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Abstract— We discuss a generalization of the indiscernibility
relation, i.e., a relation R that is not necessarily reflexive,
symmetric, or transitive. On the basis of granules, defined by
R, we introduce the idea of definability. Twelve different basic
definitions of approximations are discussed. Since four of these
approximations do not satisfy, in general, the inclusion property,
four additional modified approximations are introduced. Fur-
thermore, eight other approximations are constructed by duality.
The main objective is to study definability of approximations. We
study definability of all approximations for reflexive, symmetric,
or transitive relations. In particular, for reflexive relations the
set of these twenty four approximations is reduced, in general,
to the set of fourteen approximations.

I. INTRODUCTION

One of the basic ideas of rough set theory is the indis-
cernibility relation [13], [14]. The usual assumption is that the
indiscernibility relation is an equivalence relation. In this paper
we will discuss a generalization of the indiscernibility relation,
an arbitrary binary relation R defined on the nonempty-finite
set U called universe. Such relation R does not need to be
reflexive, symmetric, or transitive.

Our main objective was to study the definability of approxi-
mations of any subset X of the universe U . This idea is based
on a union of granules, defined by R, that are also known as
R- successor or R- predecessor sets or as neighborhoods.

In this paper twelve definitions of approximations are dis-
cussed. Since four of these approximations do not satisfy, in
general, the inclusion property, four modified approximations
are introduced. Additionally, using duality, we define eight ex-
tra approximations. Among these twenty four approximations,
nine are introduced for the first time.

Such generalizations of the indiscernibility relation have
immediate application to data mining (machine learning) from
incomplete data sets. In such applications the binary relation
R, called the characteristic relation and describing such data,
is reflexive. For reflexive relations the system of twelve
approximations plus the system of four additional approxi-
mations is reduced to eight approximations, while the system

of eight approximations defined by duality is reduced to six.
Thus, only fourteen different approximations are possible.
Note that some of these fourteen approximations are not useful
for data mining from incomplete data [2], [3], [4], [5], [6], [7].

II. BASIC DEFINITIONS

First we will introduce the basic granules (or neighbor-
hoods), defined by a relation R. In this paper R is a gen-
eralization of the indiscernibility relation. The relation R, in
general, does not need to be reflexive, symmetric, or transitive,
while the indiscernibility relation is an equivalence relation.
Such granules are called here R- successor and R- predecessor
sets.

Let U be a finite nonempty set, called a universe, let R
be a binary relation on U , and let x be a member of U . The
R- successor set of x, denoted by Rs(x), is defined as follows

Rs(x) = {y | xRy}.
The R- predecessor set of x, denoted by Rp(x), is defined

as follows

Rp(x) = {y | yRx}.
R- successor and R- predecessor sets are used to form larger

sets that are called R- successor and R- predecessor definable.
Let X be a subset of U . A set X is R- successor definable

if and only if X = ∅ or there exists a subset Y of U such that

X = ∪ {Rs(y)| y ∈ Y }.
A set X is R- predecessor definable if and only if X = ∅

or there exists a subset Y of U such that

X = ∪ {Rp(y)| y ∈ Y }.
Let X be a subset of U . The R- singleton successor lower

approximation of X , denoted by apprsingleton
s

(X), is defined
as follows

{x ∈ U | Rs(x) ⊆ X}.
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The singleton successor lower approximations were studied
in many papers, see, e.g., [1], [2], [8], [9], [10], [11], [12],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25].

The R- singleton predecessor lower approximation of X ,
denoted by apprsingleton

p
(X), is defined as follows

{x ∈ U | Rp(x) ⊆ X}.
The singleton predecessor lower approximations were stud-

ied in [17].
The R- singleton successor upper approximation of X , de-

noted by apprsingleton
s (X), is defined as follows

{x ∈ U | Rs(x) ∩ X 6= ∅}.
The singleton successor upper approximations, like single-

ton successor lower approximations, were also studied in many
papers, e.g., [1], [2], [8], [9], [17], [18], [19], [20], [21], [22],
[23], [24], [25].

The R- singleton predecessor upper approximation of X ,
denoted by apprsingleton

p (X), is defined as follows

{x ∈ U | Rp(x) ∩ X 6= ∅}.
The singleton predecessor upper approximations were intro-

duced in [17]. Note that singleton approximations were also
discussed in [15].

