t(n), and E?

2 ,
that st(n) 6∈ S+, ,f,t(n), i.e., st(n) ∈ S?,f,t(n). As we have seen,
each sequence from S+, ,f,t(n) occurs with the same probability
for the (1?λ) EA and (1?̄λ) EA. Thus, Pr[E?

1 ] = Pr[E ?̄
1 ] and

hence, Pr[E ?̄] = Pr[E ?̄
2 ] + Pr[E ?̄

1 ] = Pr[E ?̄
2 ] + Pr[E?

1 ] =
Pr[E ?̄

2 ] + Pr[E?]− Pr[E?
2 ].

Consider λ ≥ (5/2)·(1+c(n))·ln t(n), where c(n) ≥ 0. By
Lemma 3 the (1?λ) EA and (1?̄λ) EA observe a sequence from
S+, ,f,t(n) with probability at least 1− (t(n)− 1) · (11/17)λ ≥
1−t(n)·(11/17)(5/2)·(1+c(n))·ln t(n) ≥ 1−t(n)·1/t(n)1+c(n) =
1− 1/t(n)c(n) since ln(11/17) · (5/2) ≤ −1. So, a sequence
of S?,f,t(n) is observed with probability at most 1/t(n)c(n) by
the (1?λ) EA. Since E?

2 implies that the (1?λ) EA observes a
sequence from S?,f,t(n), 0 ≤ Pr[E?

2 ] and Pr[E ?̄
2 ] ≤ 1/t(n)c(n),

and hence, −1/t(n)c(n) ≤ Pr[E ?̄
2 ]− Pr[E?

2 ] ≤ 1/t(n)c(n).

Theorem 4 Let f : {0, 1}n → R, x ∈ {0, 1}n and n large
enough be given.
1) For 0 ≤ `(n) ≤ 1 + λ holds:

Pr[T ?̄
f,λ(x) > `(n)] = Pr[T ?

f,λ(x) > `(n)]

2) For 2+λ ·(t(n)−1) ≤ `(n) ≤ 1+λ ·t(n), where t(n) ≥ 2
and λ ≥ (5/2) · (1 + c(n)) · ln t(n), c(n) ≥ 0, holds:

Pr[T ?̄
f,λ(x) > `(n)] ≤ Pr[T ?

f,λ(x) > `(n)] + 1/t(n)c(n)

Pr[T ?̄
f,λ(x) > `(n)] ≥ Pr[T ?

f,λ(x) > `(n)]− 1/t(n)c(n)

The next section shows an exemplary application of this result.

C. Application to ONEMAX

Let us investigate one of the best-known functions, namely
ONEMAX : {0, 1}n → R, where

ONEMAX(x) := |x| .

Even its analogue in continuous search spaces is well-studied,
e.g. in [9]. Part 1 of the following theorem was proven in [5]
(it even holds for the (1+λ) EA with an arbitrarily fixed x1).
Let us consider a phase of

d3 max{E[T+
ONEMAX,λ(x)] |x ∈ {0, 1}n}/λ + 67e =: Eλ

steps, each creating λ offspring. By Markov’s inequality [7]
the (1+λ) EA does not create the optimum in such a phase with
probability at most E[T+

ONEMAX,λ(x)]/(λ ·Eλ) ≤ 1/3 for every
x. We observe, for λ ≥ 3 ln n holds (5/2)·(1+1/7)·lnEλ ≤ λ
since Eλ ≤ cn for an appropriate large constant c. Hence, by
Theorem 4.1, the (1,λ) EA does not create the optimum in such
a phase with probability at most 1/3+1/E

1/7
λ ≤ 1/2, i.e., with

probability at least 1/2 it does. In the case of a failure we can
repeat the argumentation. The expected number of repetitions
is upper bounded by 2 and we obtain part 3 of the following
theorem since 1 + 2 · λ · Eλ = O(max{E[T+

ONEMAX,λ(x)] |
x ∈ {0, 1}n}). Finally, part 2 of the following theorem results
by Theorem 1 since ONEMAX has the unique optimum 1n.

