
Learning Bayesian Network Structures with Discrete Particle Swarm Optimization
Algorithm

Heng Xing-Chen, Qin Zheng, Tian Lei, Shao Li-Ping

School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China.

Abstract-A novel structure learning algorithm of Bayesian
networks (BNs) using particle swarm optimization (PSO) is
proposed. For searching in structure spaces efficiently, a discrete
PSO algorithm is designed in term of the characteristics of BNs.
Firstly, fitness function is given to evaluate the structure of BN.
Then, encoding and operations for PSO are designed to provide
guarantee of convergence. Finally, experimental results show that
this PSO based learning algorithm outperforms genetic algorithm
based learning algorithm in convergence speed and quality of
obtained structures.

I. INTRODUCTION

Bayesian network is known as probabilistic network, Bayesian
belief network or causal network. It combines graph theory with
probability to express complex uncertainty among random
variables. Bayesian Network has been developed well as a kind
of uncertain reference method. It has been implemented in
applications in areas such as medical diagnostics, classification
systems and software agents for personal assistants, multisensor
fusion, and legal analysis of trials [1]. Until recently, the standard
approach to constructing belief networks was a labour-intensive
process of eliciting knowledge from experts. Methods for
capturing available data to construct a Bayesian network or to
refine an expert-provided network promise to greatly improve
both the efficiency of knowledge engineering and the accuracy of
the models. For this reason, learning Bayesian networks from
data has become an increasingly active area of research.

Learning a Bayesian network can be decomposed into the
problem of learning the graph structure and learning the
parameters. An obvious choice to combat the problem of “getting
stuck” on local maxima is to use a stochastic search method [2,3].

Several heuristic searching techniques, such as greedy hill-
climbing, simulated annealing and GA have been used. Among
those heuristics, GA and evolution computation [10,11] have
been intensively researched and proved being effective in
learning Bayesian networks. However, there exist two drawbacks
of GA in learning Bayesian networks which are its expensive
computational cost and premature convergence. When the
number of variables in Bayesian networks is large, those
drawbacks would degrade performance of the learning algorithm
and make it tend to return a network structure which is local
optimal.

This paper explores the use of particle swarm optimization
(PSO) algorithms for learning Bayesian networks. Our choice
was partly motivated by the work of Clerc et al. [12] and a
discrete PSO algorithm is designed in term of the characteristics
of BNs. BN structures are amenable for the discrete PSO
algorithm since the substructures of the network behave as
building blocks so we can evolve higher fit structures by
exchanging substructures of parents with higher fitness.

II. PROBLEM FORMULATION

Bayesian networks and associated schemes constitute a
probabilistic framework for reasoning under uncertainty that in
recent years has gained popularity in the community of artificial
intelligence [13,14]

From an informal perspective, Bayesian networks are directed
acyclic graphs (DAGs), where the nodes are random variables,
and the arcs specify the independence assumptions that must be
held between the random variables.

To specify the probability distribution of a BN, one must give
prior probabilities for all root nodes (nodes with no predecessors)
and conditional probabilities for all other nodes, given all
possible combinations of their direct predecessors. These
numbers in conjunction with the DAG, specify the BN
completely. The joint probability of any particular instantiation
of all n variables in a BN can be calculated as follows:

∏
=

=
n

i
iin xPxxxP

1
21)|(),....,,(π (1)

where, ix represents the instantiation of the variable iX
and iπ represents the instantiation of the parents of iX .

The most common approach to building Bayesian networks is
to elicit knowledge from an expert. This works well for smaller
networks, but when the number of variables becomes large,
elicitation can become a tedious and time-consuming affair.
There may also be situations where the expert is either unwilling
or unavailable.

