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Abstract of the corresponding predictor. Hen-ever, the current 

Hunlarls can generate accurate and appropriate rno- 
tor connnands in various and even uncertain ern iron- 
nlents. 110s-AIC (lIOdular Sellection And Identifica- 
tion for Control) n-as formerly proposed for describ- 
ing iuch hurrlarl ahilitv. hut it includei sorne cornplex 
and heuriitic ~rocedurei  n-hich rnake the rnodel'i un- 
deritandability hard. In tllii article. XI-e present an 
alternative and probabilistic rnodel of lIOS-IIC (p- 
lIOS-IIC) as a rnixture of norrnal diitributioni, and 
an online ElI-based learning method for its pr edic- 
tors and controllers. Theoretical consideration shorn 
that the learning rule of p-LIOSAIC corresponds to 
that of LIOSAIC except for sorne points mostly re- 
lated to the controller learning. Esperirnental studies 
using synthetic datasets ha1 e shon-n sorne practical ad- 
vantage5 of p-hIOSA41C. One is that the learning rule 
of p-hIOSA41C rnakes the eitirnation of 'responiihilitv' 
itable. Ahother  is that p-hIOSA41C realizei accurate 
control and robust parameter learning in cornpariion 
to the original hIOSA41C eipecially in noisy environ- 
ments, due to  the direct incorporation of the noise 
into the model. 

1 Introduction 

Hunlarls have the remarkable abilitj to  generate ac- 
curate and appropriate motor corrlrnandi in varioui 
and even urlcertairl environrnenti. Studiei of llurnan 
motor controli have ihon-n that dis-adaptation and re- 
adaptation to  a learned environment are more rapid 
than adaptation to a novel environment [7]. irnplving 
that the hunlarl rnotor control could be performed by 
a rnodular structure consisting of nlultiple controllers 
each adapting to  a specific environment. 

lIOS-IIC [2] XI-ai formerly propoied for modeling 
the rnotor control ivstern XI-ith iuch a rnodular struc- 
ture. In lIOSAIIC, each controller ii coupled XI-ith a 
correiponding predictor, and a rnotor corrlrnand ii de- 
termined bv a n-eighted rnearl of outputi of rrlultiple 
controllers, n-her e the TI-eight for each controller (re- 
sponsibility) is estimated based on the prediction err or 

LIOSAIC includes some cornples and heuristic proce- 
dures n-hich make the model's understandabilitj hard. 

In this study, TI-e re-formulate the 110s-AIC as a 
probabilistic nlodel in order to  make an easily under- 
standable frarnen-ork. Parameters of predictor5 and 
controllers are estimated bv the online ELI algorithm 
[3]. XI-hich rnaxirnizei the log-likelihood of the rnodel, 
given the hiitory of control results. also S ~ O X I -  re- 
sults of computer sirnulationi in n-hich behaviors of re- 
sponiihilitv and controller learning of p-lIOS-IIC are 
conlpared n-ith those of 110s-AIC. 

2 MOSAIC 

K e  consider a situation XI-here the dynamics of the 
rnotor syitern ii given by a diicrete-time iystern: 

n-here T t  and ut are the system state and the applied 
rnotor command. respectively, at tirne t .  The task of 
the rnotor control is to rnake the s j  stern state it to 
keep on a g i ~ e n  trajectorj r;. 

To perform this control task. XI-e aisurne -21 pairi 
of a controller and a predictor. The objective of the 
controller ii to  generate an appropriate motor corn- 
rnand ut XI-hich n-ell producei the desired state s;+,. 

asiurne that an output of the 1-th controller is rep- 
resented as 

n-here L?, ii the variahle parameter of the 1-th con- 
troller. On the other hand. the objective of the pre- 
dictor is to  n-ell predict the sjstern state at the nest 
time step, then an output of the I-th predictor is given 
b? 

