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Abstract-A novel structure learning algorithm of Bayesian 
networks (BNs) using particle swarm optimization (PSO) is 
proposed. For searching in structure spaces efficiently, a discrete 
PSO algorithm is designed in term of the characteristics of BNs. 
Firstly, fitness function is given to evaluate the structure of BN. 
Then, encoding and operations for PSO are designed to provide 
guarantee of convergence. Finally, experimental results show that 
this PSO based learning algorithm outperforms genetic algorithm 
based learning algorithm in convergence speed and quality of 
obtained structures. 

I. INTRODUCTION 

Bayesian network is known as probabilistic network, Bayesian 
belief network or causal network. It combines graph theory with 
probability to express complex uncertainty among random 
variables. Bayesian Network has been developed well as a kind 
of uncertain reference method. It has been implemented in 
applications in areas such as medical diagnostics, classification 
systems and software agents for personal assistants, multisensor 
fusion, and legal analysis of trials [1]. Until recently, the standard 
approach to constructing belief networks was a labour-intensive 
process of eliciting knowledge from experts. Methods for 
capturing available data to construct a Bayesian network or to 
refine an expert-provided network promise to greatly improve 
both the efficiency of knowledge engineering and the accuracy of 
the models. For this reason, learning Bayesian networks from 
data has become an increasingly active area of research.

Learning a Bayesian network can be decomposed into the 
problem of learning the graph structure and learning the 
parameters. An obvious choice to combat the problem of “getting 
stuck” on local maxima is to use a stochastic search method [2,3].  

Several heuristic searching techniques, such as greedy hill-
climbing, simulated annealing and GA have been used. Among 
those heuristics, GA and evolution computation [10,11] have 
been intensively researched and proved being effective in 
learning Bayesian networks. However, there exist two drawbacks 
of GA in learning Bayesian networks which are its expensive 
computational cost and premature convergence. When the 
number of variables in Bayesian networks is large, those 
drawbacks would degrade performance of the learning algorithm 
and make it tend to return a network structure which is local 
optimal. 

This paper explores the use of particle swarm optimization 
(PSO) algorithms for learning Bayesian networks. Our choice 
was partly motivated by the work of Clerc et al. [12] and a 
discrete PSO algorithm is designed in term of the characteristics 
of BNs. BN structures are amenable for the discrete PSO 
algorithm since the substructures of the network behave as 
building blocks so we can evolve higher fit structures by 
exchanging substructures of parents with higher fitness.  

II. PROBLEM FORMULATION 

Bayesian networks and associated schemes constitute a 
probabilistic framework for reasoning under uncertainty that in 
recent years has gained popularity in the community of artificial 
intelligence [13,14] 

From an informal perspective, Bayesian networks are directed 
acyclic graphs (DAGs), where the nodes are random variables, 
and the arcs specify the independence assumptions that must be 
held between the random variables. 

To specify the probability distribution of a BN, one must give 
prior probabilities for all root nodes (nodes with no predecessors) 
and conditional probabilities for all other nodes, given all 
possible combinations of their direct predecessors. These 
numbers in conjunction with the DAG, specify the BN 
completely. The joint probability of any particular instantiation 
of all n variables in a BN can be calculated as follows: 

∏
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where, ix  represents the instantiation of the variable iX
and iπ represents the instantiation of the parents of iX .

The most common approach to building Bayesian networks is 
to elicit knowledge from an expert. This works well for smaller 
networks, but when the number of variables becomes large, 
elicitation can become a tedious and time-consuming affair. 
There may also be situations where the expert is either unwilling 
or unavailable. 