Whether or not experts are available, if there are data it makes
sense to use it in building a model. The problem of learning a
Bayesian network from data can be broken into two components:
learning the structure, BS and learning the parameters, BP. If the

47

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE

structure is known1 then the problem reduces to learning the
parameters. If the structure is unknown, the learner must first
find the structure before learning the parameters (actually in
many cases they are induced simultaneously). Generally, it is
difficult for experts to give the structure of BN directly, and
learning it from data is a feasible modeling method. In addition,
the structure learning algorithm can itself be decomposed into
searching for structures by using search algorithm and evaluating
structures by using scoring metric (fitness function), which aims
at finding the best structure with highest accuracy of generating
training set. So the problem of the structure learning can be
formally defined as follows:

Input: A training set D of instances of X, which contains N
observation sequences. The length of the kth sequence is lk and
each case xk[0], xk[1],…, xk[lk] is given.

Output: A BN that best matches D. The notion “best matches”
is defined using a scoring function.

III. STRUCTURE LEARNING ALGORITHM
USING DISCRETE PSO

Particle swarm optimization (PSO) is an evolutionary
computation technique developed by Dr. Eberhart and Dr.
Kennedy in 1995, which is inspired by social behavior of bird
flocking and fish schooling [2,3]. It has been found to be
extremely effective in solving the continuous optimization
problem, but now it has been expanded to discrete domain.

In 1997, Eberhart and Kennedy proposed a discrete binary
version of PSO [4], KE-PSO, in which the discrete binary
variables are operated and trajectories are changes in the
probability that a coordinate will take on a zero or one. Then a
multi-phase discrete particle swarm optimization is presented, in
which the discrete binary version is improved and different
groups of particles have trajectories that proceed along
trajectories with differing goals in different phases of the
algorithm [5]. In 2004, a quantum particle swarm optimization
algorithm is proposed, QPSO, in which the discrete binary
version is improved again by introducing the quantum theory [6].
In 2005, a Bayesian optimization model-oriented approach to
particle motion algorithm is proposed in the literature [7], where
the use of an explicit information model as the basis for particle
motion provides tools for designing successful algorithms.
Though some problems still exist, it can be easily modified for
any discrete/combinatorial problem for which we have no good
specialized algorithm. Therefore, as a combinatorial optimization
problem, it is possible to learn the structure of BN by using PSO
algorithm.

Our algorithm which is named after “BNDP” can be expressed
simply by the following equation, BNDP = (F, X, V, Sxx , Pvv ,
Mv , Pxv ,, λ , Ginit , υ), where, F is a fitness function, X a space

of positions of particles, V velocity set of particles, Sxx a
substraction operation (position, position), Pvv a move operation
(position plus velocity), Mv a multiplication operation
(coefficient times velocity), Pxv a addition operation (velocity
plus velocity), λ the swarm size, Ginit an initial swarm and υ
stopping condition.

A. Fitness Function F

The most common fitness function F to evaluating structures is
by the posterior probability of the structure given the
observations. That is, a structure is good to the extent it is
probable given the available information. The posterior
probability of a structure can be obtained by applying Bayesian
rule:

DP
BPBDP

DBP SS
S

|
| = (2)

where P (BS |D) is the posterior distribution of the structure given
the data, P(D|BS) is the likelihood function, P(BS) is the prior
probability of the structure, and P(D) is the normalizing constant.
Since P (D) is not dependent on the structure, it can be ignored
when trying to find the best scoring function. In addition, without
prior knowledge of structures, we can assume they have equal
probability. However, if we do have information on structures we
can always use the prior information.

The problem is now reduced to finding the structure with the
maximum likelihood P (D|BS). In other words, given a structure,
these structures are evaluated according to how probable it is that
the data were generated from the structure.