Theorem 5
1) The expected runtime of the (1+λ) EA on ONEMAX is

• O(n lnn) if λ = O((lnn)(ln lnn)/ ln ln lnn), and
• O(λn) if λ = Ω(ln n).

2) If λ ≤ ε(n) ln(n)/7 for ε(n) ∈ [7/ lnn, 1/2], then with
probability 1− 2−Ω(n1−ε(n)) the (1,λ) EA needs a runtime
larger than 2n1−ε(n)

to optimize ONEMAX.
3) If λ ≥ 3 ln n, then the expected runtime of the (1,λ) EA on

ONEMAX is
• O(n lnn) if λ = O((lnn)(ln ln n)/ ln ln lnn), and
• O(λn).

IV. OFFSPRING POPULATIONS WHICH ARE NEITHER
LARGE NOR SMALL

We present two proof techniques – one for the (1+λ) EA and
one for the (1,λ) EA – which are inspired by the method of
f -based partitions from [10]. They demonstrate the different
strengths and weaknesses of the two selection strategies. The
original method of f -based partitions helps to upper bound
the expected runtime of the (1+1) EA to optimize a particular
function and is widely applied. Recently, this method was
successfully extended for a (µ+1) EA in [11].

28

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



Given f : {0, 1}n → R and A,B ⊆ {0, 1}n, A,B 6= ∅, the
relation A <f B holds, iff f(a) < f(b) for all a ∈ A, b ∈ B.
We call A0, . . . , Am an f -based partition, iff A0, . . . , Am is
a partition of {0, 1}n, A0 <f · · · <f Am, and Am contains
optima only, i.e., f(a) = max{f(b) | b ∈ {0, 1}n} for each
a ∈ Am. Moreover, for i ∈ {0, . . . ,m− 1} let p(a), a ∈ Ai,
denote the probability that a mutation of a is in Ai+1∪· · ·∪Am

and p(Ai) := min{p(a) | a ∈ Ai}, i.e., p(Ai) is a lower bound
on the probability to leave Ai with a mutation.

A. (1+λ) EA

For the (1+λ) EA to leave Ai, i < m, once and for all, at
least one of the λ offspring must be in Ai+1 ∪ · · · ∪Am.

Lemma 6 Given f : {0, 1}n → R and an f -based partition
A0, . . . , Am, let

p+
i := 1− (1− p(Ai))λ for i ∈ {0, . . . ,m− 1} .

The (1+λ) EA (with an arbitrarily initialized x1) optimizes f
in an expected runtime of at most

1 + λ ·
( 1
p+
0

+ · · ·+ 1
p+

m−1

)
.

Proof: We describe a Markov process M on m + 1
states with the following property. The probability that M is
in a state i, . . . , m after t(n) steps is at most the probability
that the (1+λ) EA generates an element xt(n) with xt(n) ∈
Ai∪· · ·∪Am. If this holds for all i ∈ {0, . . . ,m}, the (1+λ) EA
generates at least with the same probability an optimum as M
reaches state m (in a given number of steps). We set p0 := 1
and pi := 0 for i ≥ 1, so that M has the claimed property for
t(n) = 1 and arbitrary x1. If M is in state i after t(n) steps,
with at least the same probability xt(n) ∈ Ai∪· · ·∪Am for the
(1+λ) EA with xt(n). In this situation, it is impossible to create
an xt(n)+1 ∈ A0∪ · · ·∪Ai−1. Moreover, p+

i is a lower bound
on the probability to create xt(n)+1 ∈ Ai+1∪· · ·∪Am since it
suffices that at least one of λ offspring is therein. Thus, we set
pi,j := 0 for 0 ≤ j < i ≤ m and i+2 ≤ j ≤ m, pi,i+1 := p+

i ,
and pi,i := 1−p+

i for 0 ≤ i < m, and pm,m := 1. This ensures
that M has the desired property also in the following step.

The expected number of steps to move from state i to state
m equals Ei := 1+ p+

i ·Ei+1 +(1− p+
i ) ·Ei = 1/p+

i +Ei+1

for i ∈ {0, . . . ,m − 1}, and Em = 0. Thus, E0 equals
1/p+

0 +· · ·+1/p+
m−1. With the initialization and the λ function

evaluations in each further step, the (1+λ) EA optimizes f in
an expected runtime of at most 1 + λ · E0.

