
Granular Computing in Actor-Critic Learning
James F. Peters

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba R3T 5V6, Canada
Email: jfpeters@ee.umanitoba.ca

Abstract— The problem considered in this paper is how to
guide actor-critic learning based on information granules that
reflect knowledge about acceptable behavior patterns. The
solution to this problem stems from approximation spaces,
which were introduced by Zdzisław Pawlak starting in the early
1980s and which provide a basis for perception of objects that
are imperfectly known. It was also observed by Ewa Orłowska
in 1982 that approximation spaces serve as a formal counterpart
of perception, or observation. In our case, approximation spaces
provide a ground for deriving pattern-based behaviours as well
as information granules that can be used to influence the policy
structure of an actor in a beneficial way. This paper includes
the results of a recent study of swarm behavior by collections
of biologically-inspired bots carried out in the context of an
artificial ecosystem. This ecosystem has an ethological basis
that makes it possible to observe and explain the behavior of
biological organisms that carries over into the study of actor-
critic learning by interacting robotic devices. The contribution
of this article is a framework for actor-critic learning defined in
the context of approximation spaces and information granulation.

I. INTRODUCTION

The problem considered in this paper is how to guide actor-
critic learning [1] based on information granules that reflect
knowledge about acceptable behavior patterns. The solution
to this problem stems from approximation spaces, which were
introduced by Zdzisław Pawlak [12] starting in the early 1980s
and which provide a basis for set approximations (see, e.g., [6],
[7], [8]). A basic granular computing architecture for actor-
critic learning is shown in Fig. 1.

Fig. 1. Basic Structures in Actor-critic Learning

The conventional actor-critic method evaluates whether
things have gotten better or worse than expected as a result of
an action-selection in the previous state. A temporal difference

(TD) error term δ is computed by the critic to evaluate an
action previously selected. An estimated action preference in
the current state is then determined by an actor using δ. Swarm
actions are generated by a policy that is influenced by action
preferences. In the study of swarm behaviour of multi-agent
systems such as systems of cooperating bots, it is helpful
to consider ethological methods (see, e.g., [35]), where each
proximate cause (stimulus) usually has more than one possible
response. Swarm actions with positive TD error tend to be
favored. A second form of actor-critic method is defined in
the context of an approximation space (see, e.g., [15], [16],
[17], [21], [18], [20], [30], [33]), and which is an extension
of recent work with reinforcement comparison (see, e.g. [17],
[19], [22], [18]). This form of actor-critic method utilizes what
is known as a reference reward, which is pattern-based and
action-specific. The contribution of this article is a framework
for actor-critic learning defined in the context of approximation
spaces and information granulation.

This paper is organized as follows. A brief introduction
to actor-critic learning is given in Sect. II. The distinction
between features and probe functions is given in Sect. III.
Approximation spaces are briefly presented in Sect. IV. Infor-
mation granulation that starts with neighborhoods of objects
that indiscernible from each other (i.e., atoms) is briefly
introduced in Sect. IV-C. A comparison of two forms of actor-
critic learning is given in Sect. V.

II. ACTOR-CRITIC LEARNING

Actor-critic (AC) methods are temporal difference (TD)
learning methods with a separate memory structure to repre-
sent policy independent of the value function used (see Fig. 1).
The AC method considered in this section is an extension
of reinforcement comparison in [34]. The following notation
is needed (here and in subsequent sections). Let S be a set
of possible states, let s denote a (current) state and for each
s ∈ S, let A(s) denote the set of actions available in state s.
Put A = ∪s∈SA(s), the collection of all possible actions. Let
a denote a possible action in the current state; let s ′ denote
the subsequent state after action a (that is, s′ is the state in
the next time step); let p(s, a) denote an action-preference (for
action a in state s); let r denote the reward for an action while
in state s.

Begin by fixing a number γ ∈ (0, 1], called a discount rate, a
number picked that diminishes the estimated value of the next
state; in a sense, γ captures the confidence in the expected

59

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE

value of the next state. Let C(s) denote the number of times
the actor has observed state s. As is common (e.g., see [34]),
define the estimated value function V (s) to be the average of
the rewards received while in state s. This average may be
calculated by (1).