Whether or not experts are available, if there are data it makes 
sense to use it in building a model. The problem of learning a 
Bayesian network from data can be broken into two components: 
learning the structure, BS and learning the parameters, BP. If the 
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structure is known1 then the problem reduces to learning the 
parameters. If the structure is unknown, the learner must first 
find the structure before learning the parameters (actually in 
many cases they are induced simultaneously). Generally, it is 
difficult for experts to give the structure of BN directly, and 
learning it from data is a feasible modeling method. In addition, 
the structure learning algorithm can itself be decomposed into 
searching for structures by using search algorithm and evaluating 
structures by using scoring metric (fitness function), which aims 
at finding the best structure with highest accuracy of generating 
training set. So the problem of the structure learning can be 
formally defined as follows: 

Input: A training set D of instances of X, which contains N 
observation sequences. The length of the kth sequence is lk and 
each case xk[0], xk[1],…, xk[lk ] is given.    

Output: A BN that best matches D. The notion “best matches” 
is defined using a scoring function. 

III. STRUCTURE LEARNING ALGORITHM 
USING DISCRETE PSO 

Particle swarm optimization (PSO) is an evolutionary 
computation technique developed by Dr. Eberhart and Dr. 
Kennedy in 1995, which is inspired by social behavior of bird 
flocking and fish schooling [2,3]. It has been found to be 
extremely effective in solving the continuous optimization 
problem, but now it has been expanded to discrete domain.  

In 1997, Eberhart and Kennedy proposed a discrete binary 
version of PSO [4], KE-PSO, in which the discrete binary 
variables are operated and trajectories are changes in the 
probability that a coordinate will take on a zero or one. Then a 
multi-phase discrete particle swarm optimization is presented, in 
which the discrete binary version is improved and different 
groups of particles have trajectories that proceed along 
trajectories with differing goals in different phases of the 
algorithm [5]. In 2004, a quantum particle swarm optimization 
algorithm is proposed, QPSO, in which the discrete binary 
version is improved again by introducing the quantum theory [6]. 
In 2005, a Bayesian optimization model-oriented approach to 
particle motion algorithm is proposed in the literature [7], where 
the use of an explicit information model as the basis for particle 
motion provides tools for designing successful algorithms. 
Though some problems still exist, it can be easily modified for 
any discrete/combinatorial problem for which we have no good 
specialized algorithm. Therefore, as a combinatorial optimization 
problem, it is possible to learn the structure of BN by using PSO 
algorithm. 

Our algorithm which is named after “BNDP” can be expressed 
simply by the following equation, BNDP = (F, X, V, Sxx , Pvv ,
Mv , Pxv ,, λ , Ginit , υ ), where, F is a fitness function, X a space 

of positions of  particles, V velocity set of particles, Sxx a 
substraction operation (position, position), Pvv a move operation 
(position plus velocity), Mv a multiplication operation 
(coefficient times velocity), Pxv a addition operation (velocity 
plus velocity), λ the swarm size, Ginit  an initial swarm and υ
stopping condition. 

A. Fitness Function F 

The most common fitness function F to evaluating structures is 
by the posterior probability of the structure given the 
observations. That is, a structure is good to the extent it is 
probable given the available information. The posterior 
probability of a structure can be obtained by applying Bayesian 
rule: 

DP
BPBDP
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where P (BS |D) is the posterior distribution of the structure given 
the data, P(D|BS) is the likelihood function, P(BS) is the prior 
probability of the structure, and P(D) is the normalizing constant. 
Since P (D) is not dependent on the structure, it can be ignored 
when trying to find the best scoring function. In addition, without 
prior knowledge of structures, we can assume they have equal 
probability. However, if we do have information on structures we 
can always use the prior information. 

The problem is now reduced to finding the structure with the 
maximum likelihood P (D|BS). In other words, given a structure, 
these structures are evaluated according to how probable it is that 
the data were generated from the structure.  