For λ = 1 we obtain the original result for the (1+1) EA
presented in [10]. We apply this method exemplarily to
ONEMAX. We consider the partition A0, . . . , An with Ai :=
{x | |x| = i}. Then p+

i ≥ 1 −
(
1 − n−i

en

)λ ≥ 1 − e−
λ(n−i)

en ≥
1 − 1

1+
λ(n−i)

en

= en+λ(n−i)
λ(n−i) (cf. [5]). Hence, by applying

Lemma 6, the (1+λ) EA optimizes ONEMAX in an expected
runtime of at most 1 + λ

∑n−1
i=0

en+λ(n−i)
λ(n−i) = O(n lnn + λn).

This already proves a major part of Theorem 5.1.

B. (1,λ) EA

Theorem 4 enables us to easily transfer Lemma 6 to the
(1,λ) EA. For steps which do not create a duplicate, we may
pessimistically assume that they lead to a disadvantage, or
we may optimistically assume that they lead to an advantage,
depending on whether we aim at an upper or at a lower bound
on the (expected) runtime.

Given f : {0, 1}n → R, let A0, . . . , Am be a (not
necessarily f -based) partition of {0, 1}n such that Am consists
of optima only. Let the probability that a mutation of a ∈ Ai

generates some b

• in A0 ∪ · · · ∪Ai−1 such that f(b) ≥ f(a) be denoted by
p−(a),

• in Ai+1 ∪ · · · ∪Am such that f(b) > f(a) be denoted by
p+(a).

Thus, p−(Ai) := max{p−(a) | a ∈ Ai} is an upper bound on
the probability that an offspring is generated such that Ai is
(possibly) left, but in the wrong direction (namely A0 ∪ · · · ∪
Ai−1 is hit) – even if a duplicate of the parent is generated.
Moreover, p+(Ai) := min{p+(a) | a ∈ Ai} is a lower bound
on the probability that an offspring is generated such that Ai

is left in the right direction, namely Ai+1 ∪ · · · ∪Am is hit.

Lemma 7 Given f : {0, 1}n→R and a partition A0, . . . , Am

of {0, 1}n such that Am consists of optima only, let for
i ∈ {0, . . . ,m}

p+
i := max{

(
1− p−(Ai)

)λ −
(
1− p−(Ai)− p+(Ai)

)λ
,

p(Ai)λ} and

p−i := 1−
(
1− p−(Ai)

)λ +
(

11
17 − p−(Ai)− p+(Ai)

)λ
.

The (1,λ) EA (with an arbitrarily initialized x1) optimizes f
in an expected runtime of at most

1 + λ ·
( 1
p+
0

+
1

p+
1 + p−1

+ · · ·+ 1
p+

m−1 + p−m−1

)
· p+

1 + p−1
p+
1

· · ·
p+

m−1 + p−m−1

p+
m−1

.

Proof: Note that p+
i is a lower bound on the probability

that the (1,λ) EA with xt(n) ∈ Ai generates an xt(n)+1 ∈
Ai+1 ∪ · · · ∪ Am, since – for this to happen – it is sufficient
that either

• at least one offspring in Ai+1 ∪ · · · ∪ Am with a larger
function value than each element of Ai and no offspring
in A0 ∪ · · · ∪ Ai−1 with a function value at least as
large as the one of each element in Ai are created
(the probability of this event is bounded from below
by

∑λ
j=1

(
λ
j

)
· p+(Ai)j ·

(
1 − p−(Ai) − p+(Ai)

)λ−j =(
1− p−(Ai)

)λ −
(
1− p−(Ai)− p+(Ai)

)λ
), or

• all offspring are in Ai+1 ∪ · · · ∪ Am (the probability is
bounded from below by p(Ai)λ).