Cooper and Herskovitz showed that when a Dirichlet prior is
used for the parameters in the network, the likelihood P (D|BS)
can be obtained in closed form:

∏∏ ∏
= = = Γ

+Γ
+Γ

Γ
==

n

i

q

j

r

k ijk

ijkijk

ijij

ij
i i

N
NN

NN
N

1 1 1
'

'

'

'

S)(
)(

)(
)(

)B|P(DF (3)

where n is the number of variables in the database, ri is the
number of possible states for variable Xi , q i is the number of

possible states for pa (Xi), Nijk are the sufficient statistics from
the database (counts of occurrences of configurations of
variables and their parents), N '

ijk are the hyper parameters (prior
counts of occurrences of variables and their parents) specified for
the parameter prior (assuming an uninformative prior as in the
prior for the structure we set the hyper parameters to 1),

,
1=

=
ir

k
ijkij NN and

=

=
ir

k
ijkij NN

1

'' . For computational

convenience, the number of parents allowed for a particular
variable is limited. This scoring metric (3) is commonly referred
to as the Bayesian Dirichlet metric. In practice, the logarithm of

48

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

(3) is usually used to score networks.
When data are complete, the Bayesian Dirichlet metric, a

fitness function for BN, exists in closed form. So we may utilize
the score decomposition properties, which facilitate the
computation of the scoring metric (3) in several ways. Note that
the likelihood is expressed as a sum of terms, where each term
depends only on the conditional probability of a variable given a
particular assignment to its parents. Thus, if we want to find the
maximum likelihood parameters, we can maximize within each
family independently.

With the Bayesian Dirichlet metric (see Eq. (3)), we can now
search over possible structures for the one that scores best
networks from complete datasets that mean that all of the cases in
the data contain values for all of the variables.

B. Encoding PSO Elements for BN

The BN structure can be represented as an adjacency list, see Fig.
1, where each row represents a variable Xi and the members of
each row, with the exception of the first member, are the parents
of Xi, pa (Xi). The first member of each row, i.e. the first column
of the adjacency list, is the variable Xi.

Position of Particles and State space

As BNDP algorithm is designed to find the best structure of BN
by using PSO, the structure of BN should be encoded into a
position of particle.

Although we show the variable Xi in the Fig. 1 for clarity, the
internal representation encodes its parents only, with the variable
being encoded by sequence. The adjacency list can be thought of
as a “position” where each pa (Xi) represents a “local position”.
For example, the “local position” of the variable F can be
encoded as [D, E]. Because the logarithm of the scoring metric is
the summation of scores for each variable, each local position
can be scored separately and added to generate the fitness score
for the entire structure.

So the search space is enormous. A local position can range
from no parents to n-1 parents, where n is the number of

variables in the dataset. Thus a local position can take on

=

−
k

i

n
i

1

1)(possible values where k is the maximum set of parents

a variable can have and n is the number of variables in the
dataset. So, the search space can be defined as follow:

= =

−
n

j

k

i

n
i

1 1

1 .

Velocity

Definition 1 switch operator
If a specified BN has n variables, the position of a particle can be
expressed as an adjacency list P = ((xi)), i=1,…,n. We define a
switch operator SO which, when applied to a position during one
time step, gives another position. So, here, SO has three types:
+xi, -xi and φ . The +xi denotes adding a variable xi into original
position, -xi reducing a variable xi and φ null.
Definition 2 switch unit
A sequence composed of one or several switch operators is a
switch unit. We denote it by SU.
 SU = (SO1, SO2 , ., SOk) (4)
where SO 1, SO 2 , ., SOk are k switch operators and the
different orderings of them have different signification.
The length of the SU is defined by ||SU|| =k. Each SU is
applied to the change of a local position.
Definition 3 switch list (velocity)
A sequence composed of one or several switch units is a switch
list. We denote it by SL. Here, actually, the number of switch
units of each switch list is equal to the number of variables n of

BN. The length of the SL is defined by ||SL|| =
=

n

i 1
i ||SU|| . A

velocity V is then defined by
 V = SL = (SU1, SU2 , ., SUn) (5)

Where, SU1, SU2, ., SUn are n switch units and each SL or
V is applied to the change of a global position.
Definition 4 equivalent set of switch list
If different switch lists are equivalent (same result when applied
to any position), the set of them is called equivalent set of switch
list.