The R- subset successor lower approximation of X , denoted
by apprsubset

s
(X), is defined as follows

∪ {Rs(x) | x ∈ U, Rs(x) ⊆ X}.
The subset successor lower approximations were introduced

in [1], [2].
The R- subset predecessor lower approximation of X , de-

noted by apprsubset
p

(X), is defined as follows

∪ {Rp(x) | x ∈ U, Rp(x) ⊆ X}.
The subset predecessor lower approximations were studied

in [17].
The R- subset successor upper approximation of X , denoted

by apprsubset
s (X), is defined as follows

∪ {Rs(x) | x ∈ U, Rs(x) ∩ X 6= ∅}.
The subset successor upper approximations were introduced

in [1], [2].
The R- subset predecessor upper approximation of X , de-

noted by apprsubset
p (X), is defined as follows

∪ {Rp(x) | x ∈ U, Rp(x) ∩ X 6= ∅}.
The subset predecessor upper approximations were studied

in [17].
The R- concept successor lower approximation of X , de-

noted by apprconcept
s

(X), is defined as follows

∪ {Rs(x) | x ∈ X, Rs(x) ⊆ X}.

The concept successor lower approximations were intro-
duced in [1], [2].

The R- concept predecessor lower approximation of X ,
denoted by apprconcept

p
(X), is defined as follows

∪ {Rp(x) | x ∈ X, Rp(x) ⊆ X}.
The concept predecessor lower approximations are intro-

duced, for the first time, in this paper.
The R- concept successor upper approximation of X , de-

noted by apprconcept
s (X), is defined as follows

∪ {Rs(x) | x ∈ X, Rs(x) ∩ X 6= ∅}
The concept successor upper approximations were studied

in [1], [2], [12].
The R- concept predecessor upper approximation of X ,

denoted by apprconcept
p (X), is defined as follows

∪ {Rp(x) | x ∈ X, Rp(x) ∩ X 6= ∅}
The concept predecessor upper approximations were studied

in [17].

III. DUAL APPROXIMATIONS

Let X be a subset of U . A complement of X , i.e., the set
U − X , will be denoted by ¬X . As it was shown in [23],
singleton approximations are dual, i.e.,

apprsingleton
s

(X) = ¬(apprsingleton
s (¬X)),

apprsingleton
s (X) = ¬(apprsingleton

s
(¬X)),

apprsingleton
p

(X) = ¬(apprsingleton
p (¬X)),

apprsingleton
p (X) = ¬(apprsingleton

p
(¬X)).

Additionally, as it was shown in [23], subset approximations
are not dual. Moreover, concept approximations are not dual
as well. Consider the example from Section VII-A and set X
= {1, 2, 4, 8}. Then

apprconcept
s

(X) = {1, 2, 4, 8} 6= ¬(apprconcept
s (¬X)) =

{1, 2}.
Replacing R with R−1 in the example from Section VII-

A shows that R -concept predecessor approximations are not
dual, either.

Two additional approximations were defined in [23]. The
first approximation denoted by apprdualsubset

s (X) was defined
by

¬(apprsubset
s

(¬X)),

while the second one denoted by apprdualsubset
s

(X) was
defined by

¬(apprsubset
s (¬X)).
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Obviously, there are additional possible approximations, if
we replace subscript s by p, i.e.,

¬(apprsubset
p

(¬X))

and

¬(apprsubset
p (¬X)),

or if we replace in the last four definitions ”subset” by ”con-
cept”. Four former approximations of these eight approxima-
tions are called R - dual subset approximations of X and latter
four approximations are called R - dual concept approximations
of X , (successor or predecessor, lower or upper, respectively).

IV. ROUGH INCLUSION

Duality of lower and upper approximations of arbitrary
subset X of the universe U is a basic property of rough ap-
proximations defined for the indiscernibility relation originally
formulated by Z. Pawlak [13], [14]. Rough inclusion is another
important property. The following property is called a rough
inclusion:

apprb
a
(X) ⊆ X ⊆ apprb

a(X)

or

¬(apprb
a(¬X)) ⊆ X ⊆ ¬(apprb

a
(¬X)),

where a ∈ {s, p} and b ∈ {subset, concept}.
For subset and concept approximations, any pair of the same

type of lower and upper approximations, as well as any pair of
associated dual lower and upper approximations satisfies the
property of rough inclusion for arbitrary relation R. However,
for not reflexive relation R and singleton approximations the
following situations may happen, dose not matter if R is
symmetric or transitive:

∼ (apprsingleton
a

(X) ⊆ X),

∼ (X ⊆ apprsingleton
a (X)),

apprsingleton
a (X) ( X ( apprsingleton

a
(X),

where a ∈ {s, p}. The following example shows such three
situations for a symmetric and transitive relation R.

