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Abstract

Humans can generate accurate and appropriate mo-
tor commands in various and even uncertain environ-
ments. MOSAIC (MOdular Sellection And Identifica-
tion for Control) was formerly proposed for describ-
ing such human ability, but it includes some complex
and heuristic procedures which make the model’s un-
derstandability hard. In this article, we present an
alternative and probabilistic model of MOSAIC (p-
MOSAIC) as a mixture of normal distributions, and
an online EM-based learning method for its predic-
tors and controllers. Theoretical consideration shows
that the learning rule of p-MOSAIC corresponds to
that of MOSAIC except for some points mostly re-
lated to the controller learning. Experimental studies
using synthetic datasets have shown some practical ad-
vantages of p-MOSAIC. One is that the learning rule
of p-MOSAIC makes the estimation of ‘responsibility’
stable. Another is that p-MOSAIC realizes accurate
control and robust parameter learning in comparison
to the original MOSAIC especially in noisy environ-
ments, due to the direct incorporation of the noise
into the model.

1 Introduction

Humans have the remarkable ability to generate ac-
curate and appropriate motor commands in various
and even uncertain environments. Studies of human
motor controls have shown that dis-adaptation and re-
adaptation to a learned environment are more rapid
than adaptation to a novel environment [7], implying
that the human motor control could be performed by
a modular structure consisting of multiple controllers
each adapting to a specific environment.

MOSAIC [2] was formerly proposed for modeling
the motor control system with such a modular struc-
ture. In MOSAIC, each controller is coupled with a
corresponding predictor, and a motor command is de-
termined by a weighted mean of outputs of multiple
controllers, where the weight for each controller (re-
sponsibility) is estimated based on the prediction error
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of the corresponding predictor. However, the current
MOSAIC includes some complex and heuristic proce-
dures which make the model’s understandability hard.

In this study, we re-formulate the MOSAIC as a
probabilistic model in order to make an easily under-
standable framework. Parameters of predictors and
controllers are estimated by the online EM algorithm
[3], which maximizes the log-likelihood of the model,
given the history of control results. We also show re-
sults of computer simulations in which behaviors of re-
sponsibility and controller learning of p-MOSAIC are
compared with those of MOSAIC.

2 MOSAIC

We consider a situation where the dynamics of the
motor system is given by a discrete-time system:

(0

where Z; and u; are the system state and the applied
motor command, respectively, at time ¢. The task of
the motor control is to make the system state Z; to
keep on a given trajectory z;.

To perform this control task, we assume M pairs
of a controller and a predictor. The objective of the
controller is to generate an appropriate motor com-
mand u; which well produces the desired state zj, ;.
We assume that an output of the ¢-th controller is rep-
resented as

Tey1 = B(Ze,ue),

2)

where v; is the variable parameter of the ¢-th con-
troller. On the other hand, the objective of the pre-
dictor is to well predict the system state at the next
time step, then an output of the i-th predictor is given
by

Pie = 1/1(57t>37f+130i)7

3)

where w; is the variable parameter of the i-th predic-
tor. Because there are M pairs of a controller and
a predictor, the responsibility for each controller (and

$ir = P(Fi_1, w13 w;),
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predictor) should be defined. The respousibility signal
A for the i-th pair is defined by

v, = exp(—|&: — ¢is[2 /o) Nis
it = ~ <
S exp(—|E — ¢.]2 /02X

where o is a constant and /A\i,t is a rough prediction of
the responsibility signal A;, which is typically given
as a constant (then ignored). The responsibility rep-
resents how well each predictor reproduces the target
dynamics, and then, an overall motor command #; at
time ¢ is given by a linear combination of outputs v, ;
of the M controllers as

(4)

M
_ b
Gy = E Aigi +uyp .

=1

(5)

Here, ui® is a feedback motor command, which is as-
sumed to be produced by a PID or PAD controller,
based on the difference between z} and Z,.

MOSAIC is trained by updating the parameters of
controllers and predictors. A learning rule is given by

0 % *

Ayi = ﬂAi,t (;Z;;t (Ut - 7vZ)i,t) (6)
Oy, .