Moreover, p−i is an upper bound on the probability that the
(1,λ) EA with xt(n) ∈ Ai generates xt(n)+1 ∈ A0∪· · ·∪Ai−1,
since for this not to happen it is sufficient that

29

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



• at least one offspring in Ai ∪ Ai+1 ∪ · · · ∪ Am with a
function value at least as large as the one of each element
in Ai is generated but no offspring in A0 ∪ · · · ∪ Ai−1

with a function value at least as large as the function
value of an element in Ai. The probability for this is
bounded from below by

∑λ
j=1

(
λ
j

)(
6/17 + p+(Ai)

)j ·(
1−p−(Ai)− (6/17+p+(Ai))

)λ−j =
(
1−p−(Ai)

)λ−(
11/17 − p−(Ai) − p+(Ai)

)λ
since the probability of

generating a duplicate equals (1− 1/n)n ≥ 6/17.
Let px,x′ denote the probability that the (1,λ) EA generates

x′ as next parent when x is mutated, and let Tx denote the
expected number of steps until an element in Am is generated
(for the first time) when starting with x. Obviously, Tx = 0 if
x ∈ Am. For x ∈ Ai with i < m,

Tx = 1 +
∑

x′∈A0∪···∪Ai−1

px,x′Tx′ +
∑

x′∈Ai

px,x′Tx′

+
∑

x′∈Ai+1∪···∪Am

px,x′Tx′ .

Since Tx ≤ max{Tx |x ∈ Ai ∪ · · · ∪ Am} =: Ti (so that
Ti ≥ Ti+1),

Tx ≤ 1 +
∑

x′∈A0∪···∪Ai−1

px,x′T0 +
∑

x′∈Ai

px,x′Ti

+
∑

x′∈Ai+1∪···∪Am

px,x′Ti+1 .

As we have seen above,
∑

x′∈Ai+1∪···∪Am
px,x′ ≥ p+

i and∑
x′∈A0∪···∪Ai−1

px,x′ ≤ p−i . Hence, for each x ∈ Ai

Tx ≤ 1 + p−i T0 + (1− p−i − p+
i )Ti + p+

i Ti+1 .

Thus, max{Tx |x ∈ Ai} ≤ 1 + p−i T0 + (1 − p−i − p+
i )Ti +

p+
i Ti+1 and with Ti+1 ≤ 1+p−i T0+(1−p−i −p+

i )Ti+p+
i Ti+1

Ti = max{max{Tx |x ∈ Ai}, Ti+1}
≤ 1 + p−i T0 + (1− p−i − p+

i )Ti + p+
i Ti+1 .

Since Tx ≤ T0 for all x ∈ {0, 1}n, we are interested in an
upper bound on T0.

We consider the following Markov process M on m + 1
states. For i ∈ {1, . . . ,m−1} let pi,0 := p−i , pi,i+1 := p+

i ,
pi,i := 1 − p−i − p+

i , and p0,0 := 1 − p+
0 , p0,1 := p+

0 ,
pm,0 := p−m, pm,m := 1 − p−m. Moreover, let pi,j := 0 for
i ∈ {1, . . . ,m−1} and j ∈ {1, . . . , i−1, i + 2, . . . ,m}.

For the expected number of steps Ei to move in M from
state i to state m in fact Ei ≥ Ti. We prove

E0 ≤
( 1
p+
0

+
1

p+
1 + p−1

+ · · ·+ 1
p+

i−1 + p−i−1

)
· p+

1 + p−1
p+
1

· · ·
p+

i−1 + p−i−1

p+
i−1

+ Ei

for all i ∈ {0, . . . ,m} by induction over i. With the first step
and the λ function evaluations in each further step, and with
i = m, the (1,λ) EA optimizes f in an expected runtime at
most 1 + λ · E0 since Em = 0. Obviously, E0 = E0, and for

i = 1, it is readily seen that E0 = E1/p+
0 . Similarly, for the

estimation of Ei+1 we utilize that

Ei = 1 + p−i E0 + (1− p−i − p+
i )Ei + p+

i Ei+1

=
1 + p−i E0 + p+

i Ei+1

p+
i + p−i

.