V (s) =
n − 1

n
Vn−1(s) +

1
n
· r, (1)

where Vn−1(s) denotes V (s) for the previous occurrence of
state s. After each action selection, the critic (represented as
δ) evaluates the quality of the selected action using

δ ←− r + γV (s′) − V (s),

which is the error (labelled the TD error) between successive
estimates of the expected value of a state. If δ > 0 then it can
be said that the expected return received from taking action a
at time t is larger than the expected return in state s resulting in
an increase to action preference p(s, a). Conversely, if δ < 0,
the action a produced a return that is worse than expected and
p(s, a) is decreased [38].

The preferred action a in state s is calculated using

p(s, a) ← p(s, a) + βδ,

where β is the actor’s learning rate. The policy π(s, a) is
employed by an actor to choose actions stochastically using
the Gibbs softmax method [2] (see also [34], 30–31)

π(s, a) ←− ep(s,a)∑|A(s)|
b=1 ep(s,b)

.

Algorithm 1 gives the actor-critic method that is an extension
of the reinforcement comparison method given in [34]. It is
assumed that the behaviour represented by Algorithm 1 is
episodic (with length Tm, an abuse of notation used [28] for
terminal state, the last state in an episode) and the while loop
in the algorithm is executed continually over the entire learning
period, not just for a fixed number of episodes.

III. FEATURES AND MEASUREMENTS

It was Zdzisław Pawlak who proposed classifying objects
by means of their attributes (features) considered in the context
of an approximation space [9]. Explicit in the original work
of Pawlak is a distinction between features of objects and
knowledge about objects. The knowledge about an object is
represented by a measurement associated with each feature
of an object. In general, a feature is an invariant property
of objects belonging to a class [37]. The distinction between
features and corresponding measurements associated with fea-
tures is usually made in the study of pattern recognition (see,
e.g., [3], [5]). In this article, the practice begun by Pawlak [9]
is represented in the following way. Let A denote a set of
features for objects in a set X . For each a ∈ A, we associate
a function fa that maps X to some set Vfa (range of fa). The
value of fa(x) is a measurement associated with feature a of
an object x ∈ X . The function fa is called a probe [5]. By
InfB(x), where B ⊆ A and x ∈ U we denote the signature
of x, i.e., the set {(a, fa(x)) : a ∈ B}. If B = {a1, . . . , am},

Algorithm 1: Actor-critic Method
Input : States s ∈ S, Actions a ∈ A, Initialized γ, β.
Output: Policy π(s, a).
for (all s ∈ S, a ∈ A(s)) do

p(s, a) ←− 0; π(s, a) ←− ep(s,a)
�|A(s)|

b=1 ep(s,b)
; C(s) ←− 0;

end
while True do

Initialize s;
for (t = 0; t < Tm; t = t + 1) do

Choose a from s = st using π(s, a);
Take action a, observe r, s′;
C(s) ←− C(s) + 1;
V (s) ←− V (s) + 1

(s) [r − V (s)];
δ = r + γV (s′) − V (s);
p(s, a) ←− p(s, a) + βδ;
π(s, a) ←− ep(s,a)

�|A(s)|
b=1 ep(s,b)

;

s ←− s′;
end

end

then InfB is identified with a vector (fa1(x), . . . , fam(x)) of
probe function values for features in B.

In what follows, the term feature is used instead of the term
property in [32]. It is assumed that variables x, X denote
concrete objects. That is, it is understood that an object is
something external to us (i.e., something subject to spatial
and temporal constraints). An object can either be molecular
(i.e., with the structure defined by the part relation, e.g., a
set with the only parts being its elements (objects)) or atomic
(i.e., an object with no parts). An atom is always part of some
molecular object. We freely use the terms set and element
interchangeably with molecular object and atom, respectively.
The notation X, Y and x, y denotes also sets and elements
of sets, respectively. It is also understood that classifying an
object by means of its features is not the same thing as defining
an object.