Example. Let U = {1, 2, 3, 4, 5}, X = {1, 2}, R =
{(1, 1), (3, 3), (4, 4), (3, 4), (4, 3)}. Then for a ∈ {s, p}
apprsingleton

a
(X) = {1, 2, 5}, apprsingleton

a (X) = {1}, so that

∼ (apprsingleton
a

(X) ⊆ X),

∼ (X ⊆ apprsingleton
a (X)),

apprsingleton
a (X) ( X ( apprsingleton

s
(X).

Thus, for singleton approximations—in general—the in-
clusion property does not hold. To avoid this situation, the
following modification of corresponding definitions may be
introduced:

The R- modified singleton successor lower approximation of
X , denoted by apprmodsingleton

s
(X), is defined as follows

{x ∈ U | Rs(x) ⊆ X ∧ Rs(x) 6= ∅}.
The R- modified singleton predecessor lower approximation

of X , denoted by apprmodsingleton
p

(X), is defined as follows

{x ∈ U | Rp(x) ⊆ X ∧ Rp(x) 6= ∅}.
The R- modified singleton successor upper approximation of

X , denoted by apprmodsingleton
s (X), is defined as follows

{x ∈ U | Rs(x) ∩ X 6= ∅ ∨ Rs(x) = ∅}.
The R- modified singleton predecessor upper approximation

of X , denoted by apprmodsingleton
p (X), is defined as follows

{x ∈ U | Rp(x) ∩ X 6= ∅ ∨ Rp(x) = ∅}.
Pairs of corresponding modified singleton approximations

are dual. To prove that property, let arbitrary element x ∈
U be considered. x ∈ apprmodsingleton

s
(X) if and only if

Rs(x) 6= ∅ and Rs(x) ⊆ X . The latter inclusion is equivalent
to Rs(x) ∩ (¬X) = ∅ and together with Rs(x) 6= ∅ give
x /∈ apprmodsingleton

s (¬X).

V. COALESCENCE OF ROUGH APPROXIMATIONS

Directly from respective definitions, if R is reflexive,

apprsubset
a

(X) = apprconcept
a

(X),

for a ∈ {s, p}, i.e., for any X ⊆ U , R -subset successor
lower approximation of X is equal to the R -concept successor
lower approximation of X and the R -subset predecessor lower
approximation of X is equal to the R -concept predecessor
lower approximation of X . Again, if R is reflexive,

apprsingleton
a

(X) = apprmodsingleton
a

(X),

and

apprsingleton
a (X) = apprmodsingleton

a (X),

for a ∈ {s, p}, i.e., for any X ⊆ U , corresponding R -singleton
approximations and R -modified singleton approximations are
equal to each other.

Additionally, it was proven in [17] that if R is reflexive,

{x ∈ U | Rs(x) ∩ X 6= ∅} =
∪ {Rp(x) | x ∈ X, Rp(x) ∩ X 6= ∅}.

i.e., for any X ⊆ U , the R -singleton successor upper approx-
imation of X is equal to the R -concept predecessor upper
approximation of X .

By analogy with the previous result, if R is reflexive,

{x ∈ U | Rp(x) ∩ X 6= ∅} =
∪ {Rs(x) | x ∈ X, Rs(x) ∩ X 6= ∅},
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i.e., for any X ⊆ U , the R -singleton predecessor upper
approximation of X is equal to the R -concept successor upper
approximation of X .

For reflexive relation R corresponding R -subset lower and
R -concept lower approximations coalesce. Namely

apprsubset
s

(X) = apprconcept
s

(X),

and

apprsubset
p

(X) = apprconcept
p

(X).

From those equalities and duality of R -dual subset approx-
imations and R -dual concept approximations

apprdualsubset
s (X) = apprdualconcept

s (X),

apprdualsubset
p (X) = apprdualconcept

p (X).