C. Designing Operations for PSO

Opposite of a velocity
It means to do the same switch as in original SL, but with reverse
operator. For example, - ((-A), (+B-C)) = ((A), (-B+C)). It is
easy to verify that we have - (- SL) =SL (and SL ⊕ -SL φ≅ , see

Fig.1. Encoding the structure of a BN

AA
B | A
C | A
D | B
E | C
F | DE

B C

D E

F

49

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

below Addition "velocity plus velocity").

Addition (Pxv) "position plus velocity"
Let P be a position and V a velocity. The position P’=P+V is
found by applying the first switch of V to P, then the second one
to the result etc.
Example

P =(φ , A, A, B, C, DE)

V = ((+B), (-A), (-A+B), (-B+C), (φ), (-D-E+A)) (6)
Applying V to P, we obtain successively

 P’ = (B, φ , B, C, C, A) (7)

Substraction (Sxx) "position minus position"
Let P1 and P2 be two positions. The difference P2 – P1 is defined
as the velocity V, found by a given algorithm, so that applying V
to P1 gives P2. The condition "found by a given algorithm" is
necessary, for, as we have seen, two velocities can be equivalent,
even when they have the same size. In particular, the algorithm is
chosen so that we have P1 = P2 V = P2 – P1 = φ

Addition (Pvv) "velocity plus velocity"
Let V1 and V2 be two velocities. In order to compute V1 ⊕ V2 we
consider the switch list which contains the first switch unit of V1,
followed by the first switch unit of V2, then the second switch
unit of V1, followed by the second switch unit of V2 etc. For
example, ((-A), (-B+C)) ⊕ ((-B+A), (-B+D)) = ((-A-B+A), (-
B+C-B+D)). In general, we "contract" it to obtain a smaller
equivalent velocity. For example, ((-A-B+A), (-B+C-B+D)) = ((-
B), (+C+D)). In particular, this operation is defined so that V ⊕ -
V . = φ . So, we can have the following definition:
Definition 5 basic switch list
The switch list of equivalent set of switch list, which contains the
least switch operators, is defined as basic switch list. Each
velocity is a basic switch list.

Multiplication (Mv) "coefficient times velocity"
Let α be a real coefficient and V be a velocity. There are
different cases, depending on the value of α .
Case α = 0
We have α V =φ
Case α ∈[0,1]
We just "shrink" V. Let ||α V || be the greatest integer smaller
than or equal toα ||V||. So we define α V = ((SO1, ..,
SOk)1,…..,(SO1,..,SOk)n), k)/||(||

1
nVα↑

Case α > 1
It means we have α = d +α ’, d is an integer (d ≠ 0), α ’∈[0,1].

So we define α V =
=

⊕⊕
d

i
VV

1

')(α .

Case α < 0
As α V = (-α) * (- V), we only need to consider one of the
previous cases.

D. Control Parameters

The initial swarm Ginit , as well as the velocities, can be
generated either randomly or by a Sobol sequence generator [9,
15], which ensures that the D-dimensional vectors will be
uniformly distributed within the search space.
 The swarm size λ should be not kept too big because of the
computation time required scoring the fitness function; On the
other hand, λ should be not kept too small for improving the
diversity of particles of swarm to avoid premature convergence.
Hence, we choose λ within [30,100].
 The stopping criterionυ for the algorithm is set in term of that
when either g1 generations have been run or when in g2
successive generations, the value of the fitness function of the
best structure corresponds with the average value of the fitness
function.

E. BNDP Algorithm

We can now rewrite the formula from the basic PSO algorithm:
V 1+k

id = w * V k
id ⊕ c1* ()rand * (P id - X k

id)

⊕ c2* ()Rand * (P gd - X k
id) (8)

X 1+k
id = X k

id + V 1+k
id (9)

Where, i = 1,2,…,N; N is the swarm’s size; d represents the d-
dimensional search space; w is the inertia weight factor; c1 and c2
are two positive constants, called the cognitive and social
parameter respectively; ()rand and ()Rand are two random

numbers uniformly distributed within the range [0,1]; V k
id is the

velocity of particle i at iteration k; X k
id is the current position of

particle i at iteration k; P id is the best previous position of

particle i at iteration k; P gd is the best neighbour’s best previous
position at iteration k.