IV. APPROXIMATION SPACES

This section briefly presents some fundamental concepts in
rough set theory that provide a foundation for a new approach
to reinforcement learning by collections of cooperating agents.
The rough set approach introduced by Zdzisław Pawlak [10],
[11] provides a ground for concluding to what degree a set
of equivalent behaviours are covered by a set of behaviours
representing a standard. The term “coverage” is used relative
to the extent that a given set is contained in a standard set.
Approximation spaces were introduced by Zdzisław Pawlak
during the early 1980s [9], elaborated in [4], [11], [6], [7], [8],
and generalized in [30], [33]. The motivation for considering
approximation spaces as an aid to reinforcement learning
stems from the fact that it becomes possible to derive pattern-
based rewards (see, e.g., [22]).

An overview of rough set theory and applications is given
in [27]. For computational reasons, a syntactic representation

60

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

of knowledge in rough set theory is provided in the form of
data tables.

A. Rough sets

Let U be a non-empty finite set (called a universe) and
let P(U) denote the power set of U , i.e., the family of all
subsets of U . Elements of U may be, for example, objects,
behaviours, or perhaps states. A feature F of elements in U
is measured by an associated probe function f = fF whose
range is denoted by Vf , called the value set of f ; that is,
f : U → Vf . There may be more than one probe function
for each feature. For example, a feature of an object may
be its weight, and different probe functions for weight are
found by different weighing methods; or a feature might be
colour, with probe functions measuring, e.g., red, green, blue,
hue, intensity, and saturation. The similarity or equivalence
of objects can be investigated quantitatively by comparing a
sufficient number of object features by means of probes [5].
For present purposes, to each feature there is only one probe
function associated and its value set is taken to be a finite set
(usually of real numbers). Thus one can identify the set of
features with the set of associated probe functions, and hence
we use f rather than fF and call Vf = VF a set of feature
values. If F is a finite set of probe functions for features
of elements in U , the pair (U, F) is called a data table, or
information system (IS).

For each subset B ⊆ F of probe functions, define the binary
relation ∼B= {(x, x′) ∈ U × U : ∀f ∈ B, f(x) = f(x′)}.
Since each ∼B is an equivalence relation, for B ⊂ F and x ∈
U let [x]B denote the equivalence class, or block, containing
x, that is,

[x]B = {x′ ∈ U : ∀f ∈ B, f(x′) = f(x)} ⊆ U.

If (x, x′) ∈ ∼B (also written x ∼B x′) then x and x′ are said
to be indiscernible with respect to all feature probe functions
in B, or simply, B-indiscernible.

Information about a sample X ⊆ U can be approximated
from information contained in B by constructing a B-lower
approximation

B∗X =
⋃

x:[x]B⊆X

[x]B,

and a B-upper approximation

B∗X =
⋃

x:[x]B∩X �=∅
[x]B.

The B-lower approximation B∗X is a collection of blocks of
sample elements that can be classified with full certainty as
members of X using the knowledge represented by features
in B. By contrast, the B-upper approximation B ∗X is a
collection of blocks of sample elements representing both
certain and possibly uncertain knowledge about X . Whenever
B∗X � B∗X , the sample X has been classified imperfectly,
and is considered a rough set. In this paper, only B-lower
approximations are used.

B. Generalized approximation spaces

This section gives a brief introduction to approximation
spaces. The basic model for an approximation space was
introduced by Pawlak in 1981 [9], elaborated in [4], [11], [6],
generalized in [30], [33], and applied in a number of ways
(see, e.g., [15], [16], [24], [17], [18], [19], [22], [23], [25],
[31]). An approximation space serves as a formal counterpart
of perception or observation [4], and provides a framework
for approximate reasoning about vague concepts.