Aw; = KAiy a(fuf (& — dit), )

where Av; and Aw; are the updates of parameters
v;, w; in a single learning step, that is,
U,t) = vgtil) + Aw;

(

wgt) = z(»tfl) + Aw;,

where the subscripts, t — 1,#, mean the time steps,
t — 1,1, respectively, & is the learning rate, and u} is
the desired motor command. Although it is assumed
that the desired motor command v is available in Eq.
(6), this assumption is not practical. Then, the con-
troller learning (6) is approximately performed using
the feedback-error learning [6] as

(8)

3 p-MOSAIC

With a set of M predictors, & = ¢(Tr—1, u; w;) +&4,
where ¢; is the noise of the i-th predictor, the state pre-
diction by integrating those predictions is given prob-
abilistically as a mixture of normal distributions:

(x| Tr—1, Uur—1; A, w)

M

= Z AiN(wt‘¢(jt71,Ut71; wi)? a;l)

=1

9)
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where x; is a random variable for the predicted state at
time t, A = (A1,- -, Ap) is the mixing rate vector such
that A; > 0 and Zf\il Ai=1,and w= (wy,--- ,wpy)
is the set of predictors’ parameters. In our particular
experiments in section 4, we use a linear predictor:

G(Te1,Uem1; W) = Wi aTp1 + Wi wlip—1. (10)

On the other hand, the motor command is determin-
istically given by Eq. (5):

plug—1|Zr—1,27; A, 0)

M
—(5(’U/t71 — Z Aiw(jt717 ','C:7 Ui) - u?il)

=1

:(5(’[14_1 - ’at—l)a

(11)

where v = (v1, -+ ,up) is the set of controller pa-
rameters and §(+) is Dirac’s delta function. Then, the
probability of being state x;, given the previous state
Z¢—1 and the desired state z}, is obtained by marginal-
izing the motor command wu;_; as

p(ze|Ze—1, 27 A, w,v)

/p (e Ze—1, up—1; w)p(us—1|Ze—1, 275 v)dus 1

M
ZZ/\ZN (Fo—1, U—r;wi), 0 ). (12)
=1

For a desired trajectory #3., = (zf,---,2z%) and an
actual trajectory Zo.r = (%o, ,Zr), the probability
of a state sequence z1,7 = (z1,---,z7) of random
variables is represented as

T

p(z1.7|Z0.T, 1.7 A, w,v) = Hp(:vtk%t_l, TN, w,v),
t=1

(13)

where the random variables are assumed to be inde-
pendent of each other (see Fig. 1). Given z}. and
Z1.7, the parameters of the predictors and the con-
trollers are determined by the maximum likelihood es-
timation. In the following two subsections, we describe
learning rules of the predictors and the controllers.

3.1 Learning rule of predictors

Parameters A and w of the predictors are primarily
estimated so as to maximize the log-likelihood:

T
> logp(z: = @ldi—, 7} A w,v),  (14)

t=1

by means of the online EM algorithm, in which the
controller parameters v are fixed. By introducing a
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Figure 1: Graphical model [5] of p-MOSAIC.

hidden variable ¢; which indexes predictor-controller
pairs, the online free energy for any distribution of the
hidden variable, ¢,(c;), is defined as

Fri{gp(ce)}, A, w]

gp(ct) >
= Tr(t lo = o ) 15
> 1) (log -2 o
where p(Z, ¢ |Ei—1, 27, A w) = N(Z¢|de, ;) A, -

< - >4.(c;) 18 the expectation with respect to the dis-
tribution gp(c:) , and Iz (¢) is given by

e (t=T)
FT“)‘{ I e (0<t<T),

where v, (0 < v, < 1) is called the forgetting factor.
The online free energy is minimized according to the
online EM algorithm, in which the following two steps
are alternately repeated after seeing z% and Z7_; at
a time step T':

E-step

p(Zr, er|r-1,27, A, w)
SM p@Er, er = ilEr-1, 25, A, w)
N olr ), 1/aly G -
Zi]\il N(i'T|¢E’7;1_1), 1/a§T_1>)A<T_1) .

)

gpler) =

MOSAIC

v

T r—->
p-MOSAIC

*

Figure 2: Difference of learning method of controller.