Cooper and Herskovitz showed that when a Dirichlet prior is 
used for the parameters in the network, the likelihood P (D|BS)
can be obtained in closed form: 
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where n is the number of variables in the database, ri is the 
number of possible states for variable Xi  , q i is the number of 

possible states for pa (Xi), Nijk are the sufficient statistics from 
the database (counts of occurrences of configurations of 
variables and their parents),   N '

ijk are the hyper parameters (prior 
counts of occurrences of variables and their parents) specified for 
the parameter prior (assuming an uninformative prior as in the 
prior for the structure we set the hyper parameters to 1), 
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convenience, the number of parents allowed for a particular 
variable is limited. This scoring metric (3) is commonly referred 
to as the Bayesian Dirichlet metric. In practice, the logarithm of 
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(3) is usually used to score networks.  
When data are complete, the Bayesian Dirichlet metric, a 

fitness function for BN, exists in closed form. So we may utilize 
the score decomposition properties, which facilitate the 
computation of the scoring metric (3) in several ways. Note that 
the likelihood is expressed as a sum of terms, where each term 
depends only on the conditional probability of a variable given a 
particular assignment to its parents. Thus, if we want to find the 
maximum likelihood parameters, we can maximize within each 
family independently. 

With the Bayesian Dirichlet metric (see Eq. (3)), we can now 
search over possible structures for the one that scores best 
networks from complete datasets that mean that all of the cases in 
the data contain values for all of the variables.  

B. Encoding PSO Elements for BN 

The BN structure can be represented as an adjacency list, see Fig. 
1, where each row represents a variable Xi and the members of 
each row, with the exception of the first member, are the parents 
of Xi, pa (Xi). The first member of each row, i.e. the first column 
of the adjacency list, is the variable Xi.

Position of Particles and State space

As BNDP algorithm is designed to find the best structure of BN 
by using PSO, the structure of BN should be encoded into a 
position of particle. 

Although we show the variable Xi in the Fig. 1 for clarity, the 
internal representation encodes its parents only, with the variable 
being encoded by sequence. The adjacency list can be thought of 
as a “position” where each pa (Xi) represents a “local position”. 
For example, the “local position” of the variable F can be 
encoded as [D, E]. Because the logarithm of the scoring metric is 
the summation of scores for each variable, each local position 
can be scored separately and added to generate the fitness score 
for the entire structure. 

So the search space is enormous. A local position can range 
from no parents to n-1 parents, where n is the number of 

variables in the dataset. Thus a local position can take on 

=

−
k

i
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i
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1 )( possible values where k is the maximum set of parents 

a variable can have and n is the number of variables in the 
dataset. So, the search space can be defined as follow: 
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Velocity

Definition 1 switch operator
If a specified BN has n variables, the position of a particle can be 
expressed as an adjacency list P = ((xi)), i=1,…,n. We define a 
switch operator SO which, when applied to a position during one 
time step, gives another position. So, here, SO has three types: 
+xi, -xi and φ . The +xi denotes adding a variable xi into original 
position,   -xi reducing a variable xi and φ  null.  
Definition 2 switch unit
A sequence composed of one or several switch operators is a 
switch unit. We denote it by SU. 
         SU = (SO1, SO2 , ., SOk)                                          (4)                        
where SO 1, SO 2 , ., SOk  are k switch operators and  the  
different orderings of them have different signification.  
The length of the SU is defined by ||SU|| =k. Each SU is  
applied to the change of a local position.  
Definition 3 switch list (velocity)
A sequence composed of one or several switch units is a switch 
list. We denote it by SL. Here, actually, the number of switch 
units of each switch list is equal to the number of variables n of 

BN. The length of the SL is defined by ||SL|| =
=

n

i 1
i ||SU|| .  A 

velocity V is then defined by   
       V = SL = (SU1, SU2 , ., SUn )                             (5) 

Where, SU1, SU2, ., SUn are n switch units and each SL or
V is applied to the change of a global position. 
Definition 4 equivalent set of switch list
If different switch lists are equivalent (same result when applied 
to any position), the set of them is called equivalent set of switch 
list.

C. Designing Operations for PSO

Opposite of a velocity 
It means to do the same switch as in original SL, but with reverse 
operator. For example, - ((-A), (+B-C)) = ((A), (-B+C) ). It is 
easy to verify that we have - (- SL ) =SL (and SL ⊕ -SL φ≅ , see 

Fig.1. Encoding the structure of a BN 

AA
B | A 
C | A 
D | B 
E | C 
F | DE 

B C

D E

F
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below Addition "velocity plus velocity"). 