n-here ul,  ii the variahle parameter of the 1-th predic- 
tor. Because there are -21 pairs of a controller and 
a predictor. the responsibility for each controller (and 
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predictor) should be defined. The responsibility signal 
A, for the i-th pair is defined bj- 

\\-here o is a constant and i, is a rough prediction of 
the responiihilitv iignal A, n-hich ii tvpicallv given 
a i  a conitant (then ignored). The reiponsibility rep- 
reienti hon- n-ell each predictor reproducei the target 
dynamics. and then, an overall motor corrlrnand ilt at 
time t is given bv a linear corrlbinatiorl of outputi c_!, t 

of the controllers as 

ilt = x A,.tL~, t + tr:" 
,=I 

Here, u p  ii a feedback motor command. XI-hich ii ai- 
iurned to  be produced bv a PID or PAID controller. 
haied on the difference betn-een r; and .?t. 

lIOSAIIC ii trained bv updating the parameters of 
controllers and predictors. .A learning rule is g i ~  en by 

d ~ ' ,  t At?, = ~A,.t-(uf - 
dv, 

\\-here Av, and AIL?, are the updates of parameters 
v,. IL?, in a single learning step, that is. 

( t )  - C(t - l )  + LC, v, - 

rc;t) - - IL!(t-l) , + Au1,. 

\\-here the subscripts. t - 1. t ,  rnearl the time steps, 
t - 1. t ,  respectively, k: is the learning rate, and u," is 
the desired rnotor command. Although it is aisurned 
that the desired rnotor corrlrnand u," is available in Eq. 
(6). this asiumption ii not practical. Then, the con- 
troller learning (6) ii approximately performed uiing 
the feedhack-error learning [6] as 

IYith a iet of predictors. .r"t = o(.r"t-1. u:  rc,) +E, .  

XI-here E ,  ii the noiie of the i-th predictor. the state pre- 
diction hy integrating thoie prediction5 ii given prob- 
ahilistically as a mixture of normal distributions: 

n-her e rt is a r arldorn variable for the predicted st ate at 
time t ,  X = (A1, . . . . AII) is the rnixing rate vector such 
that A, > 0 and x;L1 A, = 1. and w = ( ~ 1 1 . .  . . . u1~1) 
is the set of predictors' parameters. In our particular 
esperirnerlts in section 4, n-e use a linear predictor: 

On the other hand, the rnotor cornnlarld is determin- 
istically given by Eq. (3): 

n-her e v = (vl. . . . . v is the set of controller pa- 
rameters and d(.) is Dirac's delta function. Then. the 
prohahilit? of being state .rt. g i ~ e n  the pre1 ious state 
FtPl and the deiired state s,", ii obtained bv rnarginal- 
izing the motor corrlrnand IL~-1  a i  

For a desired trajectory r;  = (s?. . . .  ,s$) and an 
actual trajectory .Fo T = (.FO,. . . . FT), the prohahilitv 
of a state sequence r1 7 = (rl . .  . . . .rT) of random 
I ar iahles is represented as 

nllere the random variables are assumed to be inde- 
pendent of each other (see Fig. 1). Given .rT and 
J1  7. the parameters of the predictors and the con- 
trolleri ale determined hy the rrlaxirrllnn likelihood ei- 
tirnation. In the follon-ing tn-o suhiectioni, n-e describe 
learning rulei of the piedictois and the controlleri. 

3.1 Learning rule of predictors 

Pararneteri X and w of the predictor5 are primarily 
eitirnated so as to  maximize the log-likelihood: 

T x logp(.rt = .?t .?t-l. .rf : A. w, v) .  (14) 
t=l 

by rnearls of the online E l1  algorithm. in n-hich the 
controller parameters v are fised. By introducing a 
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Figure 1: Graphical model [5] of p-hIOSA41C. 

hidden variable ct \I-hich indexes pr edictor-contr oller 
pairs, the online free energj for any distribution of the 
hidden variable, q, ( c t ) .  is defined as 

\\-here p(2 t .  ct1J.t-1. J.:, X , W )  = R ( 2 t l 0 ~ ~  t .  