Now, since 1
p+

i +p−i
≤ 1

p+
i +p−i

· p+
1 +p−1
p+
1

· · · p+
i−1+p−i−1

p+
i−1

, using the
estimate for Ei (induction) yields

E0 · (1−
p−i

p+
i + p−i

)

≤
( 1
p+
0

+
1

p+
1 + p−1

+ · · ·+ 1
p+

i−1 + p−i−1

+
1

p+
i + p−i

)
·p

+
1 + p−1

p+
1

· · ·
p+

i−1 + p−i−1

p+
i−1

+
p+

i Ei+1

p+
i + p−i

.

Finally, (1 − p−i
p+

i +p−i
) · p+

i +p−i
p+

i

= 1, so that the claimed
inequality holds also for i + 1.
We apply this lemma exemplary in the following section.

C. Application to CLIFF

A comparison of the (1+λ) EA and the (1,λ) EA for the
optimization of a function f with a unique optimum is
interesting especially for λ = Θ(ln n): On the one hand, for
λ ≤ ln(n)/14, the (1,λ) EA cannot optimize f efficiently at
all. On the other hand, for λ = ω(lnn), it is impossible that
the (1?λ) EA is efficient for f when the (1?̄λ) EA is totally
inefficient for f .

Let us investigate the function CLIFF : {0, 1}n → R with

CLIFF(x) :=

{
ONEMAX(x)− bn/3c if |x| ≥ n− bn/3c,
ONEMAX(x) if |x| < n− bn/3c.

Its analogue in continuous search spaces has been studied in
[12]. Typically, the (1+λ) EA waits for a long time at the cliff,
which consists of all elements x with |x| < n−bn/3c, whereas
the (1,λ) EA approaches the border of the cliff and, after a
short while, jumps over the cliff and hardly ever drops back.
The following theorem proves that the (1,λ) EA is efficient
with an offspring population size that is logarithmic in n,
whereas the (1+λ) EA is totally inefficient for any offspring
population sizes. (The opposite effect could also be illustrated.)

Theorem 8
1) With probability 1−2−Ω(n) the (1+λ) EA needs a runtime

larger than nn/4 to optimize CLIFF.
2) If λ ≤ ε(n) ln(n)/7 for ε(n) ∈ [7/ lnn, 1/2], with

probability 1− 2−Ω(n1−ε(n)) the (1,λ) EA needs a runtime
larger than 2n1−ε(n)

to optimize CLIFF.
3) If λ ≥ 5 ln n, the expected runtime of the (1,λ) EA on

CLIFF is O(e5λ).
4) The expected runtime of the (1,λ) EA on CLIFF is larger

than min{nn/4, eλ/4}/3.

Proof:

30

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



1) The (1+λ) EA with xt(n), where |xt(n)| < n − bn/3c,
generates xt(n)+1, where |xt(n)+1| < n − bn/3c (case 1)
or |xt(n)+1| ≥ |xt(n)|+ bn/3c (case 2) only. For case 2 to
occur, at least any bn/3c bits have to flip. The probability
that this happens at least once in bnn/4c mutations is
bounded from above by bnn/4c · 1/bn/3c! ≤ nn/4 ·
(e/bn/3c)bn/3c = 2−Ω(n ln n). As long as only case 1
occurs, the optimum is not generated. The probability that
for x1 holds |x1| ≥ n − bn/3c is bounded from above
by

∑n
i=n−bn/3c

(
n
i

)
/2n ≤ n ·

(
n

bn/3c
)
/2n. Furthermore,

n ·
(

n
bn/3c

)
≤ n · n···(n−dn/6e+1)·(n−dn/6e)···(n−bn/3c+1)

(1/n)·bn/3+1c! ≤
n2 · ndn/6e·(5n/6)bn/3c−dn/6e

2
√

n/3·(n/(3e))bn/3c
, where Stirling’s formula is

applied. Moreover, the former expression is bounded from
above by n2·2bn/3c·(log2(5/6)/2+log2(3e)) ≤ 228n/29. Hence,∑n

i=n−bn/3c
(
n
i

)
/2n ≤ 228n/29/2n = 2−Ω(n) and with

probability 1− 2−Ω(n ln n) − 2−Ω(n) the (1+λ) EA has not
optimized CLIFF in runtime nn/4 .

2) The result follows by Theorem 1 since CLIFF has a unique
optimum, namely 1n.