Addition (Pxv ) "position plus velocity" 
Let P be a position and V a velocity. The position P’=P+V is
found by applying the first switch of V to P, then the second one 
to the result etc. 
Example 

P =(φ , A, A, B, C, DE ) 

V = ( (+B), (-A), (-A+B), (-B+C), (φ ), (-D-E+A) ) (6)
Applying V to P, we obtain successively 

          P’ = (B, φ , B, C, C, A)                                    (7)

Substraction (Sxx) "position minus position" 
Let P1 and P2 be two positions. The difference P2 – P1 is defined 
as the velocity V, found by a given algorithm, so that applying V
to P1 gives P2. The condition "found by a given algorithm" is 
necessary, for, as we have seen, two velocities can be equivalent, 
even when they have the same size. In particular, the algorithm is 
chosen so that we have P1 = P2 V = P2 – P1 = φ

Addition (Pvv) "velocity plus velocity" 
Let V1 and V2 be two velocities. In order to compute V1 ⊕ V2 we
consider the switch list which contains the first switch unit of V1,
followed by the first switch unit of V2, then the second switch 
unit of V1, followed by the second switch unit of V2 etc. For 
example, ((-A), (-B+C)) ⊕  ((-B+A), (-B+D)) = ((-A-B+A), (-
B+C-B+D)). In general, we "contract" it to obtain a smaller 
equivalent velocity. For example, ((-A-B+A), (-B+C-B+D)) = ((-
B), (+C+D)). In particular, this operation is defined so that V ⊕ -
V . = φ . So, we can have the following definition: 
Definition 5 basic switch list 
The switch list of equivalent set of switch list, which contains the 
least switch operators, is defined as basic switch list. Each 
velocity is a basic switch list.  

Multiplication (Mv) "coefficient times velocity" 
Let α be a real coefficient and V be a velocity. There are 
different cases, depending on the value of α .
Case α = 0 
We have α V =φ
Case α ∈[0,1] 
We just "shrink" V.  Let ||α V || be the greatest integer smaller 
than or equal toα ||V||. So we define α V = ((SO1, .., 
SOk )1,…..,(SO1,..,SOk)n ), k )/||(||

1
nVα↑

Case α > 1 
It means we have α = d +α ’, d is an integer (d ≠ 0), α ’∈[0,1]. 

So we define α V =
=

⊕⊕
d

i
VV

1

')( α .

Case α  < 0 
As α V = ( -α ) * ( - V ), we only need to consider one of the 
previous cases. 

D. Control Parameters

The initial swarm Ginit , as well as the velocities, can be 
generated either randomly  or  by a Sobol sequence generator [9, 
15], which ensures that the D-dimensional vectors will be 
uniformly distributed within the search space. 
   The swarm size λ  should be not kept too big because of the 
computation time required scoring the fitness function; On the 
other hand, λ  should be not kept too small for improving the 
diversity of particles of swarm to avoid premature convergence. 
Hence, we choose λ within [30,100]. 
    The stopping criterionυ  for the algorithm is set in term of that 
when either g1 generations have been run or when in g2
successive generations, the value of the fitness function of the 
best structure corresponds with the average value of the fitness 
function. 

E. BNDP Algorithm

We can now rewrite the formula from the basic PSO algorithm: 
V 1+k

id  = w * V k
id ⊕  c1* ()rand * (P id  - X k

id )

⊕  c2* ()Rand * (P gd - X k
id )                            (8) 

X 1+k
id  = X k

id + V 1+k
id                                                     (9)                         

Where, i = 1,2,…,N; N is the swarm’s size; d represents the d-
dimensional search space; w is the inertia weight factor; c1 and c2
are two positive constants, called the cognitive and social 
parameter respectively; ()rand  and ()Rand  are two random 

numbers uniformly distributed within the range [0,1]; V k
id is the 

velocity of particle i at iteration k; X k
id is the current position of 

particle i at iteration k; P id  is the best previous position of 

particle i at iteration k; P gd  is the best neighbour’s best previous 
position at iteration k.    