M-step
AT = (1 =) AT 4 nrgoer =), (17)
Awl” = (1 - pr)Aw!"™)
. 0o;

+ nreaigy(er = 0)(Zr — ¢i7) ;U)Ta
(18)

-1

oV = (1 =np)/a{"™V +ur(ir — di1)?)
(19)

where nr is given by

nr = 1/Nr,
Np = ’YTNTfl +1 (N() = 0)

Although the above learning rules of p-MOSAIC in-
volve a smoothing effect on the sufficient statistics in
the M-step, due to the online free energy, they become
similar to the learning rules of MOSAIC in a special
setting of v¢ = 0(¢t = 1,---,T), which corresponds to
discarding the smoothing effect. Even in this special
setting, however, the learning rule of p-MOSAIC con-
tains an additional term associated with the inverse
variance «; of each predictor (Eq. (18)), which repre-
sents the noise level of the predictor.

3.2 Learning method of controllers

The controller parameters v are primarily esti-
mated so as to maximize the log-likelihood:

T
Zlogp(mt =&} |Fi—1, 20 A, w, v),
t=1

while the predictor parameters, A and w, are fixed.
According to the online EM algorithm, instead of the
log-likelihood, the online free energy:

Fri{ge(e)}, vl

T (ct)
— Z I'r(t) <1og *qc . * >
p(zy = zF, ¢|Te—1, 25, v) ge(e:)

t=1
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for any distribution of the hidden variable, g.(c:),
is minimized, where p(z; = z¥,c¢|E—1,27,v) =
Nz} e, 0,05, ) Ae,- < - >g.(c,) 18 the expectation with
respect to the distribution g.(c;). As an incremental
minimization of the online free energy, the following
two steps are alternately repeated, given the desired
state 7 and the previous state Z7_1:

E-step
Ty = 2%, cp|Er_1, 2%, v
gier) = gL =Tl 77, t)
Zizl p(fUT =Ty, CT = Z|$T—1,$T7’U)
_ _N@plde el G
S NGpler /el AT
M-step

AUET) =(1- nT)AvET_1>

O r—1

+ Ii/\i
nr Ov;

M
> ajqler = jwju(zh — ¢jr).
—1

(22)

Here, w; ,, is the predictor parameter defined in Eq.
(10). Even if the forgetting factor v is constant at
zero, the M-step equation reduces to

O r—1

AUZ(T) = K\; 3o,

M
> ajqler = jwjulzh — ¢5.1),
=1
J (23)

which is obviously different from Eq. (6), the learning
rule of controllers in MOSAIC. The controller learning
in MOSAIC is defined as a gradient-based feedback-
error learning, which tries to minimize the time-lag
difference between the previous actual state Z; 1 and
the previous desired state #}_;. On the other hand,
the controller learning in p-MOSAIC tries to minimize
the difference between the current predicted state &
and the current desired state zy. Moreover, the learn-
ing rule of p-MOSAIC includes the inverse variance «;
(Eq. (22)). These two points come from the difference
in the learning criteria in MOSAIC and p-MOSAIC
(see Fig. 2).

4 Simulation studies

To compare p-MOSAIC with MOSAIC, we sim-
ulated the control of a spring-mass-damper system
as depicted in Fig. 3. Let Fig. 4 show the de-
sired trajectory of the object (mass position) for 12
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Figure 3: A spring-mass-damper system.

M(Kg) | BONm~1s) | K(Nm~!) | NoiseVar

1 1.0 2.0 8.0 0.1or 1.0
5.0 7.0 4.0 0.1or 1.0

3 8.0 3.0 1.0 0.1or 1.0

Table 1: The properties of the three environments.

seconds. To see the adaptability of the motor con-
trol system, three different environments (difference
in mass of the object, damping and spring constants,
see Table 1) switch every 4 seconds. In both of MO-
SAIC and p-MOSAIC, we prepared three predictor-
controller pairs. The observation and control were
done with 1000 Hz, and a single trial was continued
for 12 seconds. The predictors (10) were input by the
motor command, the state (position and velocity) of
the object at the present time, and output the pre-
dicted acceleration of the object at the next time. The
controllers were input by the state at the present time
and the desired acceleration at the next time, and out-
put a motor command at the present time. In this
simulation, we used a PAD controller to produce the
feedback motor command. Note that our task for the
spring-mass-damper system is almost the same as in
the previous work [4]. A regularization term was intro-
duced to the estimation of responsibility in MOSAIC
and p-MOSAIC, in order to suppress any overfitting
to the noisy environment [1].