3) For λ > n lnn the result follows since the optimum is
generated with probability at least 1/nn in each mutation
as at most n bits have to flip. So, let λ ≤ n lnn and ` :=
blnλ/ ln lnλc. In order to apply Lemma 7, we distinguish
three classes of partitions Ai and determine p+

i and p−i in
each case. Note that (11/17)λ ≤ (11/17)5 ln n ≤ 1/n2.
a) Ai := {x | |x| = i}, 0 ≤ i ≤ n − bn/3c − 1. Since

p−(Ai) = 0 it holds

p−i ≤ 1/n2 for 0 ≤ i ≤ n− bn/3c − 1 .

Moreover, (1−p−(Ai))λ− (1−p−(Ai)−p+(Ai))λ ≥
1− (1−p+(Ai)) ≥ bn/3c · (1/n)(1−1/n)n−1 ≥ 1/9,
and hence, (movement towards the cliff)

p+
i ≥ 1/9 for 0 ≤ i < n− bn/3c − 1

and (jump over the cliff)

p+
n−bn/3c−1 ≥ 9−λ

since we obtain (similarly to above) p(An−bn/3c−1)λ ≥
(bn/3c · (1/n)(1− 1/n)n−1)λ ≥ (1/9)λ.

b) An−bn/3c+i := {x |n−bn/3c+i` ≤ |x| < n−bn/3c+
(i + 1)`}, 0 ≤ i < bn/(12`)c. It holds

p+(An−bn/3c+i) ≥
(bn/3c−(i+1)`

`

)
en`

since it is sufficient to flip exactly ` out of n − |x| ≥
bn/3c−(i+1)` ≥ n/5 specific bits of x ∈ An−bn/3c+i.
Hence, (bn/3c−(i+1)`

`

)
en`

≥
(n/5

`

)`

en`
= e−` ln(`·5)−1

≥ e−
ln λ

ln ln λ ·(ln ln λ−ln ln ln λ+ln 5)−1 ≥ 1
λ

since (lnλ/ ln lnλ) · (ln ln lnλ − ln 5) − 1 ≥ 0. Fur-
thermore, we obtain (probable return to the cliff)

p−n−bn/3c+i ≤ 1− p+
n−bn/3c+i for 0 ≤ i ≤ 1

and (improbable movement off the cliff)

p+
n−bn/3c+i

≥
(
1− p−(An−bn/3c+1)

)λ

−
(
1− p−(An−bn/3c+1)− p+(An−bn/3c+1)

)λ

=
λ∑

j=1

(
λ
j

)
· p+(An−bn/3c+i)j

·
(
1− p−(An−bn/3c+i)− p+(An−bn/3c+i)

)λ−j

≥ p+(An−bn/3c+i)

·
(
1− p−(An−bn/3c+i)− p+(An−bn/3c+i)

)λ−1

≥ (6/17)λ/λ for 0 ≤ i ≤ 1

since p+(An−bn/3c+i) ≥ 1/λ and p−(An−bn/3c+i) +
p+(An−bn/3c+i) ≤ 11/17. Hence, we obtain

p−(An−bn/3c+i) ≤ 1/(`i)! ≤ (e/(`i))`i

≤ e−(1+ 3 ln ln λ
4 )·( ln λ

ln ln λ−1)·i ≤ 1/λ3i/4 ,

for 2 ≤ i < bn/(12`)c since at least any `i bits have
to flip, for the last but one inequality holds e/(`i) ≤
1/(e ln3/4 λ), and for the last inequality

− lnλ

ln lnλ
+ 1− 3 ln λ

4
+

3 ln ln λ

4
≤ −3 ln λ

4
.