The BNDP algorithm can be described as follows: 
Step1: Initialize the particle swarm (each particle is given a 

stochastic initial solution/position and switch 
list/velocity).   

Step2: If stopping criterion is satisfied, turn to Step 5.

50

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



Step 3: Calculate the next position X '
id (the new solution) 

according to the current position X id  of the particle i. 

1) Calculate the differenceα  by α  = P id  - Xid

whereα  is a basic switch list and is applied to Xid

to obtain Pid.
2) Calculate the difference β by β = Pgd - Xid

where β is also a basic switch list. 

3)    Calculate the velocity V '
id in term of the equation 

(8) and transform V '
id into a basic switch list. 

4)    Calculate the new solution X '
id in term of the 

equation (9). 
5)    If a better solution is found, update P id .

Step 4: If a better solution is found for the whole swarm, update 
P gd and turn to Step 2.

Step 5: Show the optimal solution.

. EXPERIMENT 

For evaluating the behavior of our algorithm BNDP, we perform 
the different experimental steps as follows:   

Step 1: Begin with a BN (structure + conditional probabilities) 
and simulate it, generating randomly 1000 samples 
for the training set D and another 1000 for the test 
set.

Step 2:  Using the approach based on BNDP algorithm try to 
obtain best BN structure B *

S from D, which 

maximize the probability P (D| B *
S ).

Step3:   Evaluate the performance of BNDP algorithm by 
evaluating the accuracy of B *

S  predicting objective 
probability distribution.  

For this experiment we use a Bayesian network known as 
ASIA. The ASIA network was initially presented by Lauritzen 
and Spiegelhalter [8]. It is a small (nine variables) fictitious 
model of medical knowledge concerning the relationships 
between visits to Asia, tuberculosis, smoking, lung cancer, lung 
cancer or tuberculosis, Positive X-ray, Dyspnoea and bronchitis. 
The training set with 1000 samples is generated using 
probabilistic logic sampling [15] from the original network.  

We compare BNDP algorithm with structure learning 
algorithm based on GA presented in [10]. The algorithm 
proposed in [10] is named “BNGA” in this paper. The best 
structure of BN over 10 times running BNDP and the BNGA 
algorithm on the training set is selected as the finally obtained 

result model. We evaluate the performance of the algorithms by 
using the accuracy of predicting the probability distribution of 
the objectives through the result model. This concrete process is 
that we generate 1000 samples as test set from the original 
network, then calculate the log loss 

(
=

numN

i
i

ii

num

NXXp
N 1

])[],...,0[(log1
 ) for the test set using 

the result model, which can be seen in figure 2. 

From figure 2 we could see that, for all training sets, the 
predictive accuracy of BNDP is much higher than that of BNGA. 
And compared with BNGA, the more the number of samples is 
introduced, the higher the predictive accuracy of our algorithm 
becomes. In addition, the average number of iterations of BNDP 
(476) is much smaller than that of BNGA (644) for 1000 samples 
during the search process. The reason for our algorithm’s 
superiority on “efficiency” over BNGA is that, PSO can 
converge much more rapidly than GA. Therefore PSO is very 
promising for learning Bayesian networks. 

. CONCLUSION

In this paper we introduce PSO to the problem of learning 
Bayesian networks from data. This problem is characterized by a 
large, multi-dimensional, multi-modal search space and is 
extremely difficult for deterministic algorithms. We propose an 
efficient structure learning algorithm using discrete PSO, which 
is called BNDP algorithm.  

Using simulations of the ASIA network, we carry out a 
performance analysis on the BNDP algorithm. The obtained 
experimental results also show that, compared to structure 
learning algorithm using GA, the BNDP algorithm could reduce 
the time for learning Bayesian network greatly. In addition, the 

the number of training data
Fig.2. Comparison of Performance of algorithms
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quality of the finally obtained network structure could be also 
improved. Therefore, discrete PSO is a very promising for 
learning Bayesian networks when the number of variables is very 
large.  

The future step forwards is to extend BNDP algorithm for 
learning the structure of dynamic Bayesian networks from 
incomplete data.  
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