4.1 Responsibility

We first examined how the responsibility behaves.
Before the experiment, three predictor-controller pairs
were completely trained to adapt individually to their
own environments in Table 1. Since there is no learn-
ing factor, we can compare solely the estimation of
the responsibility between Eq. (17) with the forget-
ting factor being zero (for comparison), and Eq. (4).

Fig. 5 shows the result. Although p-MOSAIC
achieved a complete switching of controllers in re-
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Figure 4: A desired trajectory.
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Figure 5: The responsibility along time.

sponse to environmental changes, MOSAIC sometimes
failed.

4.2 Controller learning

Next, we compared the controller learning, Eq. (22)
of p-MOSAIC, and Eq. (6) of MOSAIC, assuming
predictors were completely trained to adapt to their
own environments. For comparison of controller learn-
ing solely, we used Eq. (17) in both MOSAIC and
p-MOSAIC for estimation of responsibility, and the
forgetting factor was fixed at zero. We examined the
controller learning in particular when the actual state
Z; is disturbed by a noise.

Figures 6 and 7 show the results for cases with a
small noise and a relatively large noise, respectively.
When the noise level is low (Fig. 6), p-MOSAIC
achieved more accurate control than MOSAIC. When
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MOSAIC(NoiseVar 0.1) -
p-MOSAIC(NoiseVar 0.1) —

log10 MSE
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Figure 6: The logarithm of mean square error be-
tween the actual trajectory and the desired trajectory
against trials.

MOSAIC(NoiseVar 1.0) -«
" p-MOSAIC(NoiseVar 1.0) — 1

log10 MSE
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Figure 7: The logarithm of mean square error against
trials.

the noise level is relatively high (Fig. 7), the learn-
ing by MOSAIC proceeded faster, but it was substan-
tially unstable; hence, the performance became better
by p-MOSAIC after about 1000 trials. In the early
learning phase, the controller learning of p-MOSAIC
proceeded slowly due to the control of the inverse vari-
ance a;. Because the noise of the environment is large,
the adaptive control of the inverse variance made the
learning slow but stable, suggesting the effectiveness of
adaptive adjustment of learning speed in p-MOSAIC.

4.3 Stability of learning
In the previous subsection, we assumed that each

predictor is completely adapted to each environment
and focused on the controller learning. In this sub-
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Figure 8: A desired trajectory.
M(Kg) | B(Nm~!s) | K(Nm~!) [ NoiseVar
1 1.0 2.0 8.0 0.1
2 5.0 7.0 4.0 1.0
3 8.0 3.0 1.0 10.0

Table 2: The properties of the three environments.

section, we executed the simultaneous learning of pre-
dictors and controllers, and investigated stability of
learning of p-MOSAIC. For this purpose, we prepared
a complex trajectory (Fig. 8) as the desired one. In
addition, the noise level for the actual state &; varied
in each environment (Table 2).

Figure 9 shows the result obtained by p-MOSAIC
where we can see that p-MOSAIC achieved appro-
priate parameter estimation for predictors and con-
trollers. However, control performance (accuracy in
tracking) was degraded compared with those in the
former experiments (Fig 6, 7), due to the difficulty in
the applied task. On the other hand, MOSAIC failed
to adapt and control in most cases in this difficult set-
ting (data not shown, because the mean square error
diverged).

5 Summary

In this study, we proposed p-MOSAIC, a proba-
bilistic model of MOSAIC, and derived learning rules
based on the online EM algorithm. Our p-MOSAIC
achieved an appropriate estimation of responsibility
in the predictor, and an accurate control and robust
learning when the controllers learn. In the adap-
tive control task in which MOSAIC failed, p-MOSAIC
achieved stable learning. These preferable characters
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Figure 9: The logarithm of mean square error against
trials.

come partly from the estimation of the inverse vari-
ance associated with the noise level of the environ-
ment, which is effective especially in noisy environ-
ments.
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