Thus,(
1−p−(An−bn/3c+i)

)λ ≥
(
1−1/λ3i/4

)λ ≥ 1−λ1−3i/4

and we obtain (improbable return to the cliff)

p−n−bn/3c+i ≤ λ1−3i/4 + 1/n2 for 2 ≤ i < bn/(12`)c

as well as (probable movement off the cliff)

p+
n−bn/3c+i ≥

(
1− λ1−3i/4

)
−

(
1− 1/λ

)λ ≥ 1/2

for 2 ≤ i < bn/(12`)c .

c) An−bn/3c+bn/(12`)c+i := {x |x = n − bn/3c +
bn/(12`)c`+ i}, 0 ≤ i ≤ bn/3c−bn/(12`)c`. It holds(

1− p−(An−bn/3c+bn/(12`)c+i)
)λ ≥ 1/2

≥
(
1− 1

dn/13e!
)λ ≥ 1− λ ·

( e

dn/13e

)dn/13e

≥ 1− e−n

since at least any bn/(12`)c` ≥ dn/13e bits have to
flip. We obtain (improbable return to the cliff)

p−n−bn/3c+bn/(12`)c+i

≤ e−n + 1/n2 for 0 ≤ i ≤ bn/3c − bn/(12`)c`

and furthermore, since p+(An−bn/3c+bn/(12`)c+i) ≥
(1/n)(1 − 1/n)n−1 ≥ 1/(en) for i < bn/3c −
bn/(12`)c`, we have (probable movement off the cliff)

p+
n−bn/3c+bn/(12`)c+i

≥
(
1− p−(An−bn/3c+bn/(12`)c+i)

)λ

−
(
1− p+(An−bn/3c+bn/(12`)c+i)

)λ

31

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



≥ (1− e−n)−
(
1− (1/n)(1− 1/n)n−1

)λ

≥ 1/(3n) for 0 ≤ i < bn/3c − bn/(12`)c` .

As argued, Lemma 7 implies for the (1,λ) EA an upper
bound on the expected runtime to optimize CLIFF of(

1 + λ ·
(
(
n−bn/3c−2∑

i=0

9) + n2 + 1 + 1

+ (
bn/(12`)c−1∑

i=2

2) + (
bn/3c−bn/(12`)c`∑

i=0

3n)
))

(a) ·
n−bn/3c−2∏

i=0

( 1
9 + 1

n2

1
9

)
·

1
9λ + 1

n2

1
9λ

(b) · 1
(6/17)λ

λ

· 1
(6/17)λ

λ

·
bn/(12`)c−1∏

i=2

( 1
2 + (λ1−3i/4 + 1

n2 )
1
2

)
(c) ·

bn/3c−bn/(12`)c`∏
i=0

( 1
3n + ( 1

en + 1
n2 )

1
3n

)
.

The letters on the left identify the class of partition
investigated. The expression in the first line is bounded
by O(n2λ), and (a) is bounded by O(1) · O(9λ/n2) =
O(e9λ/4/n2) since ln 9 ≤ 9/4. The expression (b)
is bounded by (17/6)λλ · (17/6)λλ · O(eλ/4/λ3) =
O(e11λ/4/λ) since ln(17/6) ≤ 5/4 and

bn/(12`)c−1∏
i=2

1 + 2λ1−3i/4 + 2/n2

≤
bln nc∏
i=2

2 ·
bn/(12`)c−1∏
i=bln nc+1

(1 + 3/n2)

≤ n · 2 = O(eλ/4/λ3) .

Finally, the expression (c) is bounded by O(1). Therefore,
the (1,λ) EA optimizes CLIFF in an expected runtime
O(n2λ) · O(e9λ/4/n2) · O(e11λ/4/λ) · O(1) = O(e5λ).

4) By part 1), with probability 1−2−Ω(n) the (1+λ) EA needs
a runtime larger than min{nn/4, eλ/4} to optimize CLIFF.
If min{nn/4, eλ/4} ≤ 1+λ, by Theorem 4.1, the (1,λ) EA
needs a runtime larger than min{nn/4, eλ/4} to optimize
CLIFF with probability 1− 2−Ω(n) ≥ 1/3, too.
If min{nn/4, eλ/4} > 1 + λ, by Theorem 4.2, where
c(n) = 3/5, the (1,λ) EA needs a runtime larger than
min{nn/4, eλ/4} to optimize CLIFF with probability at
least (1− 2−Ω(n))− 1/23/5 ≥ 1/3 since 2 ≤ t(n) ≤ eλ/4

and λ ≥ (5/2) · (1 + 3/5) ln t(n).
Consequently, the (1,λ) EA needs an expected runtime
larger than min{nn/4, eλ/4}/3 to optimize CLIFF.