VI. DEFINABILITY

In general, for any subset X of U and a binary relation
R on U , the R -singleton approximations of X (successor
or predecessor, lower or upper) and R -modified singleton
approximations of X are neither R -successor definable nor
R -predecessor definable. Similarly, approximations defined as
dual sets to subset approximations or to concept approxi-
mations are neither R -successor definable nor R -predecessor
definable. Subset successor approximations and concept suc-
cessor approximations are only R -successor definable while
subset predecessor approximations and concept predecessor
approximations are only R -predecessor definable. On the other
hand, all presented in the paper approximations are both R -
successor definable and R -predecessor definable when R is
an equivalence relation relation. All necessary examples and
proofs are presented in the approaching subsections. In the
sequel we investigate which of three properties of relation R:
reflexivity, symmetry, transitivity, are necessary or sufficient to
ensure definability of introduced approximations. For arbitrary
subset X of a universe U and arbitrary relation R on U an R -
successor lower approximation of X is R -successor definable
if and only if corresponding R -predecessor lower approxi-
mation is R -predecessor definable. Moreover an R -successor
lower approximation of X is R -predecessor definable if and
only if corresponding R -predecessor lower approximation is
R -successor definable. Obviously, the same situation arises for
any kind of upper approximation considered in the paper. It
follows from the fact that a binary relation R is reflexive,
symmetric or transitive if and only if relation R−1 is reflex-
ive, symmetric or transitive, respectively. Thus situations of
R -successor and R -predecessor definability of R -successor
approximations will be considered only in the approaching
subsections.

A. Definability of Singleton Approximations

If a relation R is reflexive and transitive, then
apprsingleton

s
(X) is R -successor definable and

apprsingleton
p

(X) is R -predecessor definable.
It was shown in [23] that for a reflexive and transitive

relation R

apprsingleton
s

(X) = apprsubset
s

(X)

and

apprsingleton
p

(X) = apprsubset
p

(X)

Since apprsubset
s

(X) is R -successor definable, then
apprsingleton

s
(X) is also R -successor definable. If R is not

reflexive and transitive simultaneously, then apprsingleton
s

(X)
may not be R -successor definable. To show that, consider the
examples from Sections VII-C and VII-E. In these examples
the relation R is respectively reflexive and symmetric but not
transitive or R is symmetric and transitive but not reflexive.
In the former case apprsingleton

s
(X) = {2, 8, 9} is not R -

successor definable because the element 2 occurs always with
elements 1 or 3 and none of them belongs to {2, 8, 9}. In
the latter case apprsingleton

s
(X) = {1} is not R -successor

definable because the element 1 does not occur in any R -
successor set.

If a relation R is an equivalence relation then
apprsingleton

s
(X) is R -predecessor definable. The proof

of this fact follows the equalities

apprsingleton
s

(X) = apprsubset
s

(X)

for reflexive and transitive relation R [23] and

apprsubset
s

(X) = apprsubset
p

(X)

for symmetric relation R. If a relation R is not an equivalence
relation, then apprsingleton

s
(X) may not be R -predecessor

definable. Indeed, if R is symmetric and not an equivalence
relation, the same examples as for R -successor definability
of apprsingleton

s
(X) are appropriate to show that any set X

may be not R -predecessor definable. If R is reflexive and
transitive but not an equivalence relation, then in the example
from Section VII-D apprsingleton

s
(X) = {1, 6} is not R -

predecessor definable, because the element 1 occurs only in
one R -predecessor set Rp(1) = {1, 2} and 2 /∈ {1, 6}.

If relation R is symmetric, then apprsingleton
s (X) is R -

successor definable. To prove this fact we will show that for
any x ∈ apprsingleton

s (X) x must belong to an R -successor set
included in apprsingleton

s (X). Since x ∈ apprsingleton
s (X),

there exists y ∈ X such that y ∈ Rs(x). From symmetry
of R, x ∈ Rs(y). If Rs(y) = {x}, then obviously Rs(y) ⊆
apprsingleton

s (X). If Rs(y) 6= {x}, then there exists z 6= x,
such that z ∈ Rs(y). For any such z from symmetry of R
y ∈ Rs(z), and in consequence z ∈ apprsingleton

s (X). So,
also in this case Rs(y) ⊆ apprsingleton

s (X).
To show that for reflexive and transitive relation R a set

apprsingleton
s (X) may not be R -successor definable, it is

enough to consider the example from Section VII-D. For the
set X from the example apprsingleton

s (X) = {1, 2, 5, 6, 7},
but the element 2 occurs in R -successor sets together with the
element 3 which does not belong to apprsingleton

s (X).
If a relation R is reflexive or symmetric, then

apprsingleton
s (X) is R -predecessor definable. For
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apprsingleton
s

(X) and symmetric relation we have just
proved property which directly implies this one. Moreover, it
was shown in Section V that for a reflexive relation R

apprsingleton
s (X) = apprconcept

p (X).