To be precise about what “approximation space” means,
some definitions are required. A neigbourhood function on a
set U is a function N : U → P(U) that assigns to each
x ∈ U some subset of U containing x. A particular kind of
neigbourhood function on U is determined by any partition
ξ : U = U1 ∪ · · · ∪ Ud, where for each x ∈ U , the ξ-
neigbourhood of x, denoted Nξ(x), is the Ui that contains
x. In terms of equivalence relations in Section IV-A, for some
fixed B ⊂ F and any x ∈ U , [x]B = NB(x) naturally defines
a neigbourhood function NB . In effect, the neigbourhood
function NB defines an indiscernibility relation, which defines
for every object x a set of like-wise defined objects, that is
objects whose value sets agree precisely (see, e.g., [20]). An
overlap function ν on U is any function ν : P(U)×P(U) →
[0, 1] that reflects the degree of overlap between two subsets
of U .

A generalized approximation space (GAS) is a triple
(U, N, ν), where U is a non-empty set of objects, N is a
neigbourhood function on U , and ν is an overlap function on
U . In this work, only indiscernibility relations determine N .

A set X ⊆ U is definable in a GAS if, and only if X
is the union of some values of the neigbourhood function.
Specifically, any information system (U, F) and any B ⊆ F
naturally defines parameterized approximation spaces ASB =
(U, NB, ν), where NB = [x]B , a B-indiscernibility class in a
partition of U .

A standard example (see, e.g., [30]) of an overlap function
is standard rough inclusion, defined by νSRI(X, Y) = |X∩Y |

|X|
for non-empty X . Then νSRI(X, Y) measures the portion of
X that is included in Y . An analogous notion is used in this
work. If U = Ubeh is a set of behaviours, let Y ⊆ U represent
a kind of “standard” for evaluating sets of similar behaviours.
For any X ⊂ U , we are interested in how well X “covers” Y ,
and so we consider another form of overlap function, namely,
standard rough coverage νSRC, defined by

νSRC(X, Y) =

{
|X∩Y |
|Y | if Y
= ∅,
1 if Y = ∅. (2)

In other words, νSRC(X, Y) returns the fraction of Y that is
covered by X . In the case where X = Y , νSRC(X, Y) = 1.
The minimum coverage value νSRC(X, Y) = 0 is obtained
when X ∩ Y = ∅. One might note that for non-empty sets,
νSRC(X, Y) = νSRI(Y, X)

C. Information Granules

Information granulation makes it possible to achieve a
form of data compression [7]. A neighborhood of an object

61

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Fig. 2. Basic Structures in Approximation Space-Based Learning

constitutes a set of indiscernible (similar) objects. Neighbor-
hoods form the basic granules (atoms) of knowledge about
the universe [7]. Neighborhoods can also be construed as a
basis for our perception of objects. An example of a granule
at the atomic level is an equivalence class [x]B (also known
as a block or elementary set). Neighborhoods provide the
basic building blocks for approximations of particular sets of
objects and, in particular, approximations of concepts [4]. The
lower approximation B∗D of a concept D is an example of
a molecular or compound information granule (i.e., composi-
tion of elementary granules), which is the set of all objects
which can for certainly classified as D in view of B [7]. In
what follows, the lower approximation provides a standard
of behaviour during actor-critic learning. To see this, we first
introduce what is known as average rough coverage.

D. Average rough coverage

An ethogram is a decision system representing observations
of the behavior of an agent interacting with an environment,
and provides a basis for the construction of a particular
approximation space, which can be used to influence action
preferences and a stochastic policy during reinforcement learn-
ing (see Fig. 2).

This section illustrates how to derive average rough cov-
erage using an ethogram. An episode is a sequence of states
that terminates. During an episode, an ethogram is constructed,
which provides the basis for an approximation space and the
derivation of the degree that a block of equivalent behaviours
covers a set of behaviours representing a standard (see, e.g.,
[17], [19], [35]).

Define a behaviour to be a tuple (s, a, p(s, a), r) at any
one time t, and let d denote a decision (1 = choose action, 0
= reject action) for acceptance of a behaviour. Let U beh =
{x0, x1, x2, . . .} denote a set of behaviours. Decisions to
accept or reject an action are made by the actor during the
learning process; let d denote a decision (0=reject, 1=accept).
Often ethograms also include a column for “proximate cause”
(see [35]), however in the following example, this is consid-
ered as constant, and so such a column is redundant and does
not appear.