The BNDP algorithm can be described as follows:
Step1: Initialize the particle swarm (each particle is given a

stochastic initial solution/position and switch
list/velocity).

Step2: If stopping criterion is satisfied, turn to Step 5.

50

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Step 3: Calculate the next position X '
id (the new solution)

according to the current position X id of the particle i.

1) Calculate the differenceα by α = P id - Xid

whereα is a basic switch list and is applied to Xid

to obtain Pid.
2) Calculate the difference β by β = Pgd - Xid

where β is also a basic switch list.

3) Calculate the velocity V '
id in term of the equation

(8) and transform V '
id into a basic switch list.

4) Calculate the new solution X '
id in term of the

equation (9).
5) If a better solution is found, update P id .

Step 4: If a better solution is found for the whole swarm, update
P gd and turn to Step 2.

Step 5: Show the optimal solution.

. EXPERIMENT

For evaluating the behavior of our algorithm BNDP, we perform
the different experimental steps as follows:

Step 1: Begin with a BN (structure + conditional probabilities)
and simulate it, generating randomly 1000 samples
for the training set D and another 1000 for the test
set.

Step 2: Using the approach based on BNDP algorithm try to
obtain best BN structure B *

S from D, which

maximize the probability P (D| B *
S).

Step3: Evaluate the performance of BNDP algorithm by
evaluating the accuracy of B *

S predicting objective
probability distribution.

For this experiment we use a Bayesian network known as
ASIA. The ASIA network was initially presented by Lauritzen
and Spiegelhalter [8]. It is a small (nine variables) fictitious
model of medical knowledge concerning the relationships
between visits to Asia, tuberculosis, smoking, lung cancer, lung
cancer or tuberculosis, Positive X-ray, Dyspnoea and bronchitis.
The training set with 1000 samples is generated using
probabilistic logic sampling [15] from the original network.

We compare BNDP algorithm with structure learning
algorithm based on GA presented in [10]. The algorithm
proposed in [10] is named “BNGA” in this paper. The best
structure of BN over 10 times running BNDP and the BNGA
algorithm on the training set is selected as the finally obtained

result model. We evaluate the performance of the algorithms by
using the accuracy of predicting the probability distribution of
the objectives through the result model. This concrete process is
that we generate 1000 samples as test set from the original
network, then calculate the log loss

(
=

numN

i
i

ii

num

NXXp
N 1

])[],...,0[(log1
) for the test set using

the result model, which can be seen in figure 2.

From figure 2 we could see that, for all training sets, the
predictive accuracy of BNDP is much higher than that of BNGA.
And compared with BNGA, the more the number of samples is
introduced, the higher the predictive accuracy of our algorithm
becomes. In addition, the average number of iterations of BNDP
(476) is much smaller than that of BNGA (644) for 1000 samples
during the search process. The reason for our algorithm’s
superiority on “efficiency” over BNGA is that, PSO can
converge much more rapidly than GA. Therefore PSO is very
promising for learning Bayesian networks.

. CONCLUSION

In this paper we introduce PSO to the problem of learning
Bayesian networks from data. This problem is characterized by a
large, multi-dimensional, multi-modal search space and is
extremely difficult for deterministic algorithms. We propose an
efficient structure learning algorithm using discrete PSO, which
is called BNDP algorithm.

Using simulations of the ASIA network, we carry out a
performance analysis on the BNDP algorithm. The obtained
experimental results also show that, compared to structure
learning algorithm using GA, the BNDP algorithm could reduce
the time for learning Bayesian network greatly. In addition, the

the number of training data
Fig.2. Comparison of Performance of algorithms

100 200 300 400 500 600 700 800 900 1000

-1.1

-1.15

-1.2

-1.3

-1.35

-1.4

-1.45
-1.5

-1.55

-1.25

log
loss

10

 BNDP
BNGA

51

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

quality of the finally obtained network structure could be also
improved. Therefore, discrete PSO is a very promising for
learning Bayesian networks when the number of variables is very
large.