For definability of overlineapprconcept
p (X) see Sec-

tion VI-D. If R is neither reflexive nor symmetric, then
apprsingleton

s (X) may be not R -predecessor definable, as the
example from Section VII-B shows. apprsingleton

s (X) = {1, 3,
5} and the element 1 occurs in the R -predecessor sets together
with the element 2 /∈ apprsingleton

s (X).

B. Definability of Modified Singleton Approximations

If R is symmetric and transitive or R is reflexive and tran-
sitive, then set apprmodsingleton

s
(X) is R -successor definable.

Let us start the proof with the assumption that x ∈
apprmodsingleton

s
(X). It means Rs(x) 6= ∅ and Rs(x) ⊆

apprmodsingleton
s

(X). From symmetry and transitivity of R
follows that x ∈ Rs(x). Since x is an arbitrary ele-
ment of set apprmodsingleton

s
(X), we have x ∈ Rs(x)

for all x ∈ apprmodsingleton
s

(X) and as consequence
apprmodsingleton

s
(X) X is R -successor definable. For a reflex-

ive relation R, the R -modified singleton approximations are
equal to corresponding R -singleton approximations, and it has
been shown that a R -singleton successor lower approximation
is definable if R is reflexive and transitive. The examples
from Sections VII-B and VII-C shows that if a relation R
is only transitive or it is reflexive and symmetric, then the
set apprmodsingleton

s
(X) may be not R -successor definable.

For the transitive relation R apprmodsingleton
s

(X) = {5}.
This set is not R -successor definable, since the element 5
does not occur in the R -successor sets. For a reflexive and
symmetric relation R from the example from Section VII-C
apprmodsingleton

s
(X) = {2, 8, 9}, and the element 2 occurs

always in the R -successor sets together with the elements 1
or 3, that do not belong to set {2, 8, 9}.

If a relation R is symmetric and transitive, then for any X
set apprmodsingleton

s
(X) is R -predecessor definable. Proof of

this property is based on the fact that for a symmetric relation
R, the R -predecessor sets are equal to R -successor sets and
that sets apprmodsingleton

s
(X) are R -successor definable if R

is symmetric and transitive.
The examples from Sections VII-C and VII-D shows that

if a relation R is not symmetric and transitive then the set
apprmodsingleton

s
(X) may be not R successor definable. In

the example from Section VII-C apprmodsingleton
s

(X) = {2,
8, 9} and 2 occurs together with 1 or 3. In the example from
Section VII-D apprmodsingleton

s
(X) = {1, 6} and the element

1 occurs always with the element 2. If R is reflexive and
symmetric, then for any X set apprmodsingleton

s (X) is R -
successor definable. To prove this fact let us note that for a
reflexive relation R

apprmodsingleton
s (X) = apprsingleton

s (X),

as it was observed in Section V and that the set
apprsingleton

s (X) is R -successor definable if R is symmetric.

The examples from Sections VII-D and VII-E show that for not
reflexive or not symmetric relation R set apprmodsingleton

s (X)
may be not R -successor definable. In the former example the
element 2 belongs to apprmodsingleton

s (X), but it occurs in R -
successor sets together with the element 3 that does not belong
to apprmodsingleton

s (X). In the latter example the element 1
belongs to apprmodsingleton

s (X) and this element does not
occur in any R -successor set.

If a relation R is reflexive, then set apprmodsingleton
s (X)

is R -predecessor definable for any set X . To prove that
we will use the fact that reflexivity of R is a sufficient
condition for sets apprsingleton

s (X) to be R -predecessor defin-
able and that sets apprmodsingleton

s (X) and apprsingleton
s (X)

are equal. On the other hand, the example from Section
VII-E shows that for a not reflexive relation R, the set
apprmodsingleton

s (X) may be not R -predecessor definable.
Indeed, 1 ∈ apprmodsingleton

s (X) but 1 /∈ Rp(x), for any
x ∈ U .

C. Definability of Subset Approximations

As mentioned at the beginning of Section VI, sets
apprsubset

s
(X) and apprsubset

s (X) are R -successor definable
for any set X and relation R. It follows directly from defini-
tions of these approximations. Obviously, if R is symmetric,
then R -successor subset approximations (lower and upper) are
R -predecessor definable. On the other hand the example from
Section VII-D proves that for a not symmetric relation R,
the R -successor subset approximations (lower and upper) may
be not R -predecessor definable. Indeed, 1 ∈ apprsubset

s
(X),

but 1 /∈ apprsubset
p

(X), because the element 1 occurs in R -
predecessor sets with the element 2 which does not belong
to apprsubset

s
(X). The element 3 ∈ apprsubset

s (X) but 3 /∈
apprsubset

p (X) because the element 4 occurs always with 3 in
R -predecessor sets.