< . > q p ( c t )  is the expectation n-ith respect to the dis- 
tribution qp(c t )  . and r T ( t )  is g i ~ e n  bj 

\\-here -, (0  5 -, < 1 )  is called the forgetting factor. 
The online free energj is nlinirnized according to  the 
online E1I algorithm. in \I-hich the follon-ing tn-o steps 
are alternately repeated after seeing .r$ and e f T P 1  at 
a time step T :  

Figure 2: Difference of learning method of controller. 

A ; ~ )  - - ( 1  - r ] ~ ) ~ ; ~ - l )  + rlrql,(cr = i ) .  (17 )  

I t C I T )  = ( 1  - r l T ) l t C / T - l )  

n-here q ~  is given hy 

-1lthough the above learning rulei of p-hIOSA41C in- 
volve a irnoothing effect on the iufficient statistic5 in 
the 11-step. due to  the online free energy, the? beconle 
similar to the learning rules of hIOSAIC in a special 
setting of qt  = O(t = 1. . . . , T), \I-hich corresponds to 
discarding the srnoot hing effect. Even in this special 
setting. hon-ever. the learning rule of p-1IOS.AIC con- 
taini an additional term asiociated n-ith the inverie 
variance a,  of each predictor (Eq. ( 1 8 ) ) .  XI-hich repre- 
sents the noise level of the predictor. 

3.2 Learning method of controllers 

The cont,roller paramet,ers v are primarily est,i- 
rnated so as to rrlaxirrlize t,lle log-likelihood: 

n-hile the predictor pararneteri, X  and w ,  are fixed. 
-1ccording to the online ELI algorithm, initead of the 
log-likelihood, the online free ener gj  : 

43

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



for an? distribution of the hidden I ar iable. q, (ct). 
is minirnized, \\-here p(xt = x;. ct 12t-l. x;. u)  = 

-1 N(x," loct t .  c k C t  ) A c t .  < . > 4 c ( C t  is the expectation TI-ith 
respect to  the distribution q,(ct). As an incremental 
rrlinirnizatiorl of the online free energy, the follon-ing 
tn-o steps are alternatelv repeated. given the deiired 
itate r; and the previoui i tate FTPl: 

Figure 3: -1 spring-rnasi-darnper syitern. 

Table 1: The properties of the three environrnenti. 

Here, tc,. is the predictor parameter defined in Eq. 
(10). Even if the forgetting factor ii constant at 
zero, the 11-itep equation reducei to 

XI-hich ii ohiouslv different from Eq. (6). the learning 
rule of controllers in lIOSAIIC. The controller learning 
in hIOSA41C ii defined as a gradient-haied feedback- 
err or learning, n-hich tries to rnirlinlize the tirne-lag 
difference betn-een the pre1 ious actual state itPl and 
the pre1 ious desired state x;-, . On the other hand, 
the controller learning in p-1IOS.AIC tries to nlinirnize 
the difference betn-een the current predicted state Pt 
and the current desired state s,". hloreover, the learn- 
ing rule of p-hIOSA41C includes the inverse variance a, 
(Eq. (22)). These tn-o points come from the difference 
in the learning criteria in AIOSAIC and p-AIOSAIC 
(see Fig. 2). 