The future step forwards is to extend BNDP algorithm for
learning the structure of dynamic Bayesian networks from
incomplete data.

ACKNOWLEDGEMENT

The research reported in this paper is funded by the
National ”973” Key Basic Research Development Planning
Project (2004CB719401).

REFERENCES

[1] Heckerman, D., D. Geiger, et al. (1995). “Learning Bayesian
Networks: The Combination of Knowledge and Statistical Data.”
Machine Learning 20:197-243.

[2] Kennedy, J. Minds and cultures: particle swarm implications.
Socially Intelligent Agents: Papers from the 1997 AAAI Fall
Symposium pp. 67-72. AAAI Press, Menlo Park, CA, 1997. usa,
pp.289-294.

[3] Eberhart, R. C. and J. Kennedy. 1995. A new optimizer using
particle swarm theory. Proceeding of the sixth International
symposium on micro machine and human science pp. 39-43. IEEE
service center, Piscataway, NJ, Nagoya, Japan.

[4] J. Kennedy and R.C. Eberhart, “A discrete binary version of the
particle swarm algorithm,” Proc. Conf. On Systems, Man, and
Cybernetics, Piscataway, NJ, 1997.

[5] Al-Kazemi B, Mohan C K. “Multi-phase generalization of the
particle swarm optimization algorithm.” In: Proceedings of the
2002 Congress on Evolutionary Computation, CEC'
02,Vol.1,2002: 489~494

[6] Shuyuan Yang, Min Wang, “A Quantum Particle Swarm
Optimization,” In: Proceedings of the 2004 Congress on
Evolutionary Computation, CEC'04,Vol.1,2004:320~324.

[7] Christopher K. Monson, Kevin D. Seppi, “Bayesian Optimization
Models for Particles Swarms”, Proc. Seventh Genetic and
Evolutionary Computation Conference, Washington, DC, USA,
June 25–29, 2005.

[8] Lauritzen, S.L. and D.J. Spiegelhalter. 1988. “Local Computations
with Probabilities on Graphical Structures and Their Application on
Expert Systems,” J. Royal Statistical Soc. B, vol. 50, no. 2, pp. 157-
224.

[9] W.H. Press, W.T. Vetterling, S.A. Teukolsky and B.P. Flannery,
Numerical Recipes in Fortran 77,Cambridge University Press:
Cambridge, 1992.

[10] Larraaga, P., Poza, M., Yurramendi, Y., Murga, R., Kuijpers, C.:
Structural learning of Bayesian network by genetic algorithms:
performance analysis of control parameters. IEEE Trans. Pattern
Anal.Machine Intell. 18 (1996) 912–926.

[11] LI, X.L., Yuan, S.M., He, X.D.: Learning Bayesian Networks
Structures Based on Extending Evolutionary Programming.
Proceeding of the Third International Conference on Machine
Learning and Cybernetics. Shanghai (2004) 1594–1598.

[12] Clerc, M., Discrete Particle Swarm Optimization, illustrated by
the Traveling Salesman Problem, New Optimization
Techniques in Engineering, Springer, 2004, 219-239

[13] Pearl, J. 1998. Probabilistic Reasoning in Intelligence Systems:
Network of Plausible Inference. San Mateo, Calif.: Morgan
Kaufmann.

[14] Neapolitan, R.E. 1990. Probabilistic Reasoning in Expert
Systems. Theory and Algorithms. John Wiley & Sons.

[15] Henrion, M. 1988. “Propagating Uncertainly in Bayesian
Networks by Probabilities Logic Sampling,” Uncertainty in
Artificial Intelligence, vol. 2, pp. 149-163.

52

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