D. Definability of Concept Approximations

Definability of concept approximations requires the same
properties of a relation R as in the case of subset approx-
imations. Namely, directly from definitions, apprconcept

s
(X)

and apprconcept
s (X) are R -successor definable for any set X

and relation R. If R is symmetric, then R -successor concept
lower approximation and R -concept successor upper approxi-
mation are R -predecessor definable because of equality of R -
successor and R -predecessor sets. The example from Section
VII-D confirms the necessity of symmetry of a relation R. The
element 1 ∈ apprconcept

s
(X) and 1 ∈ apprconcept

s (X) but it
occurs in R -predecessor sets together with the element 2 which
neither belongs to apprconcept

s
(X) nor to apprconcept

s (X).

E. Definability of Dual Subset Approximations

If a relation R is an equivalence relation then the sets
apprdualsubset

s
(X) and apprdualsubset

s (X) are R -successor
definable. Indeed, in this case a relation R partitions uni-
verse U . Directly from definitions it follows that the sets
apprdualsubset

s
(X) and apprdualsubset

s (X) are complementary
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to sets apprsubset
s (¬X) and apprsubset

s
(¬X) that are R -

successor definable. On the other hand one may check that
for a not an equivalence relation relation R those sets may
be not R -successor definable. The example from Section VII-
C shows that apprdualsubset

s
(X) is not R -successor definable

because apprdualsubset
s

(X) = {9}, and 9 occurs always with
8. In the same example set apprdualsubset

s (X) is not R -
successor definable either, because 7 ∈ apprdualsubset

s (X)
and 7 occurs always together with 6 which does not be-
long to apprdualsubset

s (X). The example from Section VII-
E shows that for a symmetric and transitive relation R
1 ∈ apprdualsubset

s
(X) and 1 ∈ apprdualsubset

s (X), but
the element does not occur in any R -successor set, thus
sets apprdualsubset

s
(X) and apprdualsubset

s (X) are not R -
successor definable. The example from Section VII-D may be
used to check that for a reflexive and transitive relation R dual
successor approximations may be not R -successor definable.
The set apprdualsubset

s
(X) = {7} is not R -successor definable

because the element 7 occurs in R -successor sets together with
the element 6. Set apprdualsubset

s (X) = {1, 2, 5, 6, 7} is
not R -successor definable because the element 2 occurs in
R -successor sets together with the element 3 which does not
belong to set apprdualsubset

s (X).

A sufficient condition of the R -predecessor definability of
dual subset successor approximations (lower and upper) is
reflexivity and transitivity of a relation R. At the beginning
of the proof let us notice that because of reflexivity of R,
every element x ∈ U occurs in at least one R -predecessor set.
Let us assume there is an element x ∈ apprdualsubset

s
(X)

such that it always occurs in R -predecessor sets together
with elements from outside of set apprdualsubset

s
(X). Such

assumption implies there exists element y 6= x, such that
y /∈ apprdualsubset

s
(X) and x ∈ Rp(y). If y /∈ X then

x /∈ apprdualsubset
s

(X) and that contradiction ends the proof.
If y ∈ X then there exists z /∈ X , such that z ∈ Rp(y).
But in such a situation transitivity of R implies z ∈ Rp(x).
It means that x ∈ apprsubset

s (¬X), so x cannot be an ele-
ment of apprdualsubset

s
(X). This observation ends the proof.

Let us start the proof for a R -dual subset successor upper
approximation in the same way as above, i.e., with obser-
vation of membership of every element x in at least one R -
predecessor set and with assuming the existence of an element
x ∈ apprdualsubset

s (X) which always occurs in R -predecessor
sets with elements from outside of apprdualsubset

s (X). Such
assumptions imply that Rp(x) 6= x, i.e., there exists an element
y, such that y ∈ Rp(x) and y /∈ apprdualsubset

s (X). Thus
y ∈ apprsubset

s
(¬X). But y ∈ Rp(x), and that means that

x ∈ Rs(y) and now it is easy to see that y cannot belong to
apprsubset

s
(¬X). This observation leads to the following: if

y ∈ Rs(z) for any z ∈ (¬X) than Rs(z) * apprsubset
s

(¬X).
Such situation arises since x ∈ Rs(y), y ∈ Rs(z) and since
transitivity of R.