It is worth to note that the proof of Theorem 8.3 implies the
following: For λ ≥ 5 ln n, the (1,λ) EA creates the optimum of
CLIFF in runtime O(λn2) with probability Ω(e−5λ), at least.

Let us take a short look at the multistart variant/extension of
EAs, where a particular EA A is (independently) restarted after
runtime `(n), denoted by A`(n). We observe the following
for λ ≥ 3 ln `(n) and polynomially bounded values of `(n).
If the (1+λ) EA`(n) is efficient, then also the (1,λ) EA`(n) is
efficient. And as we have seen, there exist functions where
the (1,λ) EA`(n) is efficient, but the (1+λ) EA`(n) is not. So,
in this situation and in case of doubt, one should prefer
the (1,λ) EA`(n). In cases when λ ≤ ln(n)/14, however,
one should definitely prefer the (1+λ) EA`(n). Thus, we have
obtained a somewhat general rule when to apply the comma
or the plus selection.

V. SUMMARY AND CONCLUSIONS

We have compared the (1,λ) EA and the (1+λ) EA operating
on {0, 1}n, and it has been pointed out why only the consider-
ation of offspring populations of logarithmic size in n are in-
teresting. For smaller values of λ, the (1,λ) is totally inefficient
on every function with a unique optimum, whereas for larger
values, the (1,λ) EA and (1+λ) EA behave equivalently with
a high probability. These investigations have been exemplified
by ONEMAX. For the example function CLIFF, we have
analyzed rigorously when and why the (1,λ) EA outperforms
the (1+λ) EA. Therefore, a simple but powerful proof method
has been developed. However, our results support – depending
on the offspring population size – the importance of a correct
choice of the selection operator.

Acknowledgments: This work was supported by the German Re-
search Foundation (DFG) through the collaborative research center
“Computational Intelligence” (SFB 531) and grant We 1066/11.

REFERENCES

[1] H.-P. Schwefel, Evolution and Optimum Seeking. Wiley, 1995.
[2] S. Droste, T. Jansen, and I. Wegener, “On the analysis of the (1+1) evo-

lutionary algorithm,” Theoretical Computer Science, vol. 276, pp. 51–81,
2002.

[3] J. Garnier, L. Kallel, and M. Schoenauer, “Rigorous hitting times for
binary mutations,” Evolutionary Computation, vol. 7, pp. 173–203, 1999.

[4] O. Giel and I. Wegener, “Searching randomly for maximum matchings,”
Electronic Colloquium on Computational Complexity, vol. 76, 2004.

[5] T. Jansen, K. De Jong, and I. Wegener, “On the choice of the offspring
population size in evolutionary algorithms,” Evolutionary Computation,
vol. 13, pp. 413–440, 2006.

[6] C. Witt, “Runtime analysis of the (µ+1) EA on simple pseudo-boolean
functions,” Evolutionary Computation, vol. 14, pp. 65–86, 2006.

[7] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge
University Press, 1995.

[8] J. He and X. Yao, “Drift analysis and average time complexity of
evolutionary algorithms,” Artificial Intelligence, vol. 127, pp. 57–85,
2001.

[9] J. Jägersküpper, “Analysis of a simple evolutionary algorithm for mini-
mization in Euclidean spaces,” in Proc. 30th International Colloquium
on Automata, Languages, and Programming – ICALP 2003, 2003, pp.
1068–1079.

[10] I. Wegener, “Methods for the analysis of evolutionary algorithms on
pseudo-boolean functions,” in Evolutionary Optimization, 2002, pp.
349–369.

[11] T. Storch, “On the choice of the population size,” in Proc. Genetic and
Evolutionary Computation Conference – GECCO 2004, LNCS 3102,
2004, pp. 748–760.

[12] J. Jägersküpper and T. Storch, “How comma selection helps with the
escape from local optima,” in Proc. International Conference on Parallel
Problem Solving From Nature IX – PPSN 2006, 2006, pp. 52–61.

32

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)