Let B be the set of probe functions for state, action, action-
preference, and reward. The probe functions are suppressed,
so identifying probe functions with features, write B =

TABLE I

SAMPLE ETHOGRAM

xi s a p(s, a) r d

x0 k h 0.0 0.75 1
x1 k i 0.0 0.75 0
x2 � i 0.0 0.1 0
x3 � j 0.0 0.1 1
x4 k h 0.0 0.75 1
x5 k i 0.0 0.75 0
x6 � i 0.010 0.9 1
x7 � j 0.025 0.9 0
x8 k h 0.01 0.75 1
x9 k i 0.056 0.75 0

{s, a, p(s, a), r}. For each possible feature value j of a, (that
is, j ∈ Va), and x ∈ Ubeh, put Bj(x) = [x]B if, and only if,
a(x) = j, and call Bj(x) an action block.

Put B = {Bj(x) : j ∈ Va, x ∈ Ubeh}, a set of blocks that
“represent” actions in a set E of sample behaviours. Setting
ν = νSRC, define the average (lower) rough coverage

ν =
1
|B|

∑
Bj(x)∈B

ν (Bj(x), B∗E) .

Computing the average rough coverage value for action blocks
extracted from an ethogram implicitly measures the extent that
past actions have been rewarded.

Sample approximation space

What follows is a simple example of how to set up a lower
approximation space relative to an ethogram.

Let S = {k, �} be the collection of two states, and let A =
{i, j, k} be the set of possible actions, with A(k) = {h, i},
A(�) = {i, j}.

The calculations are performed on the feature values
shown in the first four columns of Table I. Put
B = {s, a, p(s, a), r}. Let Ubeh = {x0, x1, . . . , x9} and
let D = {x ∈ U : d(x) = 1} = {x0, x3, x4, x6, x8} be the
decision class, and consider the following equivalence classes:

[x0]B = {x0, x4}, [x1]B = {x1, x5, x9},
[x2]B = {x2}, [x3]B = {x3},
[x6]B = {x6}, [x7]B = {x7},
[x8]B = {x8}.

Then letting B∗D = {x0, x3, x4, x6, x8} play the role of Y
in equation (2) and each equivalence class [x]B play the role
of X , one obtains:

ν([x0]B, B∗D) = 2
5 , ν([x1]B, B∗D) = 0,

ν([x2]B, B∗D) = 0 ν([x3]B, B∗D) = 1
5 ,

ν([x4]B, B∗D) = 0 ν([x5]B, B∗D) = 0 ν([x6]B , B∗D) = 1
5 ,

ν([x7]B, B∗D) = 0 ν([x8]B, B∗D) = 1
5 .

Finally,

νh = (2
5)1

3 = 3
10 , νi = (1

5 + 0 + 0)1
3 = 1

15 , and νj =
(1
5 + 0)1

2 = 1
10 .

62

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

0 10 20 30 40 50 60 70 80 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episodes (γ=0.1)

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
ew

ar
d

AC
AC Rough Coverage

(a) Average Rewards (γ = 0.1)

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episodes (γ=0.1)

N
or

m
al

iz
ed

 T
ot

al
 S

ta
te

 V
al

ue

AC
AC Rough Coverage

(b) State Values (γ = 0.1)

Fig. 3. Actor-critic Method Test Results, γ = 0.1

E. Actor-Critic Learning and Information Granulation

In this work, each instance of a twiddle (effort to improve
its behavior) by an organism leads to granulation of available
information, which is stored in an ethogram. The granules
derived from an ethogram are in the form of neighborhoods
(blocks of equivalent behaviors). The basic idea is to measure
the degree of overlap of each neighborhood with the objects
in a decision class containing objects that have been judged
to be acceptable.