4 Simulation studies 

To cornpare p-hIOSA41C n-ith lIOSAIIC, XI-e sirn- 
ulated the control of a spring-rnasi-darnper iystern 
as depicted in Fig. 3. Let Fig. 4 shon- the de- 
sired trajectory of the object (mass position) for 12 

seconds. To see the adaptability of the motor con- 
trol s~ stern. three different environment s (difference 
in rnass of the object, damping and spring constants. 
see Table 1) sn-itch every 4 seconds. In both of 110- 
S-AIC and p-AIOSAIC. n-e prepared three predictor- 
controller pairs. The observation and control XI-ere 
done XI-ith 1000 Hz, and a iingle trial n-as continued 
for 12 ieconds. The predictor5 (10) XI-ere input hy the 
rnotor cornrnand, the itate (position and velocitv) of 
the object at the preient time. and output the pre- 
dicted acceleration of the object at the next time. The 
controllers \\-ere input bj the state at the present time 
and the desired acceleration at the next time. and out- 
put a motor cornnlarld at the present time. In this 
sirnulation. n-e used a PAD controller to produce the 
feedback motor command. Note that our task for the 
spring-rnasi-darnper ivstern ii almost the same as in 
the previous n-ork [4]. A4 regularization term n-as intro- 
duced to the eitirnation of responiihilitv in hIOSA41C 
and p-lIOSAIIC, in order to iuppresi any overfitting 
to  the noiiv environment [I]. 

4.1 Responsibility 

\Ye first examined hon- the responsibility behaves. 
Before the experiment. three predictor-controller pairi 
n-ere completely trained to  adapt individually to their 
on-n environrnenti in Tahle 1. Since there ii no learn- 
ing factor, XI-e can compare solelv the eitirnation of 
the responiihilitv betn-een Eq. (17) XI-ith the forget- 
ting factor being zero (for cornpariion), and Eq. (3). 

Fig. 5 shon-s the result. -Although p-AIOSAIC 
achieved a complete sn-itching of controllers in re- 
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Figure 4: A desired trajectory. 
Figure 6: The logaritllrn of mean square error be- 
tn-een tlle actual trajectorj and tlle desired trajectory 
against trials. 

Figure 5: The responiihility along tirne. 

Figure 7: The 1ogarit)llrn of mean square error against, 
t,rials. 

iponse to  environmental changes. lIOS-IIC sornetirnes 
failed. 

4.2 Controller learning 

Next, XI-e cornpared the controller learning, Eq. (22) 
of p-hIOSA41C. and Eq. (6) of lIOSAIIC, aisurrling 
predictors XI-ere completely trained to adapt to their 
on-n environments. For conlparison of controller learn- 
ing solelv. XI-e used Eq. (17) in both lIOS-IIC and 
p-lIOS-IIC for eitirnation of responiihilitv. and the 
forgetting factor XI-ai fixed at zero. IYe examined the 
controller learning in particular n-hen the actual i tate 
.Ft is disturbed hy a noise. 

Figures 6 and 7 S ~ O X I -  the reiulti for cases XI-ith a 
irnall noise and a relatively large noise, reipectively. 
SS'hen the noise level is lon- (Fig. 6). p-LIOSAIC 
achier ed rnor e accurate contr ol than 110s-AIC. SS7hen 

the noiie level is relatively high (Fig. 7). the learn- 
ing bj lIOS.AIC proceeded faster. hut it n-as suhstan- 
tially unstable; hence, the perforrnance hecanle better 
bj p-LIOSAIC after ahout 1000 trials. In the earlj 
learning phase. tlle controller learning of p-LIOSAIC 
proceeded slon-ly due to the control of tlle inverse vari- 
ance a, .  Because the noise of tlle ern irorlrnerlt is large. 
tlle adaptive control of the inr erse r ariance made tlle 
learning slon- hut stable. suggesting the effectiveness of 
adaptive acljustrnent of learning speed in p-110s-AIC. 

4.3 Stability of learning 

In the previous iubsection, n-e aisurned that each 
predictor is completely adapted to  each ern irorlrnerlt 
and focused on the controller learning. In this suh- 
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Figure 8: A desired trajectory. 
Figure 9: The logaritlnn of mean square error against 
triali. 

come partlj from the estimation of the inverse vari- 
ance associated TI-ith the noise l e ~ e l  of the environ- 
ment, n-hich is effecti~e especiallj in noisj environ- 
ment s. 

Tahle 2: The properties of the three environments. 
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