Symmetry of a relation R causes that the same examples
from Sections VII-C and VII-E that were used to illustrate the
case of R -successor definability of R -dual subset successor

approximations shows that R dual subset successor approxi-
mations (lower or upper) may be not R -predecessor definable
if R is not reflexive and transitive, simultaneously.

F. Definability of Dual Concept Approximations

If a relation R is an equivalence relation, then
apprdualconcept

s
(X) and apprdualconcept

s (X) are R -successor
definable.

Proof of this property is analogous to the respective proof
for the R -dual subset approximations case. We use the fact
that an equivalence relation partitions universe and R -dual
concept approximations are complementary sets to respective
R -concept approximations. If R is not an equivalence relation
then R -dual concept approximations (lower or upper) may
be not R -successor definable. To show that let us consider
three examples for R -dual concept lower approximation. For
the first one from Section VII-C set apprdualconcept

s
(X) =

{2, 8, 9} is not R -successor definable because the ele-
ment 2 occurs in R -successor sets together with the ele-
ments 1 or 3 and none of them belong to set {2, 8, 9}.
The second example comes from Section VII-D. Now, set
apprdualconcept

s
(X) = {7} is not R -successor definable be-

cause there is not R -successor set {7}. For this two cases
relation R is reflexive, so apprconcept

s
(X) = apprsubset

s
(X)

and thus apprdualconcept
s (X) = apprdualsubset

s (X). We proved
that for a not equivalence relation R set apprdualsubset

s (X)
may be not R -successor definable. The last example comes
from Section VII-E. Now, the element 1 ∈ apprdualconcept

s
(X)

and the element does not belong to any R -successor set.
The same element makes set apprdualconcept

s (X) R -successor
undefinable.

If a relation R is reflexive and transitive then the
sets apprdualconcept

s
(X) and apprdualconcept

s (X) are R -
predecessor definable.

The proof of that fact for set apprdualconcept
s (X) is based

on the equality of apprconcept
s

(X) = apprsubset
s

(X) for a
reflexive relation R and on R -predecessor definability of
apprsubset

s (X) if R is reflexive and transitive. The proof for
the set apprdualconcept

s
(X) is similar to the part of respective

proof for apprdualsubset
s

(X) in which the element y ∈ X is
assumed (c.f. Section VI-E),

G. Summary

Table I summarizes all described results for the R -successor
and R -predecessor definability. The following notation is used:
r denotes reflexivity, s denotes symmetry, t denotes transitivity
and ”any” denotes lack of constrains on a relation R that are
needed to guarantee given kind of definability of an arbitrary
subset of the universe.

VII. ILLUSTRATIVE EXAMPLES

A. Reflexive Relations

Example. Let U = {1, 2, 3, 4, 5, 6, 7, 8} and R = {(1, 1),
(1, 8), (2, 2), (2, 8), (3, 3), (4, 4), (4, 8), (5, 4), (5, 5), (5, 8),
(6, 6), (6, 8), (7, 7), (8, 2), (8, 4), (8, 6), (8, 8)}. Rs(x) and
Rp(x), for x ∈ U , are the following sets
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TABLE I

SUMMARY RESULTS OF ROUGH APPROXIMATIONS DEFINABILITY

Approximation R-successor def. R-predecessor def.