F. Actor-critic methods using rough coverage

This section introduces what is known as a rough-coverage
actor critic (RAC) method. The preceding section is just
one example of actor-critic methods [34]. In fact, common
variations include additional factors that vary the amount of
credit assigned to selected actions. This is most commonly
seen in calculating the preference, p(s, a). The rough coverage
form of the actor-critic method calculates preference values as
shown in (3).

p(s, a) ← p(s, a) + β [δ − ν̄a] , (3)

where ν̄a (average rough coverage relative to action a-blocks)
is reminiscent of the idea of a reference reward used during
reinforcement comparison. Recall that incremental reinforce-
ment comparison uses an incremental average of all recently
received rewards as suggested in [34]. By contrast, rough cov-
erage reinforcement comparison (RCRC) uses average rough
coverage of selected blocks in the lower approximation of a
set [19]. Intuitively, this means action probabilities are now
governed by the coverage of an action by a set of equivalent
actions which represent a standard. Rough coverage values
are defined within a lower approximation space. Alg. 2 is the
RAC learning algorithm used in the ecosystem for actor-critic
methods using lower rough coverage.

V. CONCLUSION

Test results for two forms of actor-critic learning are given
in Figures 3 and 4, which suggests that the RT AC method does
better than the AC method in adjusting the action policy to
yield favorable results. The details about the design of various
testbeds and construction of ethograms that provide a basis for
the experimental results reported in this paper, can be found
in [14], [17], [18], [19], [25], [24].

Algorithm 2: Rough Coverage Actor Critic Method

Input : States s ∈ S, Actions a ∈ A(s), Initialized γ, β,
ν̄.

Output: Policy π(s, a) //where π(s, a) is a policy in
state s that controls the selection of a particular
action in state s.

for (all s ∈ S, a ∈ A(s)) do
p(s, a) ←− 0;
π(s, a) ←− ep(s,a)

�|A(s)|
b=1 ep(s,b)

;

Count(s) ←− 0;
end
while True do

Initialize s;
for (t = 0; t < Tm; t = t + 1) do

Choose a from s using π(s, a);
Take action a, observe r, s′;
C(s) ←− C(s) + 1;
V (s) ←− V (s) + 1

C(s) [r − V (s)];
δ = r + γV (s′) − V (s);
p(s, a) ← p(s, a) + β [δ − ν̄];
π(s, a) ←− ep(s,a)

�|A(s)|
b=1 ep(s,b)

;

s ←− s′;
end
Extract ethogram table ISswarm = (Ubeh, A, d) ;
Discretize feature values in ISswarm ;
Compute ν̄ using ISswarm;

end

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Episodes (γ=0.5)

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
ew

ar
d

AC
AC Rough Coverage

(a) Average Rewards (γ = 0.5)

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Episodes (γ=0.5)

N
or

m
al

iz
ed

 T
ot

al
 S

ta
te

 V
al

ue

AC
AC Rough Coverage

(b) State Values (γ = 0.5)

Fig. 4. Actor-critic Method Test Results, γ = 0.5

The concept of selecting the highest reward for an equiv-
alence class comes back to this idea of perception. We are
interested in representing perceptions about the behaviour of
an ecosystem. In trying to observe patterns in an ethogram,
usually it would be difficult to observe meaning from indi-
vidual elements, so instead we look to classes of them [4].
Furthermore, the way we see the world is reflected in the
assembly of neighbourhoods that we perceive and measure-
ments of overlap obtained in some manner. This is facilitated
through the use of the neighbourhood function (relative to
an equivalence relation defined for objects with specified
features), and the overlap function (rough coverage). This
method appears to lead to improved ecosystem behaviour
because we are drawing on perceptions of the behavior of

63

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

ecosystem members represented in ethograms, which enable
us to induce improvements in learning by ecosystem members.

Future work will include other forms of granulation (e.g.,
families of neighborhoods) in approximation spaces that pro-
vide a basis for actor-critic learning.