apprsingleton
s

(X) r ∧ t r ∧ s ∧ t

apprsingleton
p

(X) r ∧ s ∧ t r ∧ t

apprsingleton
s (X) s r ∨ s

apprsingleton
p (X) r ∨ s s

apprmodsingleton
s

(X) r ∧ t ∨ s ∧ t s ∧ t

apprmodsingleton
p

(X) s ∧ t r ∧ t ∨ s ∧ t

apprmodsingleton
s (X) r ∧ s r

apprmodsingleton
p (X) r r ∧ s

apprsubset
s

(X) any s

apprsubset
p

(X) s any

apprsubset
s (X) any s

apprsubset
p (X) s any

apprdualsubset
s

(X) r ∧ s ∧ t r ∧ t

apprdualsubset
p

(X) r ∧ t r ∧ s ∧ t

apprdualsubset
s (X) r ∧ s ∧ t r ∧ t

apprdualsubset
p (X) r ∧ t r ∧ s ∧ t

apprconcept
s

(X) any s

apprconcept
p

(X) s any

apprconcept
s (X) any s

apprconcept
p (X) s any

apprdualconcept
s

(X) r ∧ s ∧ t r ∧ t

apprdualconcept
p

(X) r ∧ t r ∧ s ∧ t

apprdualconcept
s (X) r ∧ s ∧ t r ∧ t

apprdualconcept
p (X) r ∧ t r ∧ s ∧ t

Rs(1) = {1, 8},
Rs(2) = {2, 8},
Rs(3) = {3},
Rs(4) = {4, 8},
Rs(5) = {4, 5, 8},
Rs(6) = {6, 8},
Rs(7) = {7}, and
Rs(8) = {2, 4, 6, 8}.

Moreover,
Rp(1) = {1},
Rp(2) = {2, 8},
Rp(3) = {3},
Rp(4) = {4, 5, 8},
Rp(5) = {5},
Rp(6) = {6, 8},
Rp(7) = {7}, and
Rp(8) = {1, 2, 4, 5, 6, 8}.

B. Transitive Relations

Let U = {1, 2, 3, 4, 5, 6}, R = {(1, 2), (1, 4), (2, 4), (3,
2), (3, 4), (5, 6)} and X = {1, 2, 3, 6}. Rs(x) and Rp(x), for
x ∈ U , are the following sets

Rs(1) = {2, 4},
Rs(2) = {4},
Rs(3) = {2, 3},
Rs(4) = Rs(6) = ∅,
Rs(5) = {6},

Moreover
Rp(1) = Rp(3) = Rp(5) = ∅,

Rp(2) = {1, 3},
Rp(4) = {1, 2, 3},
Rp(6) = {5}.

C. Reflexive and Symmetric Relations

Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, R = {(1, 1), (1, 2), (1,
4), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3), (3, 4), (3, 8), (4, 1), (4,
3), (4, 4), (5, 5), (5, 6), (6, 5), (6, 6), (6, 7), (7, 7), (8, 3), (8,
8), (8, 9), (9, 8), (9, 9)} and X = {1, 2, 3, 7, 8, 9}. Rs(x)
and Rp(x), for x ∈ U , are the following sets

Rs(1) = Rp(1) = {1, 2, 4},
Rs(2) = Rp(2) = {1, 2, 3},
Rs(3) = Rp(3) = {2, 3, 4, 8},
Rs(4) = Rp(4) = {1, 3, 4}
Rs(5) = Rp(5) = {5, 6},
Rs(6) = Rp(6) = {5, 6, 7},
Rs(7) = Rp(7) = {6, 7},
Rs(8) = Rp(8) = {3, 8, 9},
Rs(9) = Rp(9) = {8, 9}.

D. Reflexive and Transitive Relations

Let U = {1, 2, 3, 4, 5, 6, 7 }, R = {(1, 1), (2, 1), (2, 2),
(2, 3), (3, 3), (4, 3), (4, 4), (5, 5), (5, 6), (6, 6), (7, 6), (7,
7)} and X = {1, 6, 7}. Rs(x) and Rp(x), for x ∈ U , are the
following sets

Rs(1) = {1},
Rs(2) = {1, 2, 3},
Rs(3) = {3}
Rs(4) = {3, 4}
Rs(5) = {5, 6},
Rs(6) = {6},
Rs(7) = {6, 7}.

Moreover
Rp(1) = {1, 2},
Rp(2) = {2},
Rp(3) = {2, 3, 4}
Rs(4) = {4},
Rs(5) = {5},
Rs(6) = {5, 6, 7},
Rs(7) = {7}.

E. Symmetric and Transitive Relations

Let U = {1, 2, 3}, R = {(2, 2), (2, 3), (3, 2), (3, 3)} and X
= { 2}. Rs(x) and Rp(x), for x ∈ U , are the following sets

Rs(1) = Rp(1) = ∅,
Rs(2) = Rp(2) = Rs(3) = Rp(3) = {2, 3}.

VIII. CONCLUSIONS

In this paper we studied twenty four approximations defined
for any binary relation R on universe U , where R is not
necessarily reflexive, symmetric or transitive. Our main focus
was on definability of a subset X of U . We checked which
approximations of X are, in general, definable. When relation
R is reflexive, some of these approximations coalesce. As a
result, in general, only fourteen different approximations are
possible for reflexive relations. Similar results are presented
for relations that are combinations of reflexive, symmetric, or
transitive relations.
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