ACKNOWLEDGEMENTS

The author gratefully acknowledges comments and sugges-
tions concerning various parts of this paper by the anonymous
referees, David Gunderson, Christopher Henry, Dan Lockery,
and Andrzej Skowron. The author also extends his thanks
to Christopher Henry, who set up the experimental testbeds
useds to test each of the algorithms presented in this paper.
This research has been supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC) grant
185986 and Manitoba Hydro grant T277.

REFERENCES

[1] H.R. Berenji, “A convergent actor–critic-based FRL algorithm with
application to power management of wireless transmitters,” IEEE Trans.
on Fuzzy Systems, vol. 11, no. 4, pp. 478-485, 2003.

[2] Gibbs, J.W.: Elementary Principles in Statistical Mechanics, Dover, NY,
1960.

[3] Mendel, J.M., Fu, K.S. (Eds.): Adaptive, Learning and Pattern Recogni-
tion Systems. Theory and Applications. Academic Press, London (1970).

[4] Orłowska, E.: Semantics of Vague Concepts, Applications of Rough Sets,
Institute for Computer Science, Polish Academy of Sciences, Report
469, March 1982.

[5] Pavel, M.: Fundamentals of Pattern Recognition, 2nd Edition, Marcel
Dekker, Inc., NY, 1993.

[6] Z. Pawlak, A. Skowron, “Rudiments of rough sets,” Information Sci-
ences, vol. 177, pp. 3-27, 2006.

[7] Z. Pawlak, A. Skowron, “Rough sets: Some extensions,” Information
Sciences, vol. 177, pp. 28-40, 2006.

[8] Z. Pawlak, A. Skowron, “Rough sets and Boolean reasoning,” Informa-
tion Sciences, vol. 177, pp. 41-73, 2006.

[9] Pawlak Z.: Classification of Objects by Means of Attributes, Institute
for Computer Science, Polish Academy of Sciences, Report 429, March
(1981).

[10] Pawlak Z.: Rough Sets, Institute for Computer Science, Polish Academy
of Sciences, Report 431, March (1981).

[11] Pawlak Z.: “Rough sets,” International J. Comp. Inform. Science, 11,
pp. 341–356, 1982.

[12] J.F. Peters, A. Skowron, “Zdzisław Pawlak: Life and work,” Transactions
on Rough Sets, vol. V, pp. 1-24, 2006.

[13] Peters, J.F., Borkowski, M., Henry, C., Lockery, D., Gunderson, D.S.:
Line-Crawling Bots that Inspect Electric Power Transmission Line
Equipment. In: Proc. Third Int. Conference on Autonomous Robots and
Agents (ICARA 2006), Palmerston North, New Zealand, 14 Dec. 2006.

[14] Peters, J.F., Henry, C.: “Approximation spaces in off-policy Monte Carlo
learning.” Engineering Application of Artificial Intelligence, 2007, in
press.

[15] Peters, J.F.: “Approximation space for intelligent system design pat-
terns,” Engineering Applications of Artificial Intelligence, 17(4), pp. 1–8,
2004.

[16] Peters, J.F.: “Approximation spaces for hierarchical intelligent be-
havioural system models,” In: B.D.-Kepliçz, A. Jankowski, A. Skowron,
M. Szczuka (Eds.), Monitoring, Security and Rescue Techniques in
Multiagent Systems, Advances in Soft Computing, Physica-Verlag, Hei-
delberg, pp. 13–30, 2004.

[17] Peters, J.F.: “Rough ethology: Towards a Biologically-Inspired Study of
Collective behaviour in Intelligent Systems with Approximation Spaces.”
Transactions on Rough Sets, III, LNCS 3400, pp. 153-174, 2005.

[18] Peters, J.F., Henry, C.: “Reinforcement learning with approximation
spaces,” Fundamenta Informaticae 71 (2-3), pp. 323-349, 2006.

[19] Peters, J.F., Henry, C., Ramanna, S.: “Rough Ethograms: Study of
Intelligent System behaviour.” In: M.A. Kłopotek, S. Wierzchoń, K.
Trojanowski (Eds.), New Trends in Intelligent Information Processing
and Web Mining (IIS05), Gdańsk, Poland, pp. 117-126, 2005.

[20] Peters, J.F., Skowron, A., Synak, P., Ramanna, S.: ”Rough sets and
information granulation,” in: Bilgic, T., Baets, D., Kaynak, O. (Eds.),
Tenth Int. Fuzzy Systems Assoc. World Congress IFSA, Instanbul,
Turkey, Lecture Notes in Artificial Intelligence 2715, Physica-Verlag,
Heidelberg, pp. 370–377, 2003.

[21] Peters, J.F., Ramanna, S.: ”Measuring acceptance of intelligent system
models,” In: M. Gh. Negoita et al. (Eds.), Knowledge-Based Intelligent
Information and Engineering Systems, Lecture Notes in Artificial Intel-
ligence, 3213, Part I, pp. 764–771, 2004.

[22] Peters, J.F., Henry, C., Ramanna, S.: “Reinforcement learning with
pattern-based rewards,” Proc. Fourth Int. IASTED Conf. Computational
Intelligence (CI 2005), Calgary, Alberta, Canada, pp. 267-272, 2005.

[23] Peters, J.F., Henry, C., Ramanna, S.: “Reinforcement Learning in
Swarms that Learn.” In: Proc. 2005 IEEE/WIC/ACM Int. Conf. on Intel-
ligent Agent Technology (IAT 2005), Compiegne Univ. of Technology,
France, pp. 400-406, 2005.

[24] Peters, J.F.: “Approximation spaces in off-policy Monte Carlo learning,”
Plenary paper in T. Burczynski, W. Cholewa, W. Moczulski (Eds.),
Recent Methods in Artificial Intelligence Methods, AI-METH Series,
Gliwice, pp. 139-144, 2005.

[25] Peters, J.F., Lockery, D.,Ramanna, S.: “Monte Carlo off-policy reinforce-
ment learning: A rough set approach,” Proc. Fifth Int. Conf. on Hybrid
Intelligent Systems, Rio de Janeiro, Brazil, pp. 187-192, 2005.

[26] Polkowski, L., Skowron, A. (Eds.): Rough Sets in Knowledge Dis-
covery 2, Studies in Fuzziness and Soft Computing 19, Springer-
Verlag,Heidelberg (1998).

[27] Polkowski, L.: Rough Sets. Mathematical Foundations, Springer-
Verlag,Heidelberg (2002).

[28] Precup, D.: Temporal abstraction in reinforcement learning, Ph. D.
dissertation, University of Massachusetts Amherst, May 2000.

[29] Schattschneider, D.J.: The Taxicab Group. American Mathematical
Monthly 91(7), pp. 423-428, 1984.

[30] Skowron, A., Stepaniuk, J.: “Generalized approximation spaces,” in: Lin,
T.Y.,Wildberger, A.M. (Eds.), Soft Computing, Simulation Councils, San
Diego, pp. 18–21, 1995.

[31] Skowron, A., Swiniarski, R., Synak, P.: “Approximation spaces and
information granulation,” Transactions on Rough Sets III, pp. 175-189,
2005.

[32] Słupecki, J.: “Towards a generalized mereology of Leśniewski.” Studia
Logia VIII, pp. 131-155, 1958.

[33] Stepaniuk, J.: “Approximation spaces, reducts and representatives,” in
[26], 109–126.

[34] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction,
Cambridge, MA: The MIT Press, 1998.

[35] Tinbergen, N.: “On aims and methods of ethology,” Zeitschrift für
Tierpsychologie 20, pp. 410–433, 1963.

[36] Watkins, C.J.C.H.: Learning from Delayed Rewards, Ph.D. Thesis,
supervisor: Richard Young, King’s College, University of Cambridge,
UK, May, 1989.

[37] Watanabe, S.: Pattern Recognition: Human and Mechanical. John Wiley
& Sons, Cishester, UK (1985).

[38] Wawrzyński, P.: Intensive Reinforcement Learning, Ph.D. dissertation,
supervisor: Andrzej Pacut, Institute of Control and Computational En-
gineering, Warsaw University of Technology, May 2005.

